4,041 research outputs found

    The dispersion time of random walks on finite graphs

    Get PDF
    We study two random processes on an nn-vertex graph inspired by the internal diffusion limited aggregation (IDLA) model. In both processes nn particles start from an arbitrary but fixed origin. Each particle performs a simple random walk until first encountering an unoccupied vertex, and at which point the vertex becomes occupied and the random walk terminates. In one of the processes, called Sequential-IDLA\textit{Sequential-IDLA}, only one particle moves until settling and only then does the next particle start whereas in the second process, called Parallel-IDLA\textit{Parallel-IDLA}, all unsettled particles move simultaneously. Our main goal is to analyze the so-called dispersion time of these processes, which is the maximum number of steps performed by any of the nn particles. In order to compare the two processes, we develop a coupling that shows the dispersion time of the Parallel-IDLA stochastically dominates that of the Sequential-IDLA; however, the total number of steps performed by all particles has the same distribution in both processes. This coupling also gives us that dispersion time of Parallel-IDLA is bounded in expectation by dispersion time of the Sequential-IDLA up to a multiplicative logn\log n factor. Moreover, we derive asymptotic upper and lower bound on the dispersion time for several graph classes, such as cliques, cycles, binary trees, dd-dimensional grids, hypercubes and expanders. Most of our bounds are tight up to a multiplicative constant.ERC Grant Dynamic Marc

    Dispersion processes

    Get PDF
    We study a synchronous dispersion process in which MM particles are initially placed at a distinguished origin vertex of a graph GG. At each time step, at each vertex vv occupied by more than one particle at the beginning of this step, each of these particles moves to a neighbour of vv chosen independently and uniformly at random. The dispersion process ends once the particles have all stopped moving, i.e. at the first step at which each vertex is occupied by at most one particle. For the complete graph KnK_n and star graph SnS_n, we show that for any constant δ>1\delta>1, with high probability, if Mn/2(1δ)M \le n/2(1-\delta), then the process finishes in O(logn)O(\log n) steps, whereas if Mn/2(1+δ)M \ge n/2(1+\delta), then the process needs eΩ(n)e^{\Omega(n)} steps to complete (if ever). We also show that an analogous lazy variant of the process exhibits the same behaviour but for higher thresholds, allowing faster dispersion of more particles. For paths, trees, grids, hypercubes and Cayley graphs of large enough sizes (in terms of MM) we give bounds on the time to finish and the maximum distance traveled from the origin as a function of the number of particles MM

    Anderson localization in generalized discrete time quantum walks

    Get PDF
    We study Anderson localization in a generalized discrete time quantum walk - a unitary map related to a Floquet driven quantum lattice. It is controlled by a quantum coin matrix which depends on four angles with the meaning of potential and kinetic energy, and external and internal synthetic flux. Such quantum coins can be engineered with microwave pulses in qubit chains. The ordered case yields a two-band eigenvalue structure on the unit circle which becomes completely flat in the limit of vanishing kinetic energy. Disorder in the external magnetic field does not impact localization. Disorder in all the remaining angles yields Anderson localization. In particular, kinetic energy disorder leads to logarithmic divergence of the localization length at spectral symmetry points. Strong disorder in potential and internal magnetic field energies allows to obtain analytical expressions for spectrally independent localization length which is highly useful for various applications.Comment: 11 pages, 14 figure

    Virtually Abelian Quantum Walks

    Full text link
    We introduce quantum walks on Cayley graphs of non-Abelian groups. We focus on the easiest case of virtually Abelian groups, and introduce a technique to reduce the quantum walk to an equivalent one on an Abelian group with coin system having larger dimension. We apply the technique in the case of two quantum walks on virtually Abelian groups with planar Cayley graphs, finding the exact solution.Comment: 10 pages, 3 figure

    Markov Chain Methods For Analyzing Complex Transport Networks

    Full text link
    We have developed a steady state theory of complex transport networks used to model the flow of commodity, information, viruses, opinions, or traffic. Our approach is based on the use of the Markov chains defined on the graph representations of transport networks allowing for the effective network design, network performance evaluation, embedding, partitioning, and network fault tolerance analysis. Random walks embed graphs into Euclidean space in which distances and angles acquire a clear statistical interpretation. Being defined on the dual graph representations of transport networks random walks describe the equilibrium configurations of not random commodity flows on primary graphs. This theory unifies many network concepts into one framework and can also be elegantly extended to describe networks represented by directed graphs and multiple interacting networks.Comment: 26 pages, 4 figure

    Spectral and Dynamical Properties in Classes of Sparse Networks with Mesoscopic Inhomogeneities

    Full text link
    We study structure, eigenvalue spectra and diffusion dynamics in a wide class of networks with subgraphs (modules) at mesoscopic scale. The networks are grown within the model with three parameters controlling the number of modules, their internal structure as scale-free and correlated subgraphs, and the topology of connecting network. Within the exhaustive spectral analysis for both the adjacency matrix and the normalized Laplacian matrix we identify the spectral properties which characterize the mesoscopic structure of sparse cyclic graphs and trees. The minimally connected nodes, clustering, and the average connectivity affect the central part of the spectrum. The number of distinct modules leads to an extra peak at the lower part of the Laplacian spectrum in cyclic graphs. Such a peak does not occur in the case of topologically distinct tree-subgraphs connected on a tree. Whereas the associated eigenvectors remain localized on the subgraphs both in trees and cyclic graphs. We also find a characteristic pattern of periodic localization along the chains on the tree for the eigenvector components associated with the largest eigenvalue equal 2 of the Laplacian. We corroborate the results with simulations of the random walk on several types of networks. Our results for the distribution of return-time of the walk to the origin (autocorrelator) agree well with recent analytical solution for trees, and it appear to be independent on their mesoscopic and global structure. For the cyclic graphs we find new results with twice larger stretching exponent of the tail of the distribution, which is virtually independent on the size of cycles. The modularity and clustering contribute to a power-law decay at short return times

    Thermodynamic formalism for dissipative quantum walks

    Full text link
    We consider the dynamical properties of dissipative continuous-time quantum walks on directed graphs. Using a large-deviation approach we construct a thermodynamic formalism allowing us to define a dynamical order parameter, and to identify transitions between dynamical regimes. For a particular class of dissipative quantum walks we propose a quantum generalization of the the classical PageRank vector, used to rank the importance of nodes in a directed graph. We also provide an example where one can characterize the dynamical transition from an effective classical random walk to a dissipative quantum walk as a thermodynamic crossover between distinct dynamical regimes.Comment: 8 page
    corecore