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ABSTRACT
We study two random processes on an n-vertex graph inspired

by the internal diffusion limited aggregation (IDLA) model. These

processes can also be regarded as protocols for allocating jobs in a

distributed network of servers. In both processes n particles start

from an arbitrary but fixed origin. Each particle performs a sim-

ple random walk until it first encounters an unoccupied vertex, at

which point the vertex becomes occupied and the random walk

terminates. In one of the processes, called Sequential-IDLA, a single
particle moves until settling and only then does the next particle

start whereas in the second process, called Parallel-IDLA, all un-
settled particles move simultaneously. The second process is akin

to running the first in parallel. Our main goal is to analyze the

so-called dispersion time of these processes, which is the maximum

number of steps performed by any of the n particles.

In order to compare the two processes, we develop a coupling

which shows the dispersion time of the Parallel-IDLA stochastically

dominates that of the Sequential-IDLA; however, the total number

of steps performed by all particles has the same distribution in

both processes. This coupling also gives us that dispersion time of

Parallel-IDLA is bounded in expectation by dispersion time of the

Sequential-IDLA up to a multiplicative logn factor. Moreover, we

derive asymptotic upper and lower bound on the dispersion time

for several graph classes, such as cliques, cycles, binary trees, d-
dimensional grids, hypercubes and expanders. Most of our bounds

are tight up to a multiplicative constant.
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1 INTRODUCTION
The internal diffusion limited aggregation (IDLA) model, first in-

troduced independently by Diaconis & Fulton [19] and Meakin

& Deutch [36], is a protocol for recursively building a randomly

growing subset (aggregate) of vertices of a graph. Initially, the ag-

gregate consists of only one vertex, denoted as the origin, and we

let a particle be settled at that vertex. Then, at each step, we start

a new particle from the origin and let it perform a random walk

until it visits a vertex not contained in the aggregate. At this point,

we say that the new particle settles at that vertex, and the vertex is

added to the aggregate. We then add a new particle at the origin,

and iterate this procedure over and over again.

IDLA was introduced on the infinite lattice Zd . Here we consider
a finite connected n-vertex graphG . Note that after n particles have

settled, the aggregate occupies the whole of G. During this time,

each particle performed some number of random walk steps before

it settles. Clearly, this number depends on the geometry of the ag-

gregate when the particle started moving. We define the dispersion
time as the largest number of random walk steps performed by any

one of the n particles before reaching an unoccupied vertex.

We refer to the above protocol as Sequential-IDLA, in allusion to

the fact that a particle cannot begin to move until the one before it

settles. However, alternative scheduling protocols could be defined,

in the sense that we could choose to add and move a new particle

from the origin before the previous one has settled. In this way,

there could be several unsettled particles moving at the same time,

but they must abide by the rule that whenever a particle jumps to

an unoccupied vertex, it must settle there. We call any process of

this sort a dispersion process. We are interested in understanding the

affect of different scheduling protocols on the dispersion time. For

this, we will consider the following protocol. Start all n particles

from the origin at time 0 (thus one of them will instantaneously

settle at the origin). Then, all particles perform one random walk

step simultaneously; if one or more particles jump to an unoccupied

vertex, then one such particle settles there. Iterate this procedure

until all particles have settled. We call this second process Parallel-
IDLA.

Both dispersion processes can be regarded as a set of simple

local protocols for resource allocation. Specifically, the sequential

dispersion process is quite similar to a local-search based realloca-

tion scheme from [14], where a job continues to reallocate itself

to a neighbour with less load until it has found a local minimum.

Furthermore, the parallel dispersion process is related to the “QoS
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Load Balancing” model [1], a particular instance of selfish load

balancing (see also [10, 11] for similar protocols). In the QoS model,

tasks perform random walks in parallel and terminate only if they

have found a resource on which the estimated processing time is

acceptable according to some agent-specific threshold. Our disper-

sion processes can be also viewed as a spatial coordination game,

where the goal is to achieve a state in which players are all making

distinct choices. As mentioned in [5], such games serve as a model

for the dynamics in location games or habitat selection of species.

Recall that the dispersion time is the maximum number of steps

taken by any of the n particles in either IDLA process. For the

complete graph Kn the Sequential-IDLA process has essentially

the same dynamics as the famous coupon collector process and

the dispersion time corresponds to the longest wait between col-

lecting successive (new) coupons. Thus the discrepancy between

the Sequential and Parallel dispersion times for Kn measures the

effect of parallelising the coupon collector process on the longest

time between coupons. This motivates the study of dispersion time

on different networks which we can view as a generalization of

the coupon collector process. In the general setting we address the

question: what is the cost of parallelising the IDLA process? Ad-

dressing this question requires us to determine or at least estimate

the Parallel and Sequential dispersion times.

The total time taken by all walks, as opposed to the longest

walk, is also natural to study for these models. Returning briefly to

the complete graph we see that the sum of the walk lengths in the

Sequential-IDLA corresponds to the time to collect all coupons - this

is what is typically studied for the coupon collector. Our couplings

show that for any fixed graph the sum of all walk lengths, later

denoted byW , is the same for Parallel and Sequential IDLA. From

one perspective this motivates the study ofW for general graphs,

this is work in progress by the authors. However, in this paper we

are more interested in the discrepancies between the Sequential and

Parallel processes, some of which are captured by the dispersion

time.

Since in IDLA particles perform random walks, both dispersion

processes can be regarded as a protocol for exploring and covering

an unknown network. However, as opposed to previously studied

models of covering a graph with multiple random walks [4, 9, 17],

the length of the particles’ trajectories may vary wildly in the

dispersion process. This introduces strong correlations between

different particles, a challenge which is not present in the cover

time of multiple random walks.

1.1 Our Contributions
The results we prove can be broadly placed into three categories:

Coupling results which allow us to make qualitative statements

such as “is sequential dispersion faster than parallel dispersion”.

Secondly general bounds which give us quantitative estimates on

how slow or fast the process can be on general graphs or graph

classes such as trees or regular graphs. Finally we have also calcu-

lated the dispersion up to constant factors for many well known

graph families such as cliques, cycles, binary trees, d-dimensional

grids, hypercubes and expanders. Knowing the dispersion time for

several different graph topologies aids our understanding of the

dispersion time and how it is related to different graph parameters.

We shall briefly outline our results in this section before presenting

them in full in the following sections, complete proofs of all results

can be found in the full length version of this paper on ArXiv [40].

The first fundamental question is whether one can relate the

two dispersion times. We answer this question by developing a

coupling, based on “cutting & pasting” particle trajectories. To state

our results we must fix some notation, let τvseq (G) and τvpar (G)

denote the dispersion time of Sequential-IDLA and Parallel-IDLA

on G with origin v , respectively. Unless otherwise specified G will

be connected, simple n vertex graph and v ∈ V (G) arbitrary. We

use our coupling to prove the following results:

• τvseq (G) ⪯ τvpar (G),

• E [τvseq (G) ] ≤ E [τvpar (G) ],

• E [τvpar (G) ] = O
(
log(n) · E [τvseq (G) ]

)
,

• The total number of steps is equidistributed.

The intuition behind Parallel-IDLA being “slower” than Sequential-

IDLA is that, due to competition between particles trying to settle

concurrently, the lengths of particle trajectories in Parallel-IDLA

vary more than in Sequential-IDLA.

In Section 4.3 we introduce a variant of the Parallel-IDLA where

each particle has an exponential clock of rate 1 and moves every

time the clock rings until the particle settles. We name this variant

the continuous-time Uniform-IDLA and let τvc−unif denote its dis-

persion time. We also consider the Sequential and Parallel-IDLA

with lazy walks and let τvL−seq and τvL−par denote their dispersion

times respectively. Under some mild conditions we show that

• τvc−unif (G) = (1 + o(1)) · τ
v
par (G),

• τvseq (G) = (2 + o(1)) · τ
v
L−seq (G),

• τvpar (G) = (2 + o(1)) · τ
v
L−par (G),

hold in expectation and w.h.p., for further details, see Section 4.

These relations are very useful as using lazy or continuous-time

walks allow one to sidestep issues such as periodicity of the simple

random walk or multiple particles settling simultaneously.

We define tseq and tpar to be the worst-case expected Seq/Par-

IDLA dispersion times over all possible starting vertices in V . Let
thit (G) denote the maximum expected hitting time of a random

walk fromv tow over all pairs of vertices (v,w). This is a relatively
simple and well studied quantity, and we show a basic but useful

upper bound on the dispersion time in terms of thit :

• Pr
[
supv ∈V τvpar (G) > 8 · thit (G) · log2(n)

]
≤ 1

n ,

• tpar (G) = O(thit (G) · log(n)) .

The same results also hold for τseq and tseq . These results imply

the following worst-case bounds:

• For any n-vertex graph, tseq , tpar = O
(
n3 logn

)
.

• For any regular n-vertex graph, tseq , tpar = O
(
n2 logn

)
.

The above bounds are attained by the lollipop and cycle respectively

and are thus best possible up to constant factors. In fact for any fixed

r < ∞ one can construct a family of r -regular graphs for which
the second bound above is tight. For example when r = 3 one can

iteratively augment an even cycle by adding an edge between two
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Table 1: The last two columns summarize our results, proofs of these results can be found in the full version of this paper [40].
The results in the first three columns are for comparison and can be found in standard textbooks for example [3, 30]. The
constant κcc above has an explicit formula given by (4) and it evaluates to roughly 1.255, to be contrasted with π 2/6 ≈ 1.644. The
constant κp is non-explicit, though specified by Theorem 5.1, simulations run by Nikolaus Howe (student) suggest κp ≈ 0.6 . . . .

Graph family name Cover time Hitting time Mixing time Dispersion time

tcov thit tmix tseq tpar

Path n2 n2 O (n2) κp · n2
logn

Cycle n2/2 n2/2 O (n2) Θ(n2
logn) Θ(n2

logn)
2-dimensional grid Θ(n log

2 n) Θ(n logn) Θ(n) Ω(n logn) O
(
n log(n)2

)
d-dimensional grid, d > 2 Θ(n logn) Θ(n) Θ(n2/d ) Θ(n) Θ(n)
Hypercube Θ(n logn) Θ(n) logn log logn Θ(n) Θ(n)
Binary tree Θ(n logn) Θ(n logn) n Θ(n log(n)2) Θ(n log(n)2)
Complete graph Θ(n logn) Θ(n) 1 κcc · n (π 2/6) · n
Expanders Θ(n logn) Θ(n) O (logn) Θ(n) Θ(n)
Lollipop Θ(n3) Θ(n3) Θ

(
n2

)
Θ(n3

logn) Θ(n3
logn)

vertices of degree two who are at distance two to obtain a 3-regular

graph with the same asymptotic dispersion time as the cycle.

Let thit (π , S) denote the expected hitting time of S ⊆ V by a

random walk from stationarity. We also prove bounds in terms of

hitting times of subsets of decreasing sizes.

• tpar (G) ≤ 60 ·
⌈log

2
n ⌉∑

j=1

(
tmix + max

S ⊆V : |S | ≥2j−2
thit (π , S)

)
,

• tseq (G) ≤ 30· max

j≤⌈log
2
n ⌉

{
j ·

(
tmix + max

S ⊆V : |S | ≥2j−2
thit (π , S)

)}
.

These two bounds refine the simple O(thit · logn) bound and for

graphs with suitably good expansion such as the Hypercube, see

Table 1, these results give us a bound of O(thit ).
Based on the intuition that the last walk in the Sequential-IDLA

should have a hard target to hit, one would expect that the worst-

case hitting time thit provides at least an approximate lower bound

on the dispersion time. This intuition turns out to be false in gen-

eral, as evidenced by a certain class of bounded-degree trees (see

Proposition 3.7) which exhibit a gap of almost

√
n between thit and

tseq . We prove the following lower bounds

• If G has maximum degree ∆, then tseq (G) = Ω(|E |/∆).

• For any tree T , we have tseq (T ) = Ω(n).

• If G is regular, tseq (G) = Ω (tmix ) = Ω
(

1

1−λ2

)
= Ω

(
1

Φ

)
,

where tmix is the ℓ1 mixing time, Φ is the conductance and λ2 is the
second largest eigenvalue associated with the lazy random walk.

As mentioned before we calculate dispersion time for many well

known graph families, the two rightmost columns of Table 1 show

our results. As seen in Table 1 we can determine the expected dis-

persion time in Parallel and Sequential-IDLA up to multiplicative

constant factors in all graphs listed apart from the 2-dimensional

grid, where there is a discrepancy of order logn between the lower

and upper bounds. This remains an interesting open problem which

seems to require quite detailed knowledge of the shape of the ag-

gregate on a finite box/tori. As discussed in Section 1.3 below, this

is a non-trivial problem even in the infinite 2d-grid.

1.2 Techniques used
The first tool we invent to analyse these processes is the Cut & Paste

bijection between the histories of IDLA processes. The bijection

allows us to couple the dispersion time of the Parallel-IDLA with

that of the Sequential-IDLA and other variants such as Uniform

IDLA (where at each step a random unsettled particle moves), as

well as IDLA processes with lazy or continuous-time walks. Bound-

ing dispersion times via these other variants is useful for avoiding

issues such as simultaneous arrivals at unoccupied vertices and al-

lows us to apply mixing time bounds. At a base level the stochastic

domination of τvseq by τvpar means we can sandwich both quantities

with a bound on τvpar from above and on τvseq from below.

Although these two processes are closely related, the different

sources of dependence arising from the contrasting scheduling

protocols provide several challenges. In the Sequential-IDLA inter-

action between the walkers comes via the configuration of vertices

settled by the previous walks. This can make proving a tight lower

bound on τvseq tricky and often some knowledge of the geometry

of the aggregate after a certain time is helpful. What is needed are

results reminiscent of the “shape theorems” discussed in Section 1.3

below. This requirement for detailed knowledge of the aggregate

appears to be crucial in achieving a tight lower bound on τvseq for

the binary tree and 2-dimensional grid. In comparison with the

Sequential-IDLA interactions are less passive in the Parallel process

as particles jostle to be the first to settle a vertex. This interaction

can increase the length of the longest walk as is witnessed by the

Cut & Paste bijection.

1.3 Related work
As pointed out by Diaconis & Fulton [19], there are several math-

ematical reasons for studying IDLA, including using it to take a

product of sets - a special case of the “smash product”. The limit

shape of the aggregate on Zd was first studied by Lawler, Bramson

and Griffeath [29] who showed that, after adding n particles and

properly rescaling the aggregate by n1/d , in the limit as n → ∞
this converges to an Euclidean ball. There has been a series of im-

provements to this “shape theorem” of [29], by bounding the rate

of convergence to the euclidean ball. The first refinement was made
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by Lawler [28] and the state of the art was achieved recently by

two independent groups of authors [6–8, 26, 27].

Several authors have also proved shape theorems on other infi-

nite graphs and groups including combs, tree, non-amenable groups

and Bernoulli percolation on Zd [13, 21, 24, 25, 41]. In all of these

cases the limit shape is always a ball with respect to the underlying

graph metric. Limit shapes in Zd for other variants of IDLA have

also been established. These variations include using non-standard

random walks such as for drifted [35] and cookie walks [39] or

starting the walks from different positions [20]. The time for the

process started with some initial aggregate to “forget” this starting

state has also been studied [33].

One model where interaction between particles prevents settling

at a site is a two-type particle system called “Oil and Water” where

particles of opposite types displace each other [16]. There have been

some papers on models related to the Parking function of a graph

where cars drive randomly around a graph searching for vacant

spots [18, 23]. More commonly, however, interaction is directly

between particles and not with the host graph such as predator

prey/coalescing models [17]. The problem of uniformly distributing

n non-communicating memoryless particles across n unoccupied

sites is also considered from a game theoretic perspective [5].

Other models related to IDLA include rotor-router aggregation,

chip firing, Abelian sandpile and activated randomwalks [12, 31, 42].

The rotor-router walk, or Propp machine, is the process which

drives rotor-routor aggregation. This is a deterministic version of

the simple random walk and has been used in load balancing [2].

Many interacting particle systems, such as the abelian sandpile

model, satisfy a so-called “least action principle” which is key to

their analysis [32]. Such a principle roughly states that the natural

behavior of the system is in a sense optimal and, if the process

is perturbed, then the outcome will have a higher energy. One

may try to find a least action principle for Sequential-IDLA by

conjecturing that if we allow a randomwalk not to settle sometimes

when visiting an unoccupied vertex (thereby performing more

random walk steps), then this can only increase the dispersion time.

We show that this is not the case with the following counterexample.

Let ξ ix = 1 iff the site x is vacant after i − 1 walkers have settled
andW (X ) denote the number of walk X . The normal “first vacant

site is settled" rule is then ρ = inf{t : ξ
W (X )
X (t ) = 1}. Let G1 :=

G1(n,v) be the “clique+edge”: a clique Kn−1 attached by one edge

to a single vertex v .

Proposition 1.1. Define the following stopping rule on G1

ρ̃ = inf

{
t : (t ≥ 3n log(n) or X (t) = v) and ξ

W (X )
X (t ) = 1

}
Then the parallel or sequential process stopped according to ρ̃ disperses
in O(n logn) time, whereas for the standard rule ρ, tseq (G) = Ω(n2).

To the best of our knowledge, the dispersion time and IDLA

on a finite graph has not been studied before. Moore and Machta

consider running IDLA walks synchronously for the purposes of

simulating the limit shape [37] in parallel models of computation,

however their results don’t appear to overlap with ours. Simulating

the process efficiently has also been studied more recently [22].

Thacker and Volkov [43] study a border DLA based growth model

on finite graphs. This paper if of note as DLA a process related to

IDLA and likewise is usually studied for infinite graphs however

the questions studied by Thacker and Volkov differ from ours.

2 PRELIMINARIES
Throughout this workG = (V , E) will always denote an undirected,

unweighted, connected graph with n vertices. We say that a graph

G is almost-regular if the ratio between maximum degree ∆(G) and
minimum degree δ (G) is bounded from above by a constant. We

call an almost-regular graph an expander if 1 − λ2 = Ω(1), where
λ2 is the second largest absolute eigenvalue. We say that a walk

is lazy if it stays at its current vertex with probability 1/2, thus

the transition matrix P̃ of the lazy walk is given by P̃ = (I + P) /2
where P is the transition matrix of the simple random walk.

To recap we let τvpar (G) denote the dispersion time of the Parallel-

IDLA process on G started from v , that is the first iteration at

which every vertex hosts (exactly) one particle. Similarly τvseq (G)
denotes the dispersion time of the Sequential-IDLA process on

G started from v , that is the longest time it takes a single parti-

cle to settle. Let tseq (G) = maxv ∈V E [τvseq (G) ] and tpar (G) =

maxv ∈V E [τvpar (G) ]. We shall drop the dependence onG from our

notation when the graph is clear from the context.

Further, let thit (u,v) = E [τhit (u,v) ], where τhit (u,v) is the
time for a random walk to reach v from u and finally let thit (G) :=
maxu ,v ∈V (G) thit (u,v). For a probability distribution µ on V and

a set S ⊂ V let thit (µ, S) denote the expected time for the walk

starting from µ to hit any vertex in S .
Some results in the paper hold in expectation, some hold w.h.p.

(with probability 1 − o(1)) and others hold in both senses. One does

not necessarily imply the other as the following counter example

shows that in general (either) dispersion time does not concentrate.

Recall G1, the "clique+edge" graph from Proposition 1.1, and let

G2 := G2(n,v) be the "clique+hub+edge" graph consisting of a

single edge {v,v∗} attached at v to n/logn vertices of Kn−2.

Proposition 2.1. Let Dv (G) denote either τvpar (G) or τ
v
seq (G).

Then there exists x ∈ V (G1) and y ∈ V (G2) such that

Pr
[
Dx (G1) ≤ O

(
E[Dx (G1)]/n

) ]
= Ω(1),

Pr
[
Dy (G2) ≥ Ω

(
E[Dy (G2)] · n

) ]
= Ω(1/n).

Road Map. The rest of this paper is organized as follows. We first

present our general upper and lower bounds in Section 3 before

turning to the coupling results in Section 4. In Section 5 we discuss

how the results from Section 3 and Section 4 were applied to specific

networks to give the results in Table 1, for some of these networks a

more refined analysis is required.We conclude the paper in Section 6

with a summary of our results and some open problems. Note that

in this conference version of the paper we have removed all the

proofs apart from in the first part of Section 4. Where space allows

we have tried to replace some of the proofs with some heuristic

justification for the result in question. See [40] for full proofs.

3 GENERAL BOUNDS
3.1 Upper bounds
The first upper bound we present holds for any graph and only

requires knowledge of the maximum hitting time of a random walk
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between two vertices. Although this result can be also recovered

from the more general Theorem 3.3, it serves as a good “warm-up”.

Theorem 3.1. LetG be any connected graph with n vertices. Then

• Pr
[
supv ∈V τvpar (G) > 8 · thit (G) · log2 n

]
≤ 1

n

• tpar (G) = O(thit (G) · logn) .

The same results also hold for τvseq and tseq .

The rough idea of the proof is that if all n walks are run for long

enough to cover the whole graph then regardless of the interactions

between the particles all of them will settle somewhere since they

have each had the chance to visit every vertex. This simple bound

is tight in many cases as seen in Table 1. The next result is a simple

consequence, yet it actually provides the correct asymptotic worst-

case bounds for the dispersion time.

Corollary 3.2 (General qantitative bounds on graphs).

• For any n-vertex graph, tseq , tpar = O
(
n3 logn

)
.

• For any regular n-vertex graph, tseq , tpar = O
(
n2 logn

)
.

Proof. Apply bounds on thit from [34, Thm. 2.1] to Theorem

3.1. □

Both bounds above are sharp up to a multiplicative constant as

witnessed by the lollipop and the cycle respectively, see Table 1.

Also notice that both upper bounds exceed the corresponding upper

bounds on the cover time [3, Thm. 6.12, Thm. 6.15] by a logn-factor.
The upper bound in Theorem 3.1 matches Matthews bound for

the cover time up to constant [30, Thm. 11.2]. While Theorem 3.1 is

tight for the cycle, it is not tight for most “well-connected” graphs

like expanders, high-dimensional grids and hypercubes. Thus for

well connected graphs the dispersion time is usually of order thit .
The behaviour of the log factor in the dispersion time contrasts

with that of the log factor which may appear in the cover time.

3.1.1 General Bounds in terms of Hitting Times of Sets. In this

section we shall achieve more refined bounds by considering hitting

times of sets as opposed to vertices, and also mixing times. To avoid

periodicity related issues we assume the trajectory of the particles

is a lazy random walk. As shown in Theorem 4.7, running parallel

(or sequential) IDLA with lazy walks slows down the process only

by a factor of 2+o(1), thus any results established for the dispersion
time with lazy walks also apply for non-lazy walk (up to a 2 + o(1)
factor) and vice versa. Define τvpar (G,k) to be the first time that

less than 2
k − 1 vertices are left to be settled in the Parallel-IDLA,

and let tkpar (G) = maxv ∈V E [τvpar (G,k) ] denote the worst-case

expectation. Clearly τvpar (G, 1) = τvpar (G), which is the standard

parallel dispersion time.

Theorem 3.3. Consider the Parallel-IDLA process with lazy walks.
Then, for any connected n-vertex graph and any k ≥ 1, we have

tkpar (G) ≤ 60 ·

⌈log
2
n ⌉∑

j=k

(
tmix + max

S ⊆V : |S | ≥2j−2
thit (π , S)

)
.

One consequence of this theorem for k = log
2
n−1 is that within

O(tmix ) steps, at least n/2 random walks are settled (this follows

since by the duality between hitting time of large sets and mixing

time [38], maxS ⊆V : |S | ≥n/4 thit (π , S) = O(tmix ).

Note that the upper bound can be estimated directly to be at

most 60⌈log
2
n⌉ · (tmix + thit ) ≤ 120⌈log

2
n⌉ · thit , so this bound

is (up to a multiplicative constant) a refinement of Theorem 3.1.

Let us now turn to the sequential process, where we can derive

a similar bound, which turns out to be slightly stronger.

Theorem 3.4. Consider the Sequential-IDLA process with lazy
walks. Then, for any graph G = (V , E), we have

tseq (G) ≤ 30 · max

1≤j≤⌈log
2
n ⌉

{
j ·

(
tmix + max

S ⊆V : |S | ≥2j−2
thit (π , S))

)}
.

Neglecting constant factors, both upper bounds look comparable,

but in fact it is not difficult to verify that the upper bound on tseq (G)
is at most the upper bound on tpar (G), up to constants. Conversely,

the gap between the two upper bounds can be shown to be at most

O(logn) however we do not know of any graph where the two

dispersion are not the same up-to a multiplicative constant.

Note that both statements recover the basic O(thit (G) · logn)
upper bound, but as soon as there is a sufficient speed-up for hitting

times of larger sets (and the mixing time is not too large), these

bounds may give a bound of O(thit (G)) for certain graphs. We will

see that this is indeed the case for several fundamental classes of

graphs in Section 5, where we apply the previous bounds, and in

particular Theorem 3.3.

Several bounds for expected hitting times of sets can be obtained

by analyzing return probabilities, some of them are very tight. Since

those bounds are more related to Markov chain properties than the

IDLA process we restrict their statements and proofs to the online

version of this paper [40].

3.2 Lower bounds
Theorem 3.5. LetG be a connectedn-vertex graph with maximum

degree ∆, then tseq (G) = Ω(|E |/∆). Hence in particular, Ω(n) is a
lower bound for almost-regular graphs.

The key idea used to prove this theorem is the fact that there is

an ordering of then vertices so that ifu precedesv , then thit (u,v) ≤
thit (v,u). Thus there is a vertex w so that for any other vertex v ,
we have thit (w,v) ≥ thit (v,w). If we take w as the origin then

expected time to hit the last vertex is at least half the commute time.

This is then bounded from below via the effective resistance.

Theorem 3.5 is tight up to constant whenG is the complete graph

Kn , see Table 1. We also present a refined lower bound for trees.

Theorem 3.6. Let T be any n-vertex tree, then tseq (T ) ≥ 2n − 3.

Proof of the above follows from the Essential edge Lemma [3,

Lem. 5.1] since in a tree the last vertex to be settled must be a leaf.

Let Sn be then-vertex star and notice that tseq (Sn ) ∼ 2tseq (Kn−1) ≈
2.6n, thus Theorem 3.6 is tight up to a small multiplicative constant.

It would be natural to hope tseq = Ω (thit ) should hold since one
would expect the vertices with largest hitting times to be explored

later by the sequential process and thus contribute to the dispersion

time. We refute this with the following counter example.

Proposition 3.7. Fix 0 < ε < 1/2 and let T be the complete
binary tree on n vertices with a path of length n1/2−ε attached to the
root of the tree at one endpoint. Then

tseq (T ) = O
(
n · log(n)2

)
and thit (T ) = Ω(n3/2−ε ).
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The following lower bound is tight up to a logn factor as wit-

nessed by the cycle, see Table 1.

Proposition 3.8. Consider the Sequential-IDLA with lazy walks
on an almost regular graph G. Then

tseq (G) = Ω(tmix) = Ω

(
1

1 − λ2

)
= Ω

(
1

Φ

)
,

where Φ and λ2 are, respectively, the conductance and second largest
eigenvalue associated to the lazy random walk on G.

4 COUPLING AND STOCHASTIC
DOMINATION

In this section we shall prove the following stochastic domination.

Theorem 4.1. Let G be a finite graph and v ∈ V (G). Then

τvseq (G) ⪯ τvpar (G).

An immediate corollary of this result is the inequality

E [τvseq (G) ] ≤ E [τvpar (G) ],

we also prove the reverse inequality up to logn factors.

Theorem 4.2. Let G be a finite graph and v ∈ V (G). Then

E [τvpar (G) ] = O
(
log(n) · E [τvseq (G) ]

)
.

The proofs of the above theorems are based on a coupling be-

tween the Sequential and Parallel-IDLA processes. To construct

this coupling we consider a (Parallel or Sequential) IDLA process

on G as an irregular 2-dimensional array L where each element

L(i, j) ∈ V . This array L (also referred to as a block) has n rows

representing the n particles. Column t represents time t , and thus

L(i, t) represents the vertex visited by walk i at time t . We let ρi
denote the length of walk i , hence the index of each row i goes from
0 to ρi . We denote by IL the set of all indices (i, t) of the array L.

Given (i, s), (j, t) ∈ IL , we say that (i, s) is smaller than (j, t) in
sequential order, written (i, s) <S (j, t) if either (i < j) or (i = j, s <
t). Thus in sequential order, the block is read

L(1, 0), . . . L(1, ρ1), L(2, 0), . . . L(2, ρ2), . . . , L(n, 0), . . . , L(n, ρn ).

Likewise we say that (i, s) is smaller than (j, t) in parallel order,

denoted by (i, s) <P (j, t) if either (s < t) or (s = t, i < j). So in

parallel order, the block is read

L(1, 0), . . . , L(n, 0), L(1, 1), . . . , L(n, 1), . . . , L(1, r ), . . . , L(n, r ), . . .

where if r > ρi then L(i, r ) is empty so it is skipped.

Note that if L is a block representing a parallel or Sequential-

IDLA the following property holds

L(i, ρi ) , L(j, ρ j ) for each pair i , j. (1)

If L satisfies (1) then {L(i, ρi ) : i ∈ [n]} = V and the final element

of each row is unique.

A block L satisfying (1) represents a Sequential-IDLA process if

and only if each row i represents a path inG from vertex L(i, 0) = v
to L(i, ρi ) and for all (i, j) ∈ IL

(i, t) is the first occurrence of L(i, t) ∈ L w.r.t. <S iff t = ρi . (2)

This says that when L is read in sequential-order the first time a

new vertex is read it ends the current row.

Similarly a block L satisfying (1) represents a realization of a

Parallel-IDLA process if and only if each row i represents a path in

G from vertex L(i, 0) = v to L(i, ρi ) and and for all (i, t) ∈ IL

(i, t) is the first occurrence of L(i, t) ∈ L w.r.t. <P iff t = ρi . (3)

For a 2-dim array L we denote its total length (the work done)

byW (L), this is the total number of moves recorded by L and thus

W (L) := ρ1 + · · · + ρn . Let Seq
m
v , or Par

m
v , denote the set of all

sequential, respectively parallel, blocks representing realisations of

IDLA processes starting from v and total lengthm, i.e.W (L) =m.

To build the coupling between Sequential and Parallel-IDLA, we

are going to use a series of “Cut & Paste” transformations. Consider

(i, t) ∈ IL , then define CP(i ,t )(L) as the block constructed by taking
L and cutting the cells (i, t + 1), . . . , (i, ρi ) and pasting it after the

unique (k, ρk ) with L(i, t) = L(k, ρk ).
Example: Represented below are L - a block on V = {1, 2, 3, 4},

and CP(4,1)(L) - the result of applying the cut & paste CP(4,1) to L.

L =

1

1 2

1 2 2 3

1 2 1 2 3 4

CP(4,1)(L) =

1

1 2 1 2 3 4

1 2 2 3

1 2

While CP(1,0)(L) = CP(2,1)(L) = CP(3,3)(L) = CP(4,5) = L. Note
that if L satisfies property (1), then L′ = CP(i ,t )(L) also satisfies (1).

Property (1) is an important invariant for our algorithms.

4.1 Algorithms
We propose two algorithms StP and PtS, formally specified by Al-

gorithms 1 and 2 below. The algorithm StP transforms a sequential

process into a parallel and PtS transforms a parallel process into

a sequential. The key component of both algorithms is the “cut &

paste” operation CP.
Both algorithms work as follows: a pointer moves through the

input array L in a fixed order and when the pointer sees a vertex

label for the first time this label is added to the setS of seen vertices

and a cut & paste transformCP is applied to L at this position before
the pointer continues. The difference is that in StP the pointer

explores columns then rows (i.e. in parallel order <P ), whereas PtS
reads rows then columns (i.e. in sequential order <S ).

Broadly speaking the algorithms try to read the input array as if

it was of the type specified by the output and if the input fails to

have this form then it will edit it using the cut & paste transform

until it has the correct form.

Notice the ordering of the for and while loops is reversed be-

tween the StP and PtS algorithms.

The set S = S(L, t) stores the different values of L(i, j) observed
after t iterations of the innermost loop. The algorithms terminate

once they have scanned the whole array, this is the first time when

|S| = n. Sometimes the algorithms may apply CP(i , j) with j = ρi ,
this leaves L unchanged.

Lemma 4.3. The following holds,
• PtS is a bijection from Par

m
v to Seqmv .

• StP is a bijection from Seq
m
v to Parmv .

Proof. We first observe that during the running of the PtS and

StP, Algorithms 1 & 2, the only changes made to the input array L
are a sequence of cut & paste transforms CPi1,t1 ,CPi2,t2 . . . . Since
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Result: transforms a sequential array L into a parallel array

S ← ∅;

t ← 0;

while |S| < n do
for i = 1..n do

if (i, t) ∈ IL and L(i, t) < S then
S ← S ∪ {L(i, t)};

L← CP(i ,t )(L);
end

end
t ← t + 1;

end
return L;

Algorithm 1: Sequential to Parallel (StP)

Result: transforms a parallel array L into a sequential array

S ← ∅;

1 for i = 1..n do
t ← 0;

2 while (i, t) ∈ IL do
3 if L(i, t) < S then
4 S ← S ∪ {L(i, t)};

5 L← CP(i ,t )(L);
exit

end
t ← t + 1;

end
end
return L;

Algorithm 2: Parallel to sequential (PtS)

each cut & paste transformation preserves Property (1) it follows

that PtS and StP preserve Property (1). Likewise cutting & pasting

preserves total length, thus so do PtS and StP. Recall that the
operator CP(i ,t ) cuts and pastes the random walk trajectory (i, t +
1), . . . , (i, ρi ) onto the unique (k, ρk ) with L(i, t) = L(k, ρk ). Thus
row k in L′ = CP(i ,t ) is a valid path from vertex L(0,k) to L(i, ρi ).

For PtS we must check that if L ∈ Par
m
v , then PtS(L) ∈ Seq

m
v ,

i.e. PtS(L) satisfies (2). Recall that the PtS algorithm reads the input

array L in sequential order and when a vertex label is seen for the

first time at some position (i, j) it applies the cut & paste transform

CP(i , j) and the pointer moves to the next row. If (i, j + 1) is non-
empty then CP(i , j) pastes the remainder of row i to some row i ′

with endpoint value L(i, j). Observe that i ′ > i since (i, j) is the first
occurrence of L(i, j) in sequential order. Thus each new vertex found

w.r.t. <S forms an endpoint as it is cut when it is first discovered

and nothing else can be pasted onto that row later by the algorithm.

This proves that PtS(L) is a valid Sequential-IDLA block.

Likewise for StP let L ∈ Seqmv and we check StP (L) satisfies (3).
Suppose when reading L in parallel order (i, j) is the first occurrence
of L(i, j), StP will apply CP(i , j) and continue to read the array in

parallel order. Position (i, j) is now fixed as the end point of row i
as no later copy & paste can alter this row. This holds since to paste

something else onto row i we would have to see vertex L(i, j) for
the first time (again) later in parallel order which cannot happen.

For injectivity let F represent either of themaps PtS, StP, and L, L′

be distinct arrays both from Par
m
v or Seq

m
v respectively. Assume

for a contradiction that F(L) = F(L′). Since L , L′ there is a first
position (i, j) at which they differ w.r.t. <S or <P , i.e. L(i, j) , L′(i, j).
It cannot be the case that L(i, j) = ∅ and L′ , ∅, or vice versa, since
otherwise the arrays must differ at position (i, j − 1) which occurs

before (i, j) in either ordering. Let (i, j) be the current position

when F is is running on L and L′. If L(i, j) < S(t, L) and L′(i, j) <
S(t, L′) then CP(i , j) is applied and the position (i, j) is now fixed in

both arrays, i.e. F(L)(i, j) , F(L′)(i, j), a contradiction. Similarly if

L(i, j) ∈ S(t, L) and L′(i, j) ∈ S(t, L′) then no transform is applied

and the positions are fixed. Otherwise the element at (i, j) is seen
in one array and not in the other, w.l.o.g. assume L(i, j) < S(t, L)
and L′(i, j) ∈ S(t, L). In this case a CP(i , j) is applied to L but not

to L′ and both positions fixed, again we have a contradiction as

F(L)(i, j) , F(L′)(i, j).
For bijectivity since StP : Seq

m
v → Par

m
v and PtS : Par

m
v →

Seq
m
v are both injections and Seq

m
v , Par

m
v are finite it follows that

| Seqmv | = | Par
m
v |. Thus StP, PtS are surjections. □

One can prove StP has inverse PtS but we do not use this fact.

Lemma 4.4. Let L ∈ Seqmv . Then maxi ∈IL ρi ≤ maxi ∈IStP(L) ρi .

Proof. Assume for a contradiction that

max

i ∈IL
ρi > max

i ∈IStP(L)
ρi .

This means that each row attaining maximum length in L must

have a section cut and pasted to a row of shorter length by the StP
algorithm. However the StP algorithm runs in parallel order and

cannot paste onto a cell which it has already read. Thus any row

suitable to receive the end of the current row must have its end

point in the same column or a column to the right of the current

one. This cannot decrease the length of the longest row. □

We now have what we need to prove that τvseq (G) ⪯ τvpar (G).

Proof of Theorem 4.1. By Lemma 4.3 StP is a bijection between
Par

m
v and Seq

m
v . Thus we can pair every sequential process L of

total lengthW (L) = m with a unique parallel process L′ of total
lengthW (L′) = m. Both L and L′ visit the same vertices with the

same frequency and in the same order, thus the probability of each

vertex sequence of total length m in either process is the same.

This implies that the total lengths of the processes are distributed

identically.

Lemma 4.4 states that for this pair the longest row in L′ is at
least as long as the longest row in L. Thus for any k,m ≥ 0,

Pr
[
max

i ∈IL
ρi ≥ k

���W (L) =m ]
≤ Pr

[
max

i ∈IL′
ρi ≥ k

���W (L′) =m ]
.

The result follows as τvseq (G) and τ
v
par (G) are given by the length

of the longest row in either array. □

We shall now prove Theorem 4.2 which states that

E [τvpar (G) ] = O
(
log(n) · E [τvseq (G) ]

)
,

for any G and v ∈ V (G).
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Proof of Theorem 4.2. Let L be a Parallel-IDLA block and σ
be a random permutation of {2, . . . ,n}. Let σ (L) be the block that

results from permuting the rows of L using σ . The block σ (L) repre-
sents a Parallel-IDLA process where conflicts between particles are

solved by giving priority to particles with least value of σ (index)
(instead of least index , as per the definition of Parallel-IDLA). Also,

for simplicity we fix σ (1) = 1. Note that L and σ (L) have the same

rows, and thus the maximum row-length is the same in both blocks.

We remark that PtS, Algorithm 2, still produces a valid sequential

array even if the input is σ (L) instead of L.
Let L be an arbitrary parallel array and consider a run of PtS,

Algorithm 2, on σ (L) where we do not reveal σ in advance. Instead

we reveal the permutation σ row by row as PtS reads the array in

sequential order (in other words, instead of running PtS(σ (L)), we
equivalently run PtS(L) but we read rows in random order, starting

with row 1 (= σ (1)) of L, and then rows σ (2),σ (3), . . . ,σ (n). This is
equivalent to replacing i by σ (i) in lines 1-5 of Algorithm 2). Note

that the Cut & Paste operation is unaffected by not revealing the

order of the rows. This holds because the Cut & Paste transform

only pastes behind unread rows, independent of their location in

the array L and what is more, there is only one row where we can

paste a cut section by property (1). Consider the largest row (or

choose one arbitrarily if there is more than one) in the original

block L. We shall paint this row red and call the last cell ξ . During
the running of PtS(L) the marked cell ξ moves from row to row

because of the Cut & Paste operations. Here is the key observation:

If ℓ is the length of the original red row and ξ moves no more than

N times then in the output array PtS(L) has a row of length at least

ℓ/N . This holds because the red row was partitioned N times and

thus one of the pieces has to have length at least ℓ/N
Let ik be the iteration (how many rows we have read) by the

kth time PtS reads a row containing the marked cell ξ . When we

read a row which contains ξ for first time in iteration i1, we may

apply a Cut & Paste somewhere in this row (if not we are done). If

so ξ would find itself at the end of an unread row x2 of L, which
will be read in a (random) iteration i2, i.e. σ (i2) = x2. Note i2 is a
uniform random value in {i1 + 1, . . . ,n}. In iteration i2, we read
the row with the marked cell and again, the algorithm might cut

and paste this row behind an unread row x3 which will be read at

some time i3, which is again uniformly random in {i2 + 1, . . . ,n},
and so on. Each time we make a cut and paste the index i j of the
recipient row will be in the latter half of the list {i j + 1, . . . ,n} with
probability 1/2. Thus since PtS works through this list in order

the expected length of the list of possible positions for the next

value i j+1 halves every iteration. We cannot keep halving this list

indefinitely because either at some point a row ended by ξ is not

cut or ξ is in the last row to be read (which is never cut). Thus

the number of times ξ moves (i.e. expected times the longest row

is cut) is at most C logn with probability at least 1/2 by Markov’s

inequality. Denote by X the (random) number of times we cut a

row containing the marked cell ξ . Let ℓ be the length of the longest

row of L, and ℓ′ the random variable representing the length of the

longest row of PtS(L) using a random permutation σ . Conditional
on cutting L’s longest row X times, we have must have at least one

row of length ℓ/X once the algorithm has terminated. Thus, given

the block L with largest row ℓ, we have

E
[
ℓ′ | L

]
> E

[
ℓ′ | L,X ≤ C logn

]
·
1

2

≥
ℓ

2C logn
.

By taking expectation over all blocks L generated from a Parallel-

IDLA with a random σ we conclude the result. □

4.2 Uniform-IDLA
Recall that in the Sequential-IDLA we run the walks one by one in

order and walk i + 1 starts only after walk i has settled, while in the

Parallel-IDLA all particles walk simultaneously until they settle,

breaking ties by settling the particle with smallest index. In either

Sequential or Parallel we are interested in the longest walk. Another

natural way to run the IDLA process is in uniform order: we choose

a random unsettled particle and move it to a random neighbouring

vertex which it settles on if unoccupied. We call this process the

Uniform-IDLA. This process can be seen as lying between the

Sequential and Parallel-IDLA models. To sample from the Uniform-

IDLA process, we first consider an infinite sequence (Ri ) where
the Ri are independent random variables sampled from {2, . . . ,n}.
Then we run the Uniform-IDLA as following: First particle 1 settles

at the origin, so the origin is occupied. Then, at each time-step

t ≥ 1, if particle Rt is unsettled, it moves to a random neighbour,

otherwise it stays in its current location. If such neighbour is not

occupied, particle Rt settles on it and the vertex is now occupied.

Given the random orderingR, we can find a bijection between the
Uniform-IDLA and Parallel-IDLA. Given R, an R-block is defined in
the same fashion as a parallel block, i.e.L(i, j) represents the position
of the i-th particle after j jumps, but additionally, we associate to

every (i, j) ∈ IL an integer T (i, j). This T is called the timing array

and defined as T (i, j) = t if Rt = i for j-th time and T (i, 0) = 0 for

all particles i . Note that using the block and timing array we can

reconstruct the uniform process as we have not only the paths but

the time-steps when the particles moved.

The bijection between an R-block and a parallel block is defined

algorithmically in the same fashion as before. To transform an R-
uniform block into a parallel blockwe just apply StP, Algorithm 1, to

the R-uniform block oblivious to R since StP reads in parallel order.

However to transform a parallel block into an R-uniform block, we

must read the block in the order given by T (i, t) (i.e. read the block

with smallest valueT (i, t), then the second smallest, etc..) and apply

CPi , j whenever the vertex L(i, j) is read for first time. It is very

important that now when applying the Cut & Paste operation we

move not only the cells containing a portion of the path but also the

times T (i, t) associated to those cells, i.e. if cell (i, t) moves to (j, s)
then T (j, s) gets the value of T (i, j), while T (i, t) is left undefined.
Pseudo-code for the procedure we have just described is given in

Algorithm 3.

Let Unif
m
R,v be the set of all Uniform IDLA blocks with ordering

R starting fromv with total number of randomwalk stepsm. Denote

by τvUnif ,R (G) the longest path in a Uniform IDLA process given R.

Then, using the same arguments as the in the sequential-parallel

case we obtain.

Theorem 4.5. For any given ordering R there is a bijection between
unif

m
R,v and Parmv . Moreover the number of steps taken by the longest
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Result: transforms a parallel array L and order sequence R
into a R-Uniform array

S ← ∅;

C ← list of cells (i, t) ordered by T (i, t) in increasing order;

k ← 0;

while |S| < n do
k ← k + 1;

1 (i, t) ← C(k);

2 if L(i, t) < S then
S ← S ∪ {L(i, t)};

L← CP(i ,t )(L);
end

end
return L;

Algorithm 3: Parallel to R-Uniform (PtUR )

walk of the Uniform IDLA is stochastically dominated by the number
of steps in the longest walk of the Parallel-IDLA.

Observe however that the dispersion time of the Uniform array is

not determined purely by the number of steps/length of the longest

row but by the values T (i, j) of the timing array.

4.3 Continuous-time IDLA
We consider continuous-time versions of the Sequential and Uni-

form IDLA process. For the Sequential-IDLA it is easy to consider

its continuous-time analogue, we just have random walks that

jump at times given by a Poisson process of intensity 1. Also, we

can easily sample from the continuous-time Sequential-IDLA by

sampling a discrete time IDLA and then considering independent

exponential times of mean 1 between the jumps. Let τvc ,seq (G) be
the time it took to the slowest particle to settle in the continuous-

time Sequential-IDLA. Standard concentration inequalities shows

that for any origin vertex v ,

τvseq (G) = (1 + o(1)) · τ
v
c−seq (G)

holds with high probability provided τvseq (G) > nα w.h.p. for some

α > 0. The equality also holds in expectation by noticing that

E [τvseq (G) ] is polynomial (at most O(n3 logn)).
Another natural continuous-time process is the Uniform IDLA.

In this process each particle has an exponential clock of rate 1.

Then, as long as the particle is not settled, when the clock rings

the particle moves to a random neighbour and settles if possible.

Note that this is equivalent to running the discrete-time Uniform

IDLA but putting exponentials of mean 1/(n − 1) between each

time-step (remember particle 1 occupies the origin and Rt takes
values in {2, . . . ,n}). Alternatively, we can sample the continuous-

time Uniform IDLA by using PtUR , Algorithm 3. First, sample a

(discrete-time) Parallel-IDLA. Then run Algorithm 3 but instead of

using the listC to choose the next cell (i, t) (line 1), each row of the

block has a exponential clock of mean 1. When the clock of row i
rings, the algorithm chooses the first unread cell of row i (if it exists),
and proceeds with line 2. We shall name this procedure PtUC . This
algorithm can be shown correct due the bijection between Unif

m
R,v

and Par
m
v for a fixed ordering R established in Theorem 4.5.

Let τvc−unif (G) be the time it takes the continuous-time Uniform

IDLA (CTU-IDLA) started from v to settle all the particles. The

following result relates τvc−unif (G) and τ
v
par (G) provided that w.h.p.

the Parallel-IDLA process does not end to quickly on G.

Theorem 4.6. If nα ≤ τvpar (G) holds w.p. 1−n
−β for some α, β >

0, then

τvc−unif (G) = (1 + o(1)) · τ
v
par (G),

w.p. 1 − o(1) and in expectation.

4.4 Lazy IDLA
Consider the lazy versions of the discrete-time Sequential and

Parallel-IDLA models, where with probability 1/2 particles remain

at their current vertex and otherwise choose a neighbour uniformly.

Note that all our previous results using the cut & paste bijections

are also valid for lazy walks as for example one can simply consider

the graph with the addition of (multi)-loops at each vertex. Indeed,

they are valid for any block that is generated by using a Markov

chain to move the particles.

Let τvL−seq (G), τ
v
L−par (G), be the number of steps needed to com-

plete the lazy Sequential, respectively lazy Parallel, IDLA process

started from v .
Although we are mainly concerned with the simple randomwalk

IDLA models would like to be able to switch to the lazy setting at

times as it allows us to use mixing time results. For the Sequential

it is fairly clear that up to lower order terms the lazy sequential is

a factor of 2 slower than the Parallel, using the continuous time

Uniform IDLA we can also show this for Parallel-IDLA under the

same assumptions as Theorem 4.6.

Theorem 4.7. If τvseq (G) ≥ nα holds w.p. at least 1−n−β for some
α, β > 0, then

τvseq (G) = (2 + o(1)) · τ
v
L−seq (G).

If τvpar (G) ≥ nα holds w.p. at least 1 − n−β for some α, β > 0, then

τvpar (G) = (2 + o(1)) · τ
v
L−par (G),

The equality in both equations above hold w.h.p. and in expectation.

5 FUNDAMENTAL NETWORKS
In this section we discuss how to establish the dispersion for many

well known network topologies and how properties of the network

in question affect dispersion. The two right most columns of Table 1

contain the results mentioned in this section, full proofs of these

results can be found in the full length version of this paper [40].

Cycle/Path. For these graphs the boundO(thit · logn) (which gives

O
(
n2 logn

)
) is tight. A simple lower bound of Ω(n2) holds since

with constant probability the last walk has to cover a distance

of order n and thus takes time Ω(n2). This lower bound can be

improved to match the upper bound by showing that with constant

probability polynomially many walkers must cover a distance of

order n and that at least one of these walkers takes time Ω(n2 logn)
to settle. For the path we prove a little more.
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Theorem 5.1. Let Pn be the path with n-vertices. Let M be the
maximum of n independent random variables representing the hitting
time of a random walk to the vertex n, starting from 1 on Pn . Then

tseq (Pn ), tpar (Pn ) = (1 ± o(1)) · E [M ] .

This show that on the path the leading order terms are the same

for both processes.

2-dim Grid/Torus. The planar grid/tori on n vertices is the only

graph stated where we do not know the dispersion time up to

constants. The best upper bound of O
(
n(logn)2

)
comes from the

O(thit · logn) upper bound (in this case the bound cannot be im-

proved by considering hitting times of sets such as in Theorem 3.3).

For the lower bound of Ω(n logn) one appeals to the shape theorem
for Z2 and argues that after αn particles have settled, for some

α < 1, the aggregate contains a euclidean ball of radius Ω(
√
n)

around the origin w.h.p.. It follows that one of the last Ω(n) many

walkers will take time Ω (n logn) to exit this ball with constant

probability.

Expanders, Hypercube, d-dim Grids/Tori where d ≥ 3. Each of these

graphs is regular or almost regular and so a lower bound of Ω(n)
holds by Theorem 3.5. These families are an examplewhere the basic

bound O (thit logn) is not tight and O (thit ) is the correct answer.
To achieve this bounds on hitting times of sets are calculated using

return probabilities and rapid mixing for lazy random walks on

these graph and then applied in conjunction with Theorem 3.3.

Cliques. For the complete graph Kn we have

tseq = (κcc + o(1)) · n and tpar = (π
2/6 + o(1)) · n.

The Sequential dispersion time τvsec (Kn ) is equivalent to the length
of the longest walk in the coupon collector problem, denoted Tn ,
and thus is distributed as the maximum of n independent geometric

random variables with parameters
n−i+1
n for 1 ≤ i ≤ n. Brennan et.

al. [15] show that E [Tn ] /n → κcc where

κcc :=

∞∑
i=1

(
2

i(3i − 1)
−

2

i(3i + 1)

)
≈ 1.255. (4)

For the Parallel dispersion time there are issues when two or more

particles settle at the same time. These problems are avoided by

moving to the continuous time Unifom-IDLA model (CTU-IDLA).

We can do this since by Theorem 4.6 the dispersion times in the

two models are the same up to lower order terms. If there are k
unsettled particles in the CTU-IDLA, then the time until the next

particles settles is exponentially distributed with mean (n − 1)/k2.
Thus summing these expected waiting times yields the result.

Binary tree. For the (complete) binary tree of height h on n = 2
h

vertices the O(thit · logn) upper bound is tight and thus, similarly

to the path/cycle, one must show that there is at least one slow

particle who takes time Ω(thit · logn) to settle. It is clear that the

last vertex to be settled is a leaf and thus the last walk takes time

thit = Ω(n logn) with constant probability. However, to show that

there is a particle which takes a logn factor longer than this requires
one to establish some quite detailed results about the aggregate

at an advanced state in the process. It is shown in the full paper

[40] that w.h.p. there is some t ≤ n − na such that after t particles
have been released in the Sequential-IDLA all remaining unvisited

vertices lie in a sub-tree which has its root at distance Ω(logn) from
the origin of the walkers (root of the binary tree). One can then

show that at least one of the remaining nα walks take Ω(thit · logn)
steps before entering the sub-tree and settling.

6 CONCLUSIONS
6.1 Summary of our results
The aim of this project is to better understand IDLA processes on

finite graphs. The main tool we developed to gain an insight on

the processes is the Cut & Paste bijection. This bijection allows us

to study directly the affect of the different scheduling protocols

on the random walk trajectories. We use this bijection to couple

the various IDLA variants allowing us to order or equate their

dispersion times and show that tseq and tpar are equal up to a

multiplicative factor of order logn.
In addition to the qualitative information provided by the bijec-

tion we also develop a collection of upper and lower bounds phrased

in terms of graph and random walk quantities which are easier to

compute. These quantities are max degree, number of edges, mixing

time and hitting times of vertices/sets by a single random walk.

These bounds enable us to establish the correct asymptotic order

of the dispersion time for the Parallel and Sequential processes on

several natural networks. They also provide some general bounds

in terms of n which are shown to be tight. In summary, our findings

reveal that for almost all natural graphs the dispersion time is either

of order thit or thit · logn. However we also show with there is

a graph, see Proposition 3.7, where the dispersion time is smaller

than thit by a multiplicative factor of almost 1/
√
n.

6.2 Further directions
As pointed out earlier, our results establish the correct asymptotic

order of the dispersion time for most natural networks. The only

exception is the 2d-grid, where the dispersion time is shown to

be between Ω(n logn) andO(n log2 n). The known shape theorems

for the infinite 2d-grid, empirical simulations as well as the result

for binary trees all strongly suggest the dispersion to be of order

n log2 n. This provides us with the first open problem .

Open Problem 1. Determine the dispersion time of the 2d-grid/torus.

The second main open problem is whether for any graph, the

sequential and parallel dispersion time are of the same order. Note

however that we show, see Table 1, that already for the clique,

the Parallel-IDLA is about 30 percent slower than the Sequential-

IDLA. Thus, we cannot have equality between the two processes,

even though the path is an example where the Parallel-IDLA and

Sequential-IDLA have the same dispersion time up to lower order

terms.

Open Problem 2. Is it true that for all graphs, tpar = O
(
tseq

)
?

We know of no graph where this does not hold however it seems

hard to prove. In order to prove this result, it might be useful to

derive some general lower bounds on the dispersion time, which are

in turn interesting on their own right. One lower bound which we

conjecture to hold is that for any graph, the sequential (or parallel)

dispersion time takes Ω(n).
The following conjecture is motivated by the idea that when you

run StP algorithm (see Section 4) the random walk sections cut and
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pasted do not have to cover the graph. If true, then this conjecture

would resolve the open problem above for some classes of graphs.

Conjecture 6.1. Let tcov (G) be the cover time. Then

tpar (G) ≤ tseq (G) + tcov (G).

The counter example to concentration (Proposition 2.1) from

Section 2 motivates the following open problem.

Open Problem 3. What conditions must a graph satisfy for the
dispersion time to concentrate around its expectation?

Other interesting variants of the dispersion process are when the

number of particles is either considerably smaller or considerably

larger than the number of sites (it is conceivable to believe that

the dispersion times are maximal if the two numbers are equal).

Finally, another direction is to study a version of the dispersion

process where the origin is sampled independently and uniformly

at random for each particle.
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