13 research outputs found

    The difference between the metric dimension and the determining number of a graph

    Get PDF
    We study the maximum value of the difference between the metric dimension and the determining number of a graph as a function of its order. We develop a technique that uses functions related to locating-dominating sets to obtain lower and upper bounds on that maximum, and exact computations when restricting to some specific families of graphs. Our approach requires very diverse tools and connections with well-known objects in graph theory; among them: a classical result in graph domination by Ore, a Ramsey-type result by Erdős and Szekeres, a polynomial time algorithm to compute distinguishing sets and determining sets of twin-free graphs, k-dominating sets, and matchings

    Location-domination in line graphs

    Full text link
    A set DD of vertices of a graph GG is locating if every two distinct vertices outside DD have distinct neighbors in DD; that is, for distinct vertices uu and vv outside DD, N(u)∩D≠N(v)∩DN(u) \cap D \neq N(v) \cap D, where N(u)N(u) denotes the open neighborhood of uu. If DD is also a dominating set (total dominating set), it is called a locating-dominating set (respectively, locating-total dominating set) of GG. A graph GG is twin-free if every two distinct vertices of GG have distinct open and closed neighborhoods. It is conjectured [D. Garijo, A. Gonzalez and A. Marquez, The difference between the metric dimension and the determining number of a graph. Applied Mathematics and Computation 249 (2014), 487--501] and [F. Foucaud and M. A. Henning. Locating-total dominating sets in twin-free graphs: a conjecture. The Electronic Journal of Combinatorics 23 (2016), P3.9] respectively, that any twin-free graph GG without isolated vertices has a locating-dominating set of size at most one-half its order and a locating-total dominating set of size at most two-thirds its order. In this paper, we prove these two conjectures for the class of line graphs. Both bounds are tight for this class, in the sense that there are infinitely many connected line graphs for which equality holds in the bounds.Comment: 23 pages, 2 figure

    Locating-dominating sets in twin-free graphs

    Full text link
    A locating-dominating set of a graph GG is a dominating set DD of GG with the additional property that every two distinct vertices outside DD have distinct neighbors in DD; that is, for distinct vertices uu and vv outside DD, N(u)∩D≠N(v)∩DN(u) \cap D \ne N(v) \cap D where N(u)N(u) denotes the open neighborhood of uu. A graph is twin-free if every two distinct vertices have distinct open and closed neighborhoods. The location-domination number of GG, denoted γL(G)\gamma_L(G), is the minimum cardinality of a locating-dominating set in GG. It is conjectured [D. Garijo, A. Gonz\'alez and A. M\'arquez. The difference between the metric dimension and the determining number of a graph. Applied Mathematics and Computation 249 (2014), 487--501] that if GG is a twin-free graph of order nn without isolated vertices, then γL(G)≤n2\gamma_L(G)\le \frac{n}{2}. We prove the general bound γL(G)≤2n3\gamma_L(G)\le \frac{2n}{3}, slightly improving over the ⌊2n3⌋+1\lfloor\frac{2n}{3}\rfloor+1 bound of Garijo et al. We then provide constructions of graphs reaching the n2\frac{n}{2} bound, showing that if the conjecture is true, the family of extremal graphs is a very rich one. Moreover, we characterize the trees GG that are extremal for this bound. We finally prove the conjecture for split graphs and co-bipartite graphs.Comment: 11 pages; 4 figure

    Locating-total dominating sets in twin-free graphs: a conjecture

    Full text link
    A total dominating set of a graph GG is a set DD of vertices of GG such that every vertex of GG has a neighbor in DD. A locating-total dominating set of GG is a total dominating set DD of GG with the additional property that every two distinct vertices outside DD have distinct neighbors in DD; that is, for distinct vertices uu and vv outside DD, N(u)∩D≠N(v)∩DN(u) \cap D \ne N(v) \cap D where N(u)N(u) denotes the open neighborhood of uu. A graph is twin-free if every two distinct vertices have distinct open and closed neighborhoods. The location-total domination number of GG, denoted LT(G)LT(G), is the minimum cardinality of a locating-total dominating set in GG. It is well-known that every connected graph of order n≥3n \geq 3 has a total dominating set of size at most 23n\frac{2}{3}n. We conjecture that if GG is a twin-free graph of order nn with no isolated vertex, then LT(G)≤23nLT(G) \leq \frac{2}{3}n. We prove the conjecture for graphs without 44-cycles as a subgraph. We also prove that if GG is a twin-free graph of order nn, then LT(G)≤34nLT(G) \le \frac{3}{4}n.Comment: 18 pages, 1 figur

    Locating-dominating sets and identifying codes in graphs of girth at least 5

    Full text link
    Locating-dominating sets and identifying codes are two closely related notions in the area of separating systems. Roughly speaking, they consist in a dominating set of a graph such that every vertex is uniquely identified by its neighbourhood within the dominating set. In this paper, we study the size of a smallest locating-dominating set or identifying code for graphs of girth at least 5 and of given minimum degree. We use the technique of vertex-disjoint paths to provide upper bounds on the minimum size of such sets, and construct graphs who come close to meet these bounds.Comment: 20 pages, 9 figure

    Metric-locating-dominating sets of graphs for constructing related subsets of vertices

    Get PDF
    © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/A dominating set S of a graph is a metric-locating-dominating set if each vertex of the graph is uniquely distinguished by its distances from the elements of S , and the minimum cardinality of such a set is called the metric-location-domination number. In this paper, we undertake a study that, in general graphs and specific families, relates metric-locating-dominating sets to other special sets: resolving sets, dominating sets, locating-dominating sets and doubly resolving sets. We first characterize the extremal trees of the bounds that naturally involve metric-location-domination number, metric dimension and domination number. Then, we prove that there is no polynomial upper bound on the location-domination number in terms of the metric-location-domination number, thus extending a result of Henning and Oellermann. Finally, we show different methods to transform metric-locating-dominating sets into locating-dominating sets and doubly resolving sets. Our methods produce new bounds on the minimum cardinalities of all those sets, some of them concerning parameters that have not been related so farPeer ReviewedPostprint (author's final draft

    Domination and location in twin-free digraphs

    Full text link
    A dominating set DD in a digraph is a set of vertices such that every vertex is either in DD or has an in-neighbour in DD. A dominating set DD of a digraph is locating-dominating if every vertex not in DD has a unique set of in-neighbours within DD. The location-domination number γL(G)\gamma_L(G) of a digraph GG is the smallest size of a locating-dominating set of GG. We investigate upper bounds on γL(G)\gamma_L(G) in terms of the order of GG. We characterize those digraphs with location-domination number equal to the order or the order minus one. Such digraphs always have many twins: vertices with the same (open or closed) in-neighbourhoods. Thus, we investigate the value of γL(G)\gamma_L(G) in the absence of twins and give a general method for constructing small locating-dominating sets by the means of special dominating sets. In this way, we show that for every twin-free digraph GG of order nn, γL(G)≤4n5\gamma_L(G)\leq\frac{4n}{5} holds, and there exist twin-free digraphs GG with γL(G)=2(n−2)3\gamma_L(G)=\frac{2(n-2)}{3}. If moreover GG is a tournament or is acyclic, the bound is improved to γL(G)≤⌈n2⌉\gamma_L(G)\leq\lceil\frac{n}{2}\rceil, which is tight in both cases

    Location-domination and matching in cubic graphs

    Full text link
    A dominating set of a graph GG is a set DD of vertices of GG such that every vertex outside DD is adjacent to a vertex in DD. A locating-dominating set of GG is a dominating set DD of GG with the additional property that every two distinct vertices outside DD have distinct neighbors in DD; that is, for distinct vertices uu and vv outside DD, N(u)∩D≠N(v)∩DN(u) \cap D \neq N(v) \cap D where N(u)N(u) denotes the open neighborhood of uu. A graph is twin-free if every two distinct vertices have distinct open and closed neighborhoods. The location-domination number of GG, denoted γL(G)\gamma_L(G), is the minimum cardinality of a locating-dominating set in GG. Garijo, Gonzalez and Marquez [Applied Math. Computation 249 (2014), 487--501] posed the conjecture that for nn sufficiently large, the maximum value of the location-domination number of a twin-free, connected graph on nn vertices is equal to ⌊n2⌋\lfloor \frac{n}{2} \rfloor. We propose the related (stronger) conjecture that if GG is a twin-free graph of order nn without isolated vertices, then γL(G)≤n2\gamma_L(G)\leq \frac{n}{2}. We prove the conjecture for cubic graphs. We rely heavily on proof techniques from matching theory to prove our result.Comment: 16 pages; 4 figure

    On the robustness of the metric dimension of grid graphs to adding a single edge

    Full text link
    The metric dimension (MD) of a graph is a combinatorial notion capturing the minimum number of landmark nodes needed to distinguish every pair of nodes in the graph based on graph distance. We study how much the MD can increase if we add a single edge to the graph. The extra edge can either be selected adversarially, in which case we are interested in the largest possible value that the MD can take, or uniformly at random, in which case we are interested in the distribution of the MD. The adversarial setting has already been studied by [Eroh et. al., 2015] for general graphs, who found an example where the MD doubles on adding a single edge. By constructing a different example, we show that this increase can be as large as exponential. However, we believe that such a large increase can occur only in specially constructed graphs, and that in most interesting graph families, the MD at most doubles on adding a single edge. We prove this for dd-dimensional grid graphs, by showing that 2d2d appropriately chosen corners and the endpoints of the extra edge can distinguish every pair of nodes, no matter where the edge is added. For the special case of d=2d=2, we show that it suffices to choose the four corners as landmarks. Finally, when the extra edge is sampled uniformly at random, we conjecture that the MD of 2-dimensional grids converges in probability to 3+Ber(8/27)3+\mathrm{Ber}(8/27), and we give an almost complete proof

    Locating-dominating sets and identifying codes in Graphs of Girth at least 5

    Get PDF
    Locating-dominating sets and identifying codes are two closely related notions in the area of separating systems. Roughly speaking, they consist in a dominating set of a graph such that every vertex is uniquely identified by its neighbourhood within the dominating set. In this paper, we study the size of a smallest locating-dominating set or identifying code for graphs of girth at least 5 and of given minimum degree. We use the technique of vertex-disjoint paths to provide upper bounds on the minimum size of such sets, and construct graphs who come close to meeting these bounds.Award-winningPostprint (author’s final draft
    corecore