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We study the maximum value of the difference between the metric dimension and the
determining number of a graph as a function of its order. We develop a technique that uses
functions related to locating-dominating sets to obtain lower and upper bounds on that
maximum, and exact computations when restricting to some specific families of graphs.
Our approach requires very diverse tools and connections with well-known objects in
graph theory; among them: a classical result in graph domination by Ore, a Ramsey-type
result by Erd}os and Szekeres, a polynomial time algorithm to compute distinguishing sets
and determining sets of twin-free graphs, k-dominating sets, and matchings.
1. Introduction and preliminaries

Roughly speaking a resolving set is a subset of the vertices of a graph such that all other vertices are uniquely determined
by their distances to those vertices. This concept was introduced in the 1970s by Harary and Melter [21], and independently
by Slater [31]. Since one obtains a labeling process for all the vertices, resolving sets can be used to store the position of a
mobile object in a scenario modeled by a graph, and design effective algorithms to robot navigation. This is not the only area
where this type of sets can be used; we refer the reader to [6] and the survey of Bailey and Cameron [2] for more references
on applications to coin weighing problems, strategies for Mastermind game, and pattern recognition, among others.

Obviously, in order to design effective algorithms, resolving sets are required to have a cardinality as small as possible but
it is also important to consider the following property related to symmetries: the only automorphism of the graph fixing a
resolving set is the identity. In general, it is possible to find subsets of vertices with this property (of ‘‘destroying’’ all the
automorphisms) and with smaller cardinality than all the resolving sets in the graph; these are cases of determining sets,
which were introduced in the 1970s by Sims [30] in the context of computational group theory as specific types of bases.
Much later, Boutin [4] and Erwin and Harary [17] used respectively the terms determining set and fixing set to refer to
the same concept.

In order to analyze how different resolving sets and determining sets can be, Boutin in [4] asked the following question on
the parameters minimizing their cardinalities, which are formally defined below together with resolving sets and determin-
ing sets.

Problem 1. Can the difference between the determining number and the metric dimension of a graph be arbitrarily large?
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One of the main contributions of this paper is the technique that we have developed to approach this problem, which has
interest by its own, since it combines very diverse tools that go from a classical result by Ore and a Ramsey-type result of
Erd}os and Szekeres to matchings and the design of a polynomial time algorithm to compute sets with some specific prop-
erties. To be more precise, we first provide some definitions and notations.

Let G ¼ ðVðGÞ; EðGÞÞ be a finite, simple, undirected, and connected graph of order n ¼ jVðGÞj. As usual, G denotes the com-
plement of G. We write NGðuÞ and NG½u�, respectively, for the open and the closed neighbourhood of a vertex u 2 VðGÞ. The
degree of vertex u is denoted by dGðuÞ, and dðGÞ is the minimum degree of G. The subscript G will be dropped from these
notations when no confusion may arise.

An automorphism of G is a bijective mapping of VðGÞ onto itself such that f ðuÞf ðvÞ 2 EðGÞ if and only if uv 2 EðGÞ. The auto-
morphism group of G is denoted by AutðGÞ, and its identity element is idG. The stabilizer of a set S # VðGÞ is
StabðSÞ ¼ f/ 2 AutðGÞj/ðuÞ ¼ u;8u 2 Sg, and S is a determining set of G if StabðSÞ ¼ fidGg. The minimum cardinality of a deter-
mining set is the determining number of G, written as DetðGÞ.

The distance dðu;vÞ between two vertices u; v 2 VðGÞ is the length of a shortest u-v path. A vertex u 2 VðGÞ resolves a pair
fx; yg# VðGÞ if dðu; xÞ– dðu; yÞ. When every pair of vertices of G is resolved by some vertex in S, it is said that S is a resolving
set of G. The minimum cardinality of a resolving set is the metric dimension of G, denoted by dimðGÞ, and a resolving set of
cardinality dimðGÞ is called a metric basis of G.

Problem 1 arises naturally since, as it was said before, every resolving set of a graph G is also a determining set, and so
DetðGÞ 6 dimðGÞ (see [4,17]). Further, the difference between both parameters is either zero or very small in many families of
graphs; among them: paths, cycles, complete graphs, and 2-dimensional grids [17,27]. To approach the question we first
define the function ðdim� DetÞðnÞ as the maximum value of dimðGÞ � DetðGÞ over all graphs G of order n (note that its com-
putation would give the answer to the problem). Then, we develop a technique based mainly on the study of two functions
(which are introduced below) related to locating-dominating sets: ðk� DetÞðnÞ and kjC� ðnÞ. Besides its independent interest,
this technique lets us improve significantly the best result known to date on Problem 1 which, in terms of our function
ðdim� DetÞðnÞ, is the following.

Proposition 1.1 [5]. For every n P 8,
2
5

n
� �

� 2 6 ðdim� DetÞðnÞ 6 n� 2:
A vertex u 2 VðGÞ distinguishes a pair fx; yg# VðGÞ if either u 2 fx; yg or precisely one of x; y is adjacent to u, and a set
D # VðGÞ is a distinguishing set of G if every pair of vertices of G is distinguished by some vertex in D. When D is also a dom-
inating set (i.e., NðxÞ \ D – ; for every x 2 VðGÞ n D) it is said that D is a locating-dominating set. The minimum cardinality of a
locating-dominating set is the locating-domination number of G, denoted by kðGÞ. Note that kðGÞ 6 n� 1 since every subset of
n� 1 vertices is a locating-dominating set of G.

Although distinguishing sets and locating-dominating sets were introduced in different contexts (see [1,32]) they are in
essence the same concept: given a distinguishing set D # VðGÞ, by definition there is at most one vertex x 2 VðGÞ n D so that
NðxÞ \ D ¼ ;. Thus D [ fxg is a locating-dominating set. This yields the following.

Observation 1.2. Let D be a distinguishing set of a graph G. Then, kðGÞ 6 jDj þ 1.
Every locating-dominating set D # VðGÞ is clearly a resolving set since each pair fx; yg# VðGÞ n D is distinguished by some

vertex u 2 D and so either dðu; xÞ ¼ 1 < dðu; yÞ or dðu; yÞ ¼ 1 < dðu; xÞ. Thus, DetðGÞ 6 dimðGÞ 6 kðGÞ for every graph G.
Let ðk� DetÞðnÞ and kðnÞ be the maximum values of, respectively, kðGÞ � DetðGÞ and kðGÞ over all graphs G of order n. Note

that the function kðnÞ equals n� 1 (attained by the complete graph Kn) but the non-trivial restriction of this function to the
class C� of twin-free graphs (i.e., graphs that do not contain twin vertices, which are formally defined in SubSection 3.1),
denoted by kjC� ðnÞ, will play an important role throughout the paper. Thus,
ðdim� DetÞðnÞ 6 ðk� DetÞðnÞ 6 kðnÞ ¼ n� 1: ð1Þ
In Section 2, we find lower bounds on the functions ðdim� DetÞðnÞ and ðk� DetÞðnÞ by constructing appropriate families
of graphs. In particular, we improve the lower bound of Proposition 1.1 and conjecture that these new bounds are precisely
the exact expressions of those functions.

Section 3 develops a method to prove that kjC� ðnÞ is an upper bound on ðdim� DetÞðnÞ and ðk� DetÞðnÞ, which is a key
result in our study. Moreover, we conjecture a formula for the function kjC� ðnÞ.

Sections 4 and 5 contain two explicit upper bounds on kjC� ðnÞ. Although the one in Section 5 gives a better
approach, we believe that the technique used to obtain the bound in Section 4 has interest by its own and so it is
worth to be included in this paper. This technique uses a variant of a classical theorem in domination theory due
to Ore [28], which lets us relate, for twin-free graphs, the locating-domination number with a series of classical graph
parameters (following the same spirit as the relationships existing among different domination parameters; see [23] for
a number of examples). The desired bound is then obtained by using those relations and a Ramsey-type result of Erd}os
and Szekeres [16].
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Our second upper bound on kjC� ðnÞ appears in Section 5 and is, as far as we know, the best approach to the function
ðdim� DetÞðnÞ. It is obtained by a greedy algorithm which produces distinguishing sets and determining sets of bounded
size. This algorithm also gives an upper bound on the determining number of a twin-free graph.

In Section 6, we obtain exact expressions and bounds on the restrictions of the functions ðdim� DetÞðnÞ and ðk� DetÞðnÞ
to the family of graphs not containing the cycle C4 as a subgraph, and the subfamily of trees. To do this, we design tools of
independent interest related to k-dominating sets and matchings. Our results on trees close the study initiated by Cáceres
et al. [5] on the difference between the metric dimension and the determining number in this class of graphs.

We conclude the paper in Section 7 with some remarks and open problems.

2. Lower bounds on ðdim� DetÞðnÞ and ðk� DetÞðnÞ

Let Tm with m P 6 be a tree that consists of a path ðu1; . . . ;umÞ and a pendant vertex u0 adjacent to u3, and let Gm be the
corona product Tm � K1, i.e., the graph with vertex set VðGmÞ ¼ VðTmÞ [ fv0;v1; . . . ;vmg and edge set EðGmÞ ¼
EðTmÞ [ fuiv ij0 6 i 6 mg. By adding another pendant vertex v00 to u0 in Gm we obtain the graph Hm. Both graphs are shown
in Fig. 1. By definition, VðHmÞ ¼ VðGmÞ [ fv 00g and EðHmÞ ¼ EðGmÞ [ fu0v 00g.

The following lemma is the key tool to obtain lower bounds on the functions ðdim� DetÞðnÞ and ðk� DetÞðnÞ.

Lemma 2.1. For every m P 6, the following statements hold.

(i) DetðGmÞ ¼ 0 and DetðHmÞ ¼ 1.
(ii) dimðGmÞ ¼ m and dimðHmÞ ¼ mþ 1.

(iii) kðGmÞ ¼ mþ 1 and kðHmÞ ¼ mþ 2.
Proof. Since m P 6;AutðGmÞ is trivial and there is only one non-trivial automorphism of Hm which maps v0 onto v 00. Thus,
Statement (i) easily follows.

Every resolving set S of Gm contains, for every 0 6 i 6 m but at most one, either vertex ui or vertex v i (note that, in
Gm; dðuj;v‘Þ ¼ dðv j;v‘Þ ¼ 1 for all j – ‘ and so the pair fuj;u‘g is only distinguished by vertices uj;u‘;v j and v‘). Hence
dimðGmÞP m, and the set S ¼ fu0;u1; . . . ;um�2;umg attains the bound. An analogous argument proves that S [ fv 00g is a
metric basis of Hm. Therefore, Statement (ii) holds.

To prove Statement (iii), consider a locating-dominating set D of Gm. Clearly, for every 0 6 i 6 m, either vertex ui or vertex
v i belongs to D. Thus kðGmÞP mþ 1, and the set D ¼ fu0; . . . ;umg gives the equality. By a similar argument one obtains
kðHmÞ ¼ mþ 1. h
Observation 2.2. Since AutðGÞ ¼ AutðGÞ then DetðGÞ ¼ DetðGÞ and so the preceding lemma gives DetðGmÞ ¼ 0 and
DetðHmÞ ¼ 1.

Cáceres et al. [5] used the wheel graph W1;n to obtain the lower bound of Proposition 1.1. Our graphs Gm and Hm (for
appropriate m) improve that bound, and moreover, we also obtain a lower bound on ðk� DetÞðnÞ by using the graphs Gm

and Hm.

Theorem 2.3. For every n P 14,
ðdim� DetÞðnÞP n
2

j k
� 1 and ðk� DetÞðnÞP n

2

j k
:

Proof. For each function, it suffices to give a graph of order n P 14 such that the difference between its corresponding
parameters equals the bound of the statement. By Lemma 2.1, we can take the graphs Gn

2�1 (n even) and Hn�1
2 �1 (n odd) for

the function ðdim� DetÞðnÞ; the graphs Gn
2�1 (n even) and Hn�1

2 �1 (n odd) yield the bound for ðk� DetÞðnÞ. Note that

n P 14 since the graphs Gm;Hm;Gm and Hm are defined for m P 6. h
Fig. 1. The graphs (a) Gm and (b) Hm .
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We shall exhibit large classes of graphs C such that the maximum values of, respectively, dimðGÞ � DetðGÞ and
kðGÞ � DetðGÞ over all graphs G 2 C of order n do not exceed n

2

� �
. Thus, we believe that the preceding bounds are in fact

the exact expressions of our functions.

Conjecture 1. There exists a positive integer n0 such that, for every n P n0,
Fig. 2.
the lab
ðdim� DetÞðnÞ ¼ n
2

j k
� 1 and ðk� DetÞðnÞ ¼ n

2

j k
:

3. An upper bound on ðdim� DetÞðnÞ and ðk� DetÞðnÞ

This section is devoted to the proof of one of our main results: the functions ðdim� DetÞðnÞ and ðk� DetÞðnÞ are bounded
above by kjC� ðnÞ. The main idea of this proof is that from every graph G one can obtain an adequate twin-free graph eG such
that kðGÞ is bounded above by kðeGÞ plus some constant depending on the graphs.

3.1. The twin graph G� and the graph eG
The construction of our twin-free graph eG is based on the so called twin graph G�, which is obtained from a given graph G

by identifying vertices with the same neighbourhood. This graph and its variations (depending on the choice of closed and/or
open neighbourhoods) have been used to solve many problems in graph theory (see for instance [22,29]) since they com-
pletely characterize the original graph G. We begin by recalling its formal definition.

Two different vertices u;v 2 VðGÞ are twins if NðuÞ ¼ NðvÞ or N½u� ¼ N½v �, i.e., no vertex of VðGÞ n fu;vg distinguishes the
pair fu;vg. This definition induces the following equivalence relation on VðGÞ : u � v if and only if either u ¼ v or u and v are
twins; see [26]. Let u� ¼ fv 2 VðGÞju � vg and consider the partition u�1; . . . ;u�r of VðGÞ induced by the relation �, where r P 1
and every ui is a representative of u�i . The twin graph of G, denoted by G�, has vertex set VðG�Þ ¼ fu�1; . . . ;u�rg and edge set
EðG�Þ ¼ fu�i u�j juiuj 2 EðGÞg (which is well-defined as Statement (i) of Lemma 3.1 below shows). Note that, for every
u 2 VðGÞ, we shall consider u� as a class in VðGÞ as well as a vertex of G� (see the graphs G and G� in Fig. 2 for an example).

Lemma 3.1 [26]. For every graph G, the following statements hold.

(i) The graph G� is independent of the choice of the representatives ui, i.e.,
u�i u�j 2 EðG�Þ () xy 2 EðGÞ8x 2 u�i ; y 2 u�j :

(ii) Every class u�i either induces a complete subgraph or is an independent set in G.

A vertex u�i 2 VðG�Þ is said to be of type ð1Þ if ju�i j ¼ 1; otherwise, according to Statement (ii) of Lemma 3.1, vertex u�i is
either of type ðKÞ or of type ðNÞ, depending on whether u�i induces a complete subgraph or is an independent set in G. When
u�i is of type ðKÞ or ðNÞ, it is said to be of type ðKNÞ. Considering vertex u�i as a class in VðGÞ and x; y 2 u�i , one has that
N½x� ¼ N½y� whenever u�i is of type ðKÞ, and NðxÞ ¼ NðyÞ if u�i is of type ðNÞ (see the graph G� in Fig. 2). For more properties
of G� we refer the reader to [26].

Let eG be the graph obtained from G� by adding a pendant vertex to every vertex u�i 2 VðG�Þ of type ðKNÞ that has a twin in
G� (note that G� is not necessarily twin-free). Let VðeGÞ ¼ VðG�Þ [ P where P denotes the set of pendant vertices adjacent to
the u�i ’s. Fig. 2 shows an example of this construction. Observe that now the notation u� represents a class in VðGÞ, a vertex of
G�, and a vertex of eG.
The dotted ellipses in G indicate the different classes in VðGÞ. Informally, the vertices of G� are obtained by replacing each class in VðGÞ by one vertex;
els indicate the type of vertex. The squared vertices in eG form the set P.
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3.2. Using locating-dominating sets of twin-free graphs

In this section, we obtain the desired upper bound on the functions ðdim� DetÞðnÞ and ðk� DetÞðnÞ by using the locating-
domination number of our graph eG, which is proved to be twin-free in Lemma 3.4 below. Twin-free graphs are important for
their own sake and also for their multiple applications (see for example [7,22]); here, their properties are fundamental for
reaching Theorem 3.7 which is one of our main results. We begin with an observation and a series of lemmas.

Observation 3.2. For every graph G, no two different vertices u�i ;u
�
j 2 VðG�Þ of type ð1Þ are twins in G�; otherwise, by

construction of G�;ui and uj would be twins in G but u�i – u�j .
Let XG ¼

S
16i6rðu�i n fuigÞwhere r ¼ jVðG�Þj. This set consists of all but one vertex of every class of type ðKNÞ since u�i n fuig

is empty for classes u�i of type ð1Þ. Thus jXGj ¼ n� r and moreover, by definition of equivalence classes, no two vertices of
VðGÞ nXG are twins in G.

Lemma 3.3. Let G be a graph of order n such that G� has order r. Then,
DetðGÞP n� r:
In particular, kðGÞ � DetðGÞ 6 r � 1.
Proof. Given a class u�i of type ðKNÞ in VðGÞ and x; y 2 u�i , there is a non-trivial automorphism which maps x onto y and fixes
the remaining vertices. Hence, every determining set S of G contains either vertex x or vertex y. Thus, one can deduce that S
contains all but one vertex of each class of type ðKNÞ, i.e., jXGj ¼ n� r vertices. Therefore DetðGÞP n� r, and combining this
with kðGÞ 6 n� 1 yields kðGÞ � DetðGÞ 6 r � 1. h
Lemma 3.4. Let G be a graph of order n such that G� is not isomorphic to K2. Then, the graph eG has order en 6 n and is twin-free.
Proof. When obtaining G� from G, we ‘‘lose’’ at least one vertex per each class of type ðKNÞ. Further, to construct eG from G�

we only have to add the set P whose cardinality is at most the number of vertices of type ðKNÞ. Hence, en 6 n.
Suppose now on the contrary that eG has a pair of twin vertices. Since by construction each vertex in P has a single distinct

neighbour in VðG�Þ, those twin vertices are not both contained in P. If both belong to VðG�Þ, one can easily check that they are
also twins in G� and, by Observation 3.2, at least one of them is of type ðKNÞ. Thus, they are distinguished in eG by the
corresponding pendant vertex of P; a contradiction. Suppose now that just one of the twin vertices is in VðG�Þ; let u�i 2 VðG�Þ
(for some 1 6 i 6 r) and v 2 P be those twin vertices.

Let NeGðvÞ ¼ fu�j g where u�j 2 VðG�Þ. If NeG ½u�i � ¼ NeG ½v � ¼ fv ;u�j g then u�i ¼ u�j and eG ffi K2. Moreover, since v 2 P we have

G� ffi K1 but then eG would also be isomorphic to K1; a contradiction. Hence, NeGðu�i Þ ¼ NeGðvÞ ¼ fu�j g and u�i – u�j . Note that

NG� ðu�i Þ ¼ NeGðu�i Þ ¼ fu�j g. Further, by construction of eG, vertex u�j has a twin u�‘ in G� which cannot be vertex u�i (otherwise u�i
and u�j would be twins in G� and so G� would be isomorphic to K2). This implies that u�‘ 2 NG� ðu�i Þ ¼ fu�j g, which leads to a

contradiction. h

We now relate the locating-domination numbers of the graph G and its associated twin-free graph eG.

Lemma 3.5. Let G be a graph of order n such that G� has order r. Then,
kðGÞ 6 kðeGÞ þ n� r:
In particular, kðGÞ � DetðGÞ 6 kðeGÞ.

Proof. Let eS be a minimum locating-dominating set of eG, and let eu 2 VðeGÞ ¼ VðG�Þ [ P. If eu 2 VðG�Þ then there exists a
unique vertex u�i 2 VðG�Þ such that eu ¼ u�i , and if eu 2 P then there is a unique vertex u�i 2 VðG�Þ so that NeGðeuÞ ¼ fu�i g. For each
case, consider the representative ui 2 VðGÞ of that class u�i , and the mapping p : VðeGÞ�!VðGÞ given by pðeuÞ ¼ ui.

Clearly, the set pðeSÞ ¼ fpðeuÞjeu 2 eSg satisfies that jpðeSÞj 6 jeSj ¼ kðeGÞ (it might be pðeuÞ ¼ pðev Þ for eu 2 P and ev 2 NeGðeuÞ).
Thus, to obtain the desired bound it suffices to prove that S ¼ pðeSÞ [XG is a locating-dominating set of G (recall that
XG ¼

S
16i6rðu�i n fuigÞ and so jXGj ¼ n� r). We next show that S is a distinguishing set of G; a similar analysis (omitted for the

sake of brevity) proves that S is also a dominating set.
Observe first that ðpðeuÞÞ�# S for every eu 2 eS. Now, let x; y 2 VðGÞ n S. Since x; y R XG then x� – y� and thus

x�; y� 2 VðG�Þ# VðeGÞ. Hence, there is a vertex eu 2 eS distinguishing fx�; y�g in eG, and such that eu – x� – y� (if, say, eu ¼ x�

then x� ¼ ðpðeuÞÞ�# S but x R S).
We have eu 2 VðG�Þ since if eu 2 P then one can assume, without loss of generality, that NeGðeuÞ ¼ fx�g and so

ðpðeuÞÞ� ¼ x�# S which contradicts x R S. Therefore, eu is distinguishing fx�; y�g in G�. If x� 2 NG� ðeuÞ and y� R NG� ðeuÞ then,
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by Lemma 3.1, x 2 NGðpðeuÞÞ and y R NGðpðeuÞÞ (the opposite case is similar). This implies that S is a distinguishing set
of G.

Finally, by Lemma 3.3, DetðGÞP n� r and so kðGÞ � DetðGÞ 6 kðeGÞ. h

Let ðdim� DetÞjC ðnÞ; ðk� DetÞjC ðnÞ and kjC ðnÞ denote the restrictions of our functions to a class of graphs C. Recall that C� is
the class of twin-free graphs, and note that for that class, the functions can be considered for n P 4 since P4 is the smallest
twin-free graph.

Lemma 3.6. kjC� ðnÞ 6 kjC� ðnþ 1Þ.
Proof. We first prove that kðGÞ 6 kðHÞ for every graph H obtained by adding a pendant edge to a given graph G. Indeed, con-
sider a minimum locating-dominating set S of H, and let uv 2 EðHÞ denote the pendant edge with u 2 VðHÞ n VðGÞ. If u R S
then S # VðGÞ is also a locating-dominating set of G, and so kðGÞ 6 kðHÞ. Otherwise u 2 S, and S0 ¼ ðS n fugÞ [ fvg is a locating-
dominating set of G. Therefore, kðGÞ 6 jS0j 6 jSj ¼ kðHÞ.

Consider now a twin-free graph G of order n such that kðGÞ ¼ kjC� ðnÞ. Set H to be the graph obtained from G by adding a
pendant vertex u to a vertex v 2 VðGÞwhose neighbours in G have degree at least 2. Note that to find such a vertex is possible
since G is not the disjoint union of copies of K1 or K2, which is neither connected nor twin-free. Hence, H has order nþ 1 and
is twin-free. Moreover, kðGÞ 6 kðHÞ since H is obtained by adding a pendant edge to G. Therefore, kjC� ðnÞ 6 kjC� ðnþ 1Þ. h

We thus reach the main result of this section which, in particular, improves significantly Expression (1) in Section 1.

Theorem 3.7. For every n P 4,
ðdim� DetÞðnÞ 6 ðk� DetÞðnÞ 6 kjC� ðnÞ:
Proof. Let G be a graph of order n such that kðGÞ � DetðGÞ ¼ ðk� DetÞðnÞ. Observe first that G��K2; otherwise, by Lemma 3.3,
ðk� DetÞðnÞ ¼ kðGÞ � DetðGÞ 6 1 < n

2

� �
which contradicts Theorem 2.3. Thus, by Lemma 3.4, the graph eG is twin-free anden ¼ jVðeGÞj 6 n. Hence,
kðeGÞ 6 kjC� ðenÞ 6 kjC� ðnÞ; ð2Þ
the last inequality being a consequence of Lemma 3.6. Further, Lemma 3.5 yields
ðk� DetÞðnÞ ¼ kðGÞ � DetðGÞ 6 kðeGÞ: ð3Þ
The result follows combining Expressions (2) and (3). h

Theorems 2.3 and 3.7 give kjC� ðnÞP n
2

� �
and, throughout this paper, we shall find numerous conditions for a twin-free

graph to satisfy kðGÞ 6 n
2

� �
. Thus, we believe that the following conjecture, which implies most of Conjecture 1, is true.

Conjecture 2. There exists a positive integer n1 such that, for every n P n1,
kjC� ðnÞ ¼
n
2

j k
:

Theorem 3.7 implies that bounding the function kjC� ðnÞ yields bounds on ðdim� DetÞðnÞ and ðk� DetÞðnÞ. Thus, the follow-
ing two sections are mainly concerned with the locating-domination number of twin-free graphs.
4. From minimal dominating sets to locating-dominating sets

In this section we present a variant of one of the first results in the field of domination theory due to Ore [28] (see [23] for
an extensive bibliography on this very active area of graph theory) which lets us relate the locating-domination number of a
twin-free graph G with the upper domination numbers and chromatic numbers of G and G, and the independence number
and clique number of G. On the one hand, these relations produce sufficient conditions for G to verify kðGÞP n

2

� �
, giving thus

support to Conjecture 2. On the other hand, by means of the last-mentioned relation and a classical result due to Erd}os and
Szekeres [16], we reach our first upper bound on the function kjC� ðnÞ.

A set D # VðGÞ is a minimal dominating set if no proper subset of D is a dominating set of G; minimal locating-dominating
sets are defined analogously. The domination number cðGÞ is the minimum cardinality of a dominating set of G.

Theorem 4.1 [28]. A set D # VðGÞ is a minimal dominating set if and only if each vertex u 2 D satisfies that either NðuÞ# VðGÞ n D
or NðxÞ \ D ¼ fug for some x 2 VðGÞ n D.
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Theorem 4.2 [28]. Let G be a graph without isolated vertices and let D # VðGÞ be a minimal dominating set of G. Then, VðGÞ n D is
a dominating set of G. Consequently, cðGÞ 6 n

2

� �
.

Observe that if one could prove that the complement of every minimal locating-dominating set of a twin-free graph is a
locating-dominating set then kjC� ðnÞ 6 n

2

� �
, and by Theorems 2.3 and 3.7, kjC� ðnÞP n

2

� �
. Thus, Conjecture 2 would be proved in

the affirmative. Unfortunately, Fig. 3 shows that this property is not true in general for minimal locating-dominating sets of
twin-free graphs. However, we can establish a similar relation between minimal dominating sets and locating-dominating
sets.

Theorem 4.3. Let G be a twin-free graph and let D # VðGÞ be a minimal dominating set of G. Then, VðGÞ n D is a locating-
dominating set of G.
Proof. Let D be a minimal dominating set of G. Since G is connected, by Theorem 4.2, it suffices to prove that VðGÞ n D is a
distinguishing set of G. To do this, we show that every pair of vertices x; y 2 D is distinguished by some vertex in VðGÞ n D. If
NðxÞ;NðyÞ# VðGÞ n D then the result easily follows since G is twin-free. Otherwise, say that NðxÞ \ D – ;. By Theorem 4.1,
there is a vertex u 2 VðGÞ n D such that NðuÞ \ D ¼ fxg. Hence, vertex u distinguishes the pair fx; yg. h

One of the most studied invariants in domination theory is the upper domination number CðGÞwhich is the maximum car-
dinality of a minimal dominating set of G. We refer the reader to [23] for a number of results involving this parameter.

Corollary 4.4. Let G be a twin-free graph. Then,
Fig. 3.
locating
kðGÞ 6 n�maxfCðGÞ;CðGÞ � 1g:
In particular, kðGÞ 6 n
2

� �
when either CðGÞP n

2 or CðGÞP n
2þ 1.
Proof. By Theorem 4.3, kðGÞ 6 n� CðGÞ for every twin-free graph G. Further, Theorem 7 of [25] gives jkðGÞ � kðGÞj 6 1 and so
kðGÞ 6 kðGÞ þ 1 6 n� CðGÞ þ 1 since G is also twin-free. Therefore, kðGÞ 6 minfn� CðGÞ;n� CðGÞ þ 1g. h

Recall that the independence number aðGÞ and the clique number xðGÞ are the maximum cardinality of an independent set
and the maximum order of a complete subgraph of G, respectively.

Corollary 4.5. Let G be a twin-free graph. Then,
kðGÞ 6 n�maxfaðGÞ;xðGÞ � 1g:
In particular, kðGÞ 6 n
2

� �
when either aðGÞP n

2 or xðGÞP n
2þ 1.
Proof. Every vertex in an independent set I of maximum cardinality aðGÞ has a neighbour in VðGÞ n I and so I is a dominating
set of G. Moreover, by Theorem 4.1, the dominating set I is minimal since NðuÞ# VðGÞ n I for every u 2 I. Hence aðGÞ 6 CðGÞ,
and analogously CðGÞP aðGÞ ¼ xðGÞ. Combining these inequalities with Corollary 4.4, one obtains the desired bound since G
is twin-free and so is G. h

The chromatic number of G, denoted by vðGÞ, is the smallest number of classes needed to partition VðGÞ such that no two
adjacent vertices belong to the same class. A classical result in graph theory establishes that xðGÞP 2vðGÞ � n for every
graph G (see for instance [9]). Thus, aðGÞ ¼ xðGÞP 2vðGÞ � n and we can deduce the following result from Corollary 4.5.

Corollary 4.6. Let G be a twin-free graph. Then,
kðGÞ 6 2n�maxf2vðGÞ;2vðGÞ � 1g:
Consequently, kðGÞ 6 n
2

� �
when either vðGÞP 3

4 n or vðGÞP 3
4 nþ 1

2.
A twin-free graph of order 5k that consists of k paths of length 4, each hanging from a vertex of a path on k P 1 vertices. This graph has a minimal
-dominating set (depicted as squared vertices) of cardinality 3k, whose complement is not a locating-dominating set.
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Erd}os and Szekeres [16] proved that every graph of order n contains either an independent set or a complete subgraph

with at least dlog2n
2 e vertices. This and Corollary 4.5 give our first upper bound on kjC� ðnÞwhich, by Theorem 3.7, is also a bound

on the functions ðdim� DetÞðnÞ and ðk� DetÞðnÞ.

Corollary 4.7. For every n P 4,
ðdim� DetÞðnÞ 6 ðk� DetÞðnÞ 6 kjC� ðnÞ 6 n� log2n
2

� �
þ 1:
Observe that the preceding bound improves significantly the upper bound of Proposition 1.1, due to Cáceres et al. [5].
5. A greedy algorithm to compute distinguishing sets and determining sets of twin-free graphs

Babai [1] introduced distinguishing sets to study the graph isomorphism problem; he proved that deciding whether a
graph G of order n is isomorphic to any other graph can be done in oðndþ3Þ time whenever G has a distinguishing set of size
d. As a consequence of one of his results, concretely the following lemma, we obtain Observation 5.2 below, which also sup-
ports Conjecture 2.

Lemma 5.1 [1]. Let G be a graph of order n and let M be such that jNðxÞDNðyÞjP M for any x; y 2 VðGÞ. Then, G has a

distinguishing set of cardinality at most 2n log n
Mþ2

l m
provided that M > 4 log n.

Note that the condition of Lemma 5.1 on the symmetric difference NðxÞDNðyÞ implies, in particular, that the graph G is
twin-free (as those of Conjecture 2). Further, when n P 32 and M > 4 log n, Lemma 5.1 and Observation 1.2 give

kðGÞ 6 2n log n
Mþ2

l m
þ 1 6 n

2

� �
.

Observation 5.2. A graph G of order n P 32 satisfies that kðGÞ 6 n
2

� �
whenever jNðxÞDNðyÞj > 4 log n for every x; y 2 VðGÞ.

By Procedure GREEDY-PARTITION below, we can also obtain distinguishing sets of bounded size but (unlike in Lemma 5.1)
imposing no restriction on the twin-free graph G. This is a polynomial time algorithm that, in addition, produces determining
sets of bounded size. Its restriction to a specific family of graphs (concretely twin-free graphs) is natural since Colbourn et al.
[13] showed that computing the locating-domination number of an arbitrary graph is NP-hard. We first require some
notation.

Given D # VðGÞ, there is an equivalence relation on VðGÞ given by u�Dv if and only if either u ¼ v or fu;vg is distinguished
by no vertex of D. Denote by ½u�D the set of vertices v 2 VðGÞ such that u�Dv . Note that a set D is a distinguishing set of G if the
partition of VðGÞ induced by �D consists of unitary classes. Let D1 be the set of vertices of VðGÞ n D whose class is unitary, and
let D>1 ¼ VðGÞ n ðD [ D1Þ. Observe that D;D1;D>1 form a partition of VðGÞ, where any of these sets may be empty.

Procedure: GREEDY-PARTITION

Input: A twin-free graph G.
Output: A partition of VðGÞ into three subsets A;B; C.

1. Take a vertex u0 2 VðGÞ. Let A ¼ fu0g;B ¼ A1, and C ¼ A>1;
2. While there exist u; x; y 2 C such that ½x�A ¼ ½y�A and ½x�A[fug – ½y�A[fug do
(a) Add vertex u to A, and rename A :¼ A [ fug;
(b) Take B :¼ A1 and C :¼ A>1;
The following lemma says that combining the sets A;B;C properly, one obtains, as it was mentioned before, distinguishing
sets and determining sets of bounded size.

Lemma 5.3. Let A;B;C be the sets obtained by application of Procedure GREEDY-PARTITION to a twin-free graph G. Then, the following
statements hold.

(i) A [ B;A [ C and B [ C are distinguishing sets of G.
(ii) A and B [ C are determining sets of G.
Proof. To prove Statement (i), observe first that Procedure GREEDY-PARTITION returns a partition of VðGÞ into three subsets
A;B; C such that B ¼ A1

;C ¼ A>1 and no pair fx; yg# C with ½x�A ¼ ½y�A is distinguished by any u 2 C n fx; yg (if it exists).
Since ½x�A[C # ½x�A and the class ½x�A is unitary for every x 2 ðVðGÞ n ðA [ CÞÞ ¼ B ¼ A1, then the partition of VðGÞ induced by

�A[C consists of unitary classes. Hence, A [ C is a distinguishing set of G.



D. Garijo et al. / Applied Mathematics and Computation 249 (2014) 487–501 495
That A [ B is a distinguishing set follows from the fact that G is twin-free and so, in particular, every pair
fx; yg# ðVðGÞ n ðA [ BÞÞ ¼ C is distinguished by some vertex u 2 VðGÞ n fx; yg. Further, vertex u either belongs to A (if
½x�A – ½y�A) or belongs to B (if ½x�A ¼ ½y�A).

It remains to prove that B [ C is a distinguishing set. To do this, let A ¼ fx1; . . . ; xjAjg whose elements are ordered as they
appear in Procedure GREEDY-PARTITION; we next show that every pair fxi; xjg with i < j is distinguished by some vertex in B [ C.

Vertex xj comes from a vertex u 2 C that is added to A (at Step 2(a) of Procedure GREEDY-PARTITION) when a class
½x�fx1 ;...;xj�1g ¼ ½y�fx1 ;...;xj�1g (for some x; y 2 C) can be split into two distinct classes ½x�fx1;...;xj�1 ;xjg and ½y�fx1 ;...;xj�1 ;xjg. Hence, every

pair fz; tg with z 2 ½x�fx1 ;...;xjg and t 2 ½y�fx1 ;...;xjg is distinguished by xj and not by x1; . . . ; xj�1. Thus, fz; tg is not contained in

fx1; . . . ; xjg, and moreover the pair fxi; xjgwith i < j is distinguished by either z or t. In the following steps of the procedure, it
might happen that z ¼ x‘ with ‘ > j (analogous for vertex t) and so, at the end of the process, vertex z would not belong to
B [ C but to A. In this case, z can be replaced by another vertex z0 2 B [ C that plays the same role than z. This comes from the
fact that when a vertex in C goes to A (at Step 2(a) of the process), the remaining vertices of its class (which has cardinality at
least 2) either go to the corresponding set B or stay in the corresponding set C; one of those vertices can be taken as z0.
Therefore, at the end of the process, we obtain two sets B;C such that B [ C is a distinguishing set of G, and so Statement (i)
follows.

Observe now that every distinguishing set is a resolving set and so also a determining set. Thus, Statement (i) implies
Statement (ii) for B [ C. To prove that A is a determining set of G, it suffices to show that StabðAÞ ¼ StabðA [ BÞ since one can
deduce from Statement (i) that A [ B is a determining set, i.e., StabðA [ BÞ ¼ fidGg.

By definition, StabðA [ BÞ# StabðAÞ. Further, given x 2 B ¼ A1 there does not exist y 2 B [ C such that NðyÞ \ A ¼ NðxÞ \ A.
Hence, an automorphism of G that fixes every vertex in A has to fix vertex x. Therefore, StabðAÞ# StabðA [ fxgÞ. Extending this
argument to every vertex in B it follows that StabðAÞ# StabðA [ BÞ. h

5.1. The best approach to ðdim� DetÞðnÞ and an upper bound on DetðGÞ for twin-free graphs G

The pigeonhole principle ensures that one set among the A;B;C of Procedure GREEDY-PARTITION has cardinality at least dn3e
and so one of A [ B;A [ C;B [ C has cardinality at most b23 nc. Thus, by Statement (i) of Lemma 5.3 and Observation 1.2, we
reach our second upper bound on the function kjC� ðnÞ.

Theorem 5.4. Let G be a twin-free graph of order n P 4. Then, there exists a locating-dominating set of G of cardinality at most
b23 nc þ 1, which can be computed in polynomial time. In particular,
Fig. 4.
minimu
kjC� ðnÞ 6
2
3

n
� �

þ 1:
The following corollary combines Theorems 2.3, 3.7 and 5.4 providing, as far as we know, the best approach to Problem 1.
Corollary 5.5. For every n P 14,
n
2

j k
� 1 6 ðdim� DetÞðnÞ 6 ðk� DetÞðnÞ 6 kjC� ðnÞ 6

2
3

n
� �

þ 1: � �

Again, by the pigeonhole principle, it follows that either A or B [ C has cardinality at most n

2 . Hence, by Statement (ii) of
Lemma 5.3, we obtain the following.
Theorem 5.6. Let G be a twin-free graph of order n P 4. Then, there exists a determining set of G of cardinality at most n
2

� �
, which

can be computed in polynomial time. In particular,
DetðGÞ 6 n
2

j k
:

We conclude this section with two remarks on the bound of Theorem 5.6. On the one hand, we do not know if that bound
is tight although we have already found a tree that has determining number n

2

� �
� 1 (see Fig. 4). On the other hand, the bound

is explicit; this is important since Gibbons and Laison [20] gave an algorithm that for an arbitrary graph G of order n, returns
a determining set of cardinality OðDetðGÞ log log nÞ.
A tree of order n that consists of n
2

� �
paths of length 2 with a common endpoint. Its determining number is n

2

� �
� 1 since the squared vertices form a

m determining set.
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6. Restriction to specific families of graphs

In this section we study the functions ðdim� DetÞðnÞ and ðk� DetÞðnÞ restricted to the class C4 of graphs not containing
the cycle C4 as a subgraph, and also to the subclass T of trees. Concretely, we compute ðk� DetÞjC4 ðnÞ, and both functions

restricted to T ; we also obtain bounds on ðdim� DetÞjC4 ðnÞ. The main tool used for our approach is a study relating k-dom-

inating sets and matchings to locating-dominating sets, which contains results of independent interest. Theorem 6.11 below
closes the study initiated by Cáceres et al. [5] on the difference between the metric dimension and the determining number
of trees.

6.1. Tools: k-domination and matchings

Given a set D # VðGÞ and a positive integer k, a vertex x 2 VðGÞ n D is k-dominated by D if jNðxÞ \ DjP k. The set D is a k-
dominating set of G if every vertex in VðGÞ n D is k-dominated by D. The minimum cardinality of a k-dominating set is the k-
domination number ckðGÞ. By definition, c1ðGÞ ¼ cðGÞ and ckðGÞ 6 ck0 ðGÞ for every k 6 k0.

The concept of k-dominating set was introduced by Fink and Jacobson [19] as a natural generalization of dominating sets,
and has since been intensively studied (see [10] for references on this type of domination). In particular, the k-domination
number ckðGÞ has been related to many graph parameters; among them, the path covering number [14], the order and the
minimum degree [18], and the j-dependence number [19]. Here, we prove that kðGÞ 6 ckðGÞ for k P 2 and G in the class K2;k

of graphs not containing the complete bipartite graph K2;k as a subgraph. Observe that, by definition, c1ðGÞ ¼ cðGÞ 6 kðGÞ for
every graph G.

Lemma 6.1. Let G 2 K2;k with k P 2;D # VðGÞ, and x 2 VðGÞ n D. If vertex x is k-dominated by D then for all y 2 VðGÞ n D, the pair
fx; yg is distinguished by some vertex in D.
Proof. Let y 2 VðGÞ n D and A # NðxÞ \ D such that jAj ¼ k. Clearly, some vertex in A distinguishes fx; yg; otherwise A # NðyÞ
and so the induced subgraph by A [ fx; yg would contain a copy of K2;k. h

As a consequence of Lemma 6.1, if G 2 K2;k then every k-dominating set of G is a locating-dominating set and so
kðGÞ 6 ckðGÞ for k P 2; Fig. 5 shows that the converse is not true. Further, as it was mentioned before, cðGÞ 6 kðGÞ, and it
is proved in [11] that ckðGÞ 6 k

kþ1 n for every graph G such that k 6 dðGÞ. Thus, we obtain the following.

Proposition 6.2. For every G 2 K2;k with k P 2 it holds that
Fig. 5.
(illustra
cðGÞ 6 kðGÞ 6 ckðGÞ:
In particular, kðGÞ 6 b k
kþ1 nc whenever k 6 dðGÞ.

Our next aim is to relate the locating-domination number kðGÞ of a twin-free graph G 2 K2;2 ¼ C4 to its matching number
a0ðGÞ, which is the cardinality of a maximum matching in G. Thus, we follow the same spirit of other relationships that have
been established between the matching number and domination parameters (see for instance [3,12,24]). We begin with
some notation and two lemmas.

Edges of a graph G will now be considered as 2-subsets of VðGÞ and so we shall write fu;vg for an edge, NðxÞ# e 2 EðGÞ to
indicate that the neighbours of a vertex x are either one or the two endpoints of the edge e, etc. Let M be a matching in G, and
let M denote the set of vertices of G which are endpoints of no edge in M. By definition, if M is maximum then M is an inde-
pendent set (which may be empty).

Lemma 6.3. Let M be a maximum matching in a graph G. For every fu;vg 2 M, exactly one of the following statements holds.

(i) NðuÞ \M ¼ NðvÞ \M ¼ ;.
(ii) Either NðuÞ \M – ; or NðvÞ \M – ;, but not both.

(iii) NðuÞ \M ¼ NðvÞ \M ¼ fxg for some x 2 M.
A tree of order n that consists of n
3

� �
paths of length 3 with a common endpoint. It belongs to the class K2;2, and has a locating-dominating set

ted with squared vertices) which is not a 2-dominating set.
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Proof. It suffices to prove that there is no edge fu;vg 2 M and distinct vertices x; y 2 M such that x 2 NðuÞ and y 2 NðvÞ.
Indeed, if it would be the case that there exist such an edge fu;vg 2 M and vertices x; y 2 M, the matching
ðM n fu;vgÞ [ ffu; xg; fv; ygg would have more edges than M which is maximum; a contradiction. h

Let UM ¼ fx 2 MjNðxÞ# e for some e 2 Mg. When M is a maximum matching, all vertices x 2 M with dðxÞ ¼ 1 belong to the
set UM .

Lemma 6.4. For every twin-free graph G, there exists a polynomial-time computable maximum matching M in G such that
UM ¼ ;.
Proof. Consider a maximum matching M in G, and its associated set UM . Observe first that no two distinct vertices x; y 2 UM

satisfy that NðxÞ;NðyÞ# e for any edge e 2 M (otherwise Lemma 6.3 yields NðxÞ ¼ NðyÞ, which contradicts the fact that G is
twin-free). Thus, when M is maximum, two distinct vertices x; y 2 UM have different associated edges e; f 2 M.

If UM – ; then there exist a vertex x 2 M and an edge e ¼ fu;vg 2 M such that NðxÞ# e. Assume, without loss of generality,
that u 2 NðxÞ. We next prove that the maximum matching M0 ¼ ðM n fegÞ [ ffu; xgg verifies that UM0 ¼ UM n fxg.

Let y 2 UM n fxg. Since y 2 M n fxg# M0 has an associated edge f in M (i.e., NðyÞ# f 2 M) which is not edge e, then f 2 M0

and so y 2 UM0 . Thus, UM n fxg# UM0 . To prove that UM0 # UM n fxg, consider a vertex y 2 UM0 and let f 2 M0 such that NðyÞ# f .
Suppose first that f ¼ fu; xg and y – v . Then, y R NðxÞ# e and so NðyÞ ¼ fug. Further x R NðvÞ; otherwise the

intersections NðuÞ \M and NðvÞ \M contradict Lemma 6.3. Hence NðxÞ ¼ NðyÞ ¼ fug, which is a contradiction since G is
twin-free.

Assume now that f ¼ fu; xg and y ¼ v . Since NðxÞ# e and NðyÞ# f then either NðvÞ ¼ NðxÞ ¼ fug or N½v � ¼ N½x� ¼ fu;v ; xg;
again a contradiction. Therefore, f 2 M n feg and y 2 UM n fxg (note that y – v since e; f 2 M).

We have constructed a maximum matching M0 such that UM0 ¼ UM n fxg. Iterating this process, the result follows. The
time complexity comes from the construction of the maximum matching M in G (see [15]) and the above iteration
process. h

We now reach the desired relationship between the locating-domination number kðGÞ and the matching number a0ðGÞ for
twin-free graphs G 2 C4.

Proposition 6.5. Let G 2 C4 be a twin-free graph of order n P 4. Then, there exists a locating-dominating set of G of cardinality
a0ðGÞ which can be computed in polynomial time. Consequently,
kðGÞ 6 a0ðGÞ:
In particular, kðGÞ 6 n
2

� �
.

Proof. Let M be a maximum matching in G obtained from Lemma 6.4, i.e., UM ¼ ;. Consider a partition of VðGÞ into three
subsets, the already defined set M (recall that this set may be empty), and sets V1 and V2 that consist of the endpoints of
the edges in M: one endpoint of each edge in V1 and the other in V2. We can assume, without loss of generality, that if
x 2 M and e ¼ fu;vg 2 M such that NðxÞ \ e ¼ fug then u 2 V1 and v 2 V2. Thus, if e ¼ fu;vg 2 M verifies that
NðuÞ \M – ; and NðvÞ \M ¼ ; then u 2 V1 and v 2 V2 (recall the different possibilities of intersection between M and the
edges in M given in Lemma 6.3). We now prove that V1 is a locating-dominating set of G and so the result follows since
jV1j ¼ a0ðGÞ 6 n

2

� �
.

By construction, V1 is a dominating set of G. Moreover, every vertex x 2 M is 2-dominated by V1 since UM ¼ ; and so NðxÞ
intersects at least two distinct edges in M; each intersection is one vertex that belongs to V1.

To prove that V1 is a distinguishing set, it suffices to show that every pair fx; yg# V2 [M is distinguished by some vertex
in V1. If either vertex x or vertex y is in M then, by Lemma 6.1, the result follows since G 2 C4 ¼ K2;2 and every vertex of M is
2-dominated by V1. Assume now that x; y 2 V2, and let u;v 2 V1 such that fu; xg; fv ; yg 2 M. Since G 2 C4 then either vertex u
or vertex v distinguishes fx; yg; otherwise G would contain the cycle ðu; x;v; yÞ. h
6.2. Graphs not containing C4 as a subgraph

As a consequence of Proposition 6.2 (setting k ¼ 2), the function ðk� DetÞðnÞ restricted to the set of graphs in C4 with min-
imum degree at least 2 can be bounded above by b23 nc; essentially the same upper bound on ðk� DetÞðnÞ (and so on
ðdim� DetÞðnÞ) of Corollary 5.5. However, we can improve this bound, and even more: compute the function
ðk� DetÞjC4 ðnÞ and give better bounds on ðdim� DetÞjC4 ðnÞ; these results support Conjecture 1.

Theorem 6.6. For every n P 14, it holds that
ðk� DetÞjC4 ðnÞ ¼
n
2

j k
:
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Proof. Mimicking the proof of Theorem 2.3 on ðk� DetÞðnÞ yields ðk� DetÞjC4 ðnÞP
n
2

� �
since the graphs considered belong to

C4 (the condition n P 14 comes from the constructions used in that proof). To prove the reverse inequality, it suffices to show

that every graph G 2 C4 of order n P 14 satisfies that kðGÞ � DetðGÞ 6 n
2

� �
.

If the twin graph G� (defined together with eG in SubSection 3.1) is isomorphic to K2 then Lemma 3.3 gives

kðGÞ � DetðGÞ 6 1 < n
2

� �
. Assume now that G��K2. By Lemma 3.4, the graph eG is twin-free and has order en 6 n. Further, by

construction, eG 2 C4 since G 2 C4. Hence, by Proposition 6.5, we have kðeGÞ 6 ben2c 6 n
2

� �
and so Lemma 3.5 gives the desired

inequality. h
Theorem 6.7. For every n P 49, it holds that
2
7

n
� �

6 ðdim� DetÞjC4 ðnÞ 6
n
2

j k
:

Proof. The upper bound follows immediately from Expression (1) (in Section 1) and Theorem 6.6. To obtain the lower bound,
it suffices to construct a graph G of order n P 49 not containing C4 as a subgraph, and such that dimðGÞ � DetðGÞ ¼ b27 nc. We
next construct not only a graph but a family of graphs satisfying those conditions.

Let n ¼ 7qþ s for integers q P 7 and 0 6 s < 7 (and so n P 49). Let Tq;0 be the tree shown in Fig. 6(a), which results from
attaching a copy of T6 to every vertex of Tq�1 (recall that the tree Tm;m P 6, is described in Section 2). Now, for s 2 f1;2;3g
we define Tq;s to be the tree obtained from Tq;0 by replacing the edge u1u2 by a path of length sþ 1 (see Fig. 6(b)). Finally, for
s 2 f4;5;6g, the tree Tq;s results from attaching a path of length s to vertex u1 in Tq;0 (see Fig. 6(c)).

Clearly, AutðTq;sÞ ¼ idTq;s and so DetðTq;sÞ ¼ 0. Further, Fig. 6 shows metric bases for the family of trees Tq;s which give
dimðTq;sÞ ¼
2q if s 2 f0;1;2;3g:
2qþ 1 if s 2 f4;5;6g:

�

Since jVðTq;sÞj ¼ n ¼ 7qþ s then dimðTq;sÞ ¼ b27 nc. Thus, dimðTq;sÞ � DetðTq;sÞ ¼ b27 nc. h
6.3. Trees

Cáceres et al. [5] constructed a family of trees for which the difference between the metric dimension and the determin-
ing number is Oð

ffiffiffi
n
p
Þ. Here, we show that the trees Tq;s of the proof of Theorem 6.7 attain the maximum value of that

difference restricted to trees, thus closing Problem 1 for this class of graphs. We also compute the function ðk� DetÞjT ðnÞ.
First, let us recall some terminology from [8].
Fig. 6. Metric bases (depicted as squared vertices) of the graphs (a) Tq;0, (b) Tq;3 and (c) Tq;5.
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Given a tree T, a vertex of degree at least 3 is called a major vertex of T. A pendant vertex v is a terminal vertex of a major
vertex u if the major vertex closest to v in T is u. The terminal degree of a major vertex u, denoted by terðuÞ, is the number of
terminal vertices of u. A major vertex u is an exterior major vertex of T if it has positive terminal degree in T. The set of exterior
major vertices of T is denoted by ExðTÞ.

The following proposition shows a well-known formula to compute the metric dimension of a tree, that together with the
two lemmas below will be used to prove Theorem 6.11, which is one of the main results in this section.

Proposition 6.8 [27]. If T is a tree that is not a path, then
dimðTÞ ¼
X

u2ExðTÞ
ðterðuÞ � 1Þ:
Let ter0ðuÞ be the number of different distances between an exterior mayor vertex u and its terminal vertices. For every
u 2 ExðTÞ, we write nu for the number of vertices of the simple paths between u and its terminal vertices.
Lemma 6.9. Let T be a tree and u 2 ExðTÞ. Then, ter0ðuÞ 6 b27 nuc þ 1.
Proof. Let d1; d2; . . . ; dter0 ðuÞ with d1 < d2 < . . . < dter0 ðuÞ be the different distances between u and its terminal vertices. One can
easily check that
nu P
Xter0 ðuÞ

i¼1

di

 !
þ 1 P

Xter0 ðuÞ

i¼1

i

 !
þ 1 ¼ ter0ðuÞ ter0ðuÞ þ 1ð Þ

2
þ 1:
Hence, ter0ðuÞ 6
ffiffiffiffiffiffiffiffiffiffi
8nu�7
p

�1
2 6

2
7 nu
� �

þ 1. h
Lemma 6.10. Let T be a tree that is not a path. Then,
DetðTÞP
X

u2ExðTÞ
ðterðuÞ � ter0ðuÞÞ:
Proof. Let S be a minimum determining set of T, which can be assumed to consist of pendant vertices [17]. Consider a vertex
u 2 ExðTÞ and two of its terminal vertices, say v and v 0. If dðu;vÞ ¼ dðu;v 0Þ then either vertex v or vertex v 0 belongs to S;
otherwise there would be an automorphism mapping the u-v shortest path onto the u-v 0 shortest path, and fixing the
remaining vertices of T. Therefore, there are at least terðuÞ � ter0ðuÞ terminal vertices of u in S. By extending this argument
to all vertices in ExðTÞ, we obtain the desired bound. h

We are now ready for computing the function ðdim� DetÞðnÞ restricted to trees.

Theorem 6.11. For every n P 49, it holds that
ðdim� DetÞjT ðnÞ ¼
2
7

n
� �

:

Proof. We first prove that dimðTÞ � DetðTÞ 6 b27 nc for every tree T of order n P 49. We can assume that T is not a path since
that difference is zero for all paths with at least 2 vertices. By Proposition 6.8,
dimðTÞ ¼
X

u2ExðTÞ
ðterðuÞ � 1Þ

¼
X

u2ExðTÞ
ðterðuÞ � ter0ðuÞÞ þ

X
u2ExðTÞ

ðter0ðuÞ � 1Þ:
Hence, according to Lemma 6.10, we obtain
dimðTÞ � DetðTÞ 6
X

u2ExðTÞ
ðter0ðuÞ � 1Þ 6 2

7
n

� �
;

the last inequality being a consequence of Lemma 6.9. This shows that ðdim� DetÞjT ðnÞ 6
2
7 n
� �

and equality is given by the
graphs Tq;s constructed in the proof of Theorem 6.7, which are trees. h

Since trees do not contain C4 as a subgraph then, by Theorem 6.6, ðk� DetÞjT ðnÞ 6 ðk� DetÞjC4 ðnÞ ¼
n
2

� �
. Further, the graphs

in the proof of Theorem 2.3 are trees and so we obtain the following.
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Theorem 6.12. For every n P 14, it holds that
ðk� DetÞjT ðnÞ ¼
n
2

j k
:

7. Concluding remarks

We have used locating-dominating sets to study the function ðdim� DetÞðnÞ, and thus approach Problem 1 posed by Bou-
tin [4]. Our technique involves a study on the functions ðk� DetÞðnÞ and kjC� ðnÞ, for which we require a remarkable number of
tools that go from results by Ore, and Erd}os and Szekeres to matchings, k-domination, and the design of a polynomial time
algorithm to obtain distinguishing sets and determining sets of twin-free graphs. We want to stress that many of the results
obtained in this paper and used here as tools, are of independent interest.

Our approach produces a series of lower and upper bounds on the different functions handled in the paper, which for
ðdim� DetÞðnÞ, improve significantly the best result known to date regarding Problem 1, due to Cáceres et al. [5]. We also
note the interesting upper bound on the determining number of a twin-free graph. Further, we study the restriction of
our functions to specific families of graphs obtaining, in particular, exact computations for trees. This closes the study ini-
tiated by Cáceres et al. [5] on the difference between the metric dimension and the determining number of this family of
graphs.

It would be interesting to settle Conjectures 1 and 2, which deal with the exact expressions of our functions. Also, it
remains open the computation of ðdim� DetÞjC4 ðnÞ. Further, it would be of interest to find specific families of graphs F where
the functions ðdim� DetÞjF ðnÞ and ðk� DetÞjF ðnÞ may be computed. Finally, the maximum value of the difference between
the locating-domination number and the metric dimension is still unknown and a study on this function may be proposed.
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