34,669 research outputs found

    Vector feedback homogeneity and inner layout influence on fluxgate sensor parameters

    Get PDF
    Vector feedback is a concept which can significantly improve linearity and stability of a magnetic field sensor. The feedback coils effectively cancel the measured magnetic field in the inner volume of the triaxial sensor. Thus, in case of fluxgates, it suppresses one possible source of nonlinearity—cross-field sensitivity error. The triaxial sensor axes orthogonality should be primarily defined by the orientation of the feedback coils, while the sensitivities are defined by feedback coil constants. The influence of the homogeneity of the feedback field and the influence of the sensor inner layout on calibration parameters of a vectorially compensated triaxial fluxgate magnetometer are presented.Peer ReviewedPostprint (author’s final draft

    Overlapping guaranteed cost control for uncertain continuous-time delayed systems

    Get PDF
    Overlapping guaranteed cost control design problem is solved for a class of linear continuous-time uncertain systems with state as well as control delays. Unknown arbitrarily time-varying uncertainties with known bounds are considered. A point delay is supposed. Conditions preserving closed-loop systems expansion-contraction relations including the identical bounds of performance indices are proved. A linear matrix inequality (LMI) delay independent procedure is used for control design in the expanded space. The results are specialized on the overlapping decentralized control design. A numerical illustrative example is supplied.Peer ReviewedPostprint (published version

    Active sensor fault tolerant output feedback tracking control for wind turbine systems via T-S model

    Get PDF
    This paper presents a new approach to active sensor fault tolerant tracking control (FTTC) for offshore wind turbine (OWT) described via Takagi–Sugeno (T–S) multiple models. The FTTC strategy is designed in such way that aims to maintain nominal wind turbine controller without any change in both fault and fault-free cases. This is achieved by inserting T–S proportional state estimators augmented with proportional and integral feedback (PPI) fault estimators to be capable to estimate different generators and rotor speed sensors fault for compensation purposes. Due to the dependency of the FTTC strategy on the fault estimation the designed observer has the capability to estimate a wide range of time varying fault signals. Moreover, the robustness of the observer against the difference between the anemometer wind speed measurement and the immeasurable effective wind speed signal has been taken into account. The corrected measurements fed to a T–S fuzzy dynamic output feedback controller (TSDOFC) designed to track the desired trajectory. The stability proof with H∞ performance and D-stability constraints is formulated as a Linear Matrix Inequality (LMI) problem. The strategy is illustrated using a non-linear benchmark system model of a wind turbine offered within a competition led by the companies Mathworks and KK-Electronic

    Integrated design of hybrid interstory-interbuilding multi-actuation schemes for vibration control of adjacent buildings under seismic excitations

    Get PDF
    The design of vibration control systems for the seismic protection of closely adjacent buildings is a complex and challenging problem. In this paper, we consider distributed multi-actuation schemes that combine interbuilding linking elements and interstory actuation devices. Using an advanced static output-feedback H∞ approach, active and passive vibration control systems are designed for a multi-story two-building structure equipped with a selected set of linked and unlinked actuation schemes. To validate the effectiveness of the obtained controllers, the corresponding frequency responses are investigated and a proper set of numerical simulations is conducted using the full scale North–South El Centro 1940 seismic record as ground acceleration disturbance. The observed results indicate that using combined interstory-interbuilding multi-actuation schemes is an effective means of mitigating the vibrational response of the individual buildings and, simultaneously, reducing the risk of interbuilding pounding. These results also point out that passive control systems with high-performance characteristics can be designed using damping elements.Peer ReviewedPostprint (published version

    Techniques for designing rotorcraft control systems

    Get PDF
    This report summarizes the work that was done on the project from 1 Apr. 1992 to 31 Mar. 1993. The main goal of this research is to develop a practical tool for rotorcraft control system design based on interactive optimization tools (CONSOL-OPTCAD) and classical rotorcraft design considerations (ADOCS). This approach enables the designer to combine engineering intuition and experience with parametric optimization. The combination should make it possible to produce a better design faster than would be possible using either pure optimization or pure intuition and experience. We emphasize that the goal of this project is not to develop an algorithm. It is to develop a tool. We want to keep the human designer in the design process to take advantage of his or her experience and creativity. The role of the computer is to perform the calculation necessary to improve and to display the performance of the nominal design. Briefly, during the first year we have connected CONSOL-OPTCAD, an existing software package for optimizing parameters with respect to multiple performance criteria, to a simplified nonlinear simulation of the UH-60 rotorcraft. We have also created mathematical approximations to the Mil-specs for rotorcraft handling qualities and input them into CONSOL-OPTCAD. Finally, we have developed the additional software necessary to use CONSOL-OPTCAD for the design of rotorcraft controllers

    Reactive Gait Composition with Stability: Dynamic Walking amidst Static and Moving Obstacles

    Full text link
    This paper presents a modular approach to motion planning with provable stability guarantees for robots that move through changing environments via periodic locomotion behaviors. We focus on dynamic walkers as a paradigm for such systems, although the tools developed in this paper can be used to support general compositional approaches to robot motion planning with Dynamic Movement Primitives (DMPs). Our approach ensures a priori that the suggested plan can be stably executed. This is achieved by formulating the planning process as a Switching System with Multiple Equilibria (SSME) and proving that the system's evolution remains within explicitly characterized trapping regions in the state space under suitable constraints on the frequency of switching among the DMPs. These conditions effectively encapsulate the low-level stability limitations in a form that can be easily communicated to the planner to guarantee that the suggested plan is compatible with the robot's dynamics. Furthermore, we show how the available primitives can be safely composed online in a receding horizon manner to enable the robot to react to moving obstacles. The proposed framework is applied on 3D bipedal walking models under common modeling assumptions, and offers a modular approach towards stably integrating readily available low-level locomotion control and high-level planning methods.Comment: 18 pages, 10 figure

    Partial Stability Concept in Extremum Seeking Problems

    No full text
    The paper deals with the extremum seeking problem for a class of cost functions depending only on a part of state variables of a control system. This problem is related to the concept of partial asymptotic stability and analyzed by Lyapunov's direct method and averaging schemes. Sufficient conditions for the practical partial stability of a system with oscillating inputs are derived with the use of Lie bracket approximation techniques. These conditions are exploited to describe a broad class of extremum-seeking controllers ensuring the partial stability of the set of minima of a cost function. The obtained theoretical results are illustrated by the Brockett integrator and rotating rigid body.Comment: This is the author's version of the manuscript accepted for publication in the Proceedings of the Joint 8th IFAC Symposium on Mechatronic Systems and 11th IFAC Symposium on Nonlinear Control Systems (MECHATRONICS & NOLCOS 2019
    • …
    corecore