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Abstract: Overlapping guaranteed cost control design problem is solved for a class of linear
continuous-time uncertain systems with state as well as control delays. Unknown arbitrarily
time-varying uncertainties with known bounds are considered. A point delay is supposed.
Conditions preserving closed-loop systems expansion-contraction relations including the
identical bounds of performance indices are proved. A linear matrix inequality (LMI) delay
independent procedure is used for control design in the expanded space. The results are
specialized on the overlapping decentralized control design. A numerical illustrative example
is supplied. Copyright c

�
2005 IFAC
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1. INTRODUCTION

Information structure constraints may be classified ac-
cording to the structure of the gain matrix. In fact,
three different practically important forms of the gain
matrix are usually considered, i.e. a block diagonal
gain matrix, a block tridiagonal gain matrix, and a
double block bordered gain matrix. A systematic way
of the controller design with a block tridiagonal gain
matrix lead to the concept of overlapping decomposi-
tions. A general mathematical framework for this ap-
proach has been called the Inclusion Principle (Ikeda
and Šiljak 1980), (Šiljak 1991). The Inclusion Prin-
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A2075304, and by the Committee for Science and Technology (CI-
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ciple has been applied to different classes of systems
and problems as illustrated for instance in (Bakule et
al. 2000a), (Bakule et al. 2000b).

The paper deals with the guaranteed cost control prob-
lem within the framework of overlapping decomposi-
tions for a class of uncertain state and control-delayed
continuous-time systems with quadratic performance
index. The overlapping delay independent controller
design is performed using a linear matrix inequality.
The LMI solution of centralized quadratic guaranteed
cost controller for this class of systems is presented
in (Mukaidani 2003). It is used as a control design
tool. The main results concern the conditions on the
expansion-contraction relations between closed-loop
systems including the requirement on the equality of
bounds on costs. The specialization of these results on
the decentralized overlapping control design is given
including an illustrative example.
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To the authors knowledge, the expansion-contraction
relations have not been extended up to now on the
concept of guaranteed cost control for the considered
class of problems.

2. PROBLEM FORMULATION

Consider a linear continuous-time uncertain system
with state and control delay described by the state
equation:

S : ẋ � t ���	� A 
 ∆A � t ��� x � t �

�� B 
 ∆B � t ��� u � t �
��C 
 ∆C � t ��� x � t � d ��
��D 
 ∆D � t ��� u � t � d ���
x � t ��� ϕ � t ����� d � t � 0 � (1)

where x � t ����� n is the state, u � t ����� m is the control,
d � 0 is a point delay and ϕ � t � is a given continuous
vector valued initial function. The set � x � t ��� u � s � � ,
s �!� t � d � t � , defines the complete state of the system
(1) as is usual in the case of delays. A, B, C, D are
known constant matrices of appropriate dimensions.
∆A � t � , ∆B � t � , ∆C � t � , ∆D � t � are real-valued matrices
of uncertain parameters. Uncertainties are assumed to
be norm-bounded as follows:� ∆A � t � ∆B � t � ∆C � t � ∆D � t ���"� E F � t �#� E1 E2 E3 E4 �$�

(2)
where E, E1, E2, E3, E4 are known constant real ma-
trices of appropriate dimensions and F � t ����� p % q is an
unknown matrix function with Lebesgue measurable
elements and such that

FT � t � F � t �
� Iq & (3)

The cost function associated with (1) has the form

J � x � u ���(' ∞

0 ) xT � t � Q * x � t �

 uT � t � R * u � t ��+ dt � (4)

where Q * and R * are positive-definite symmetric ma-
trices. In order to simplify the notation, denote:

A 
 ∆A � t �,� Ā � t ��� B 
 ∆B � t �-� B̄ � t ���
C 
 ∆C � t ��� C̄ � t ��� D 
 ∆D � t �-� D̄ � t � & (5)

Then, the system (1) can be rewritten as:

S : ẋ � t ��� Ā � t � x � t �.
 B̄ � t � u � t ��

 C̄ � t � x � t � d �.
 D̄ � t � u � t � d � & (6)

Having an initial complete state � x � 0 ��� u � s ��� , it is well-
known that the unique solution of (6) is given by

x � t ��� Φ � t � 0 � x � 0 �.
 ' t

0
Φ � t � s � C̄ � s � x � s � d � ds
 ' t

0
Φ � t � s �/� B̄ � s � u � s �.
 D̄ � s � u � s � d ��� ds � (7)

where Φ is the transition matrix of Ā � t � . Similarly,
consider a new system in the form

S̃ : ˙̃x � t ��� ) Ã 
 ∆Ã � t � + x̃ � t �.
 ) B̃ 
 ∆B̃ � t � + u � t �
 ) C̃ 
 ∆C̃ � t ��+ x̃ � t � d ��
 ) D̃ 
 ∆D̃ � t ��+ u � t � d ���
x̃ � t ��� ϕ̃ � t ���0� d � t � 0 � (8)

with an associated cost function given by

J̃ � x̃ � u ���(' ∞

0 ) x̃T � t � Q̃ * x̃ � t �.
 uT � t � R̃ * u � t � + ds � (9)

where x̃ � t ����� ñ is the state, ϕ̃ � t � is a continuous vec-
tor valued initial function and Q̃ * , R̃ * are positive-
definite symmetric matrices. Suppose that n � ñ. The
set � x̃ � t ��� u � s ��� , s �!� t � d � t � , defines a complete state
for (8). The conditions (2) and (3) for the system S are
analogous for S̃, but considering all matrices with tilde
( 1 ). Under these assumptions, the unique solution of
(8) has the form

x̃ � t ��� Φ̃ � t � 0 � x̃ � 0 �.
 ' t

0
Φ̃ � t � s � ˜̄C � s � x̃ � s � d � ds
2' t

0
Φ̃ � t � s �#3 ˜̄B � s � u � s �.
 ˜̄D � s � u � s � d ��4 ds � (10)

where � x̃ � 0 ��� u � s ��� is a given initial complete state.

2.1 The Inclusion Principle

Denote x � t � =x � t;ϕ � t ��� u � t ��� and x̃ � t � =x̃ � t; ϕ̃ � t ��� u � t �5�
the formal solutions of (1) and (8) for given inputs u � t �
and initial complete states � x � 0 ��� u � s ��� , � x̃ � 0 ��� u � s ��� ,
s �!�6� d � 0 � , respectively. Consider the standard rela-
tions between the states within the Inclusion Principle.
It means that the systems S and S̃ are related by the
following linear transformations:

x̃ � t ��� Vx � t ��� x � t ��� Ux̃ � t ��� (11)

where V and U are constant full-rank matrices of
appropriate dimensions (Šiljak 1991).

Definition 1. A system S̃ includes the system S, S̃ 7 S,
if there exists a pair of constant matrices � U � V � such
that UV=In and for any initial function ϕ � t � and any
fixed input u � t � of S, x � t;ϕ � t ��� u � t �5� =Ux̃ � t;Vϕ � t ��� u � t ���
for all t.

Definition 2. A pair � S̃ � J̃ � is an expansion of � S � J � ,� S̃ � J̃ ��78� S � J � , if S̃ 7 S and J � x � u � = J̃ � V x � u � .
Definition 3. A control law u � t � =K̃x̃ � t � for S̃ is con-
tractible to u � t � =Kx � t � for S if the choice ϕ̃ � t � =Vϕ � t �
implies Kx � t;ϕ � t ��� u � t ��� =K̃x̃ � t;Vϕ � t ��� u � t ��� for all t,
any initial function ϕ � t � and any fixed input u � t � of
S.

Suppose a given pair of matrices � U � V � . Then, the
matrices Ã, ∆Ã, B̃, ∆B̃, C̃, ∆C̃, D̃, ∆D̃, Q̃ * and R̃ * can
be described as:

Ã � VAU 
 M � ∆Ã � t ��� V∆A � t � U �
B̃ � VB 
 N � ∆B̃ � t ��� V∆B � t ���
C̃ � VCU 
 Md � ∆C̃ � t ��� V∆C � t � U �
D̃ � VD 
 Nd � ∆D̃ � t ��� V∆D � t ���

Q̃ * � UT Q * U 
 MQ 9 � R̃ * � R * 
 NR 9 � (12)

where M, N, Md , Nd , MQ 9 and NR 9 are so called
complementary matrices. Usually, the transformations
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:
U ; V < are selected a priori to define structural rela-

tions between the state variables in both systems S
and S̃. Given these transformations, the choice of the
complementary matrices gives degrees of freedom to
obtain different expanded spaces with desirable prop-
erties (Bakule et al. 2000a), (Bakule et al. 2000b).

Some conditions on the complementary matrices (12)
must be imposed on

:
S̃ ; J̃ < to be an expansion of

:
S ; J <

by Definition 2. This provides the following theorem.

Theorem 4. Consider the problems (1) - (4) and (8) -
(9). A pair

:
S̃ ; J̃ < includes the pair

:
S ; J < if and only

if
UΦ̃

:
t ; 0 < V = Φ

:
t ; 0 <�; UΦ̃

:
t ; s < MdV = 0 ;

UΦ̃
:
t ; s < N = 0 ; UΦ̃

:
t ; s < Nd = 0 ;

V T MQ > V = 0 ; NR > = 0

(13)

hold for all t and s.

Proof. The proof of a similar theorem can be found in
(Bakule et al. 2002). ?
Remark. It is well-known that the general solu-
tion of time-varying systems is a big problem. Be-
cause of this, an attempt has been made to approx-
imate the solutions using transition matrices. How-
ever, even to compute such approximation via Peano-
Baker series can be a complicated task excluding triv-
ial cases (Stanković and Šiljak 2003). For this rea-
son, we present in Section 3 conditions under which:
S̃ ; J̃ <�@ :

S ; J < and which eliminate the necessity to
compute the transition matrices.

2.2 Guaranteed Cost Control

Consider the problem (1) - (4). The objective is to im-
plement a linear time-invariant quadratic guaranteed
cost control law u=Kx

:
t < in the delay system (1) but

as a contraction of a quadratic guaranteed cost control
law u=K̃x̃

:
t < designed for the problem (8) - (9). More-

over, the corresponding expanded closed-loop system
is quadratically stable and guarantees an upper bound
of the expanded quadratic cost function (9).

Definition 5. A control law u
:
t < =K̃x̃

:
t < is said to be a

quadratic guaranteed cost control with an associated
cost matrix P̃ A 0 for the delay system (8) and cost
function (9) if the corresponding closed-loop system
is quadratically stable, that is

˙̃x T :
t < P̃x̃

:
t <.B x̃T :

t <DC Q̃ EFB K̃T R̃ E K̃ G x̃
:
t <IH 0 (14)

for all nonzero x̃ J�K ñ and the closed-loop value of
the cost function (9) satisfies the bound J̃ L J̃0 for all
admissible uncertainties, where J̃0 is a given constant.

2.3 LMI Approach

There are available different approaches to com-
pute quadratic guaranteed cost control laws. A de-

lay independent linear matrix inequality (LMI) ap-
proach is selected to design a linear state memoryless
feedback controller guaranteeing that the system is
quadratically stable with a desired upper bound on
the quadratic cost function. The following proposition
gives sufficient conditions to get a guaranteed cost
control law (Mukaidani 2003). To simplify, the result
is presented only for the system (1) - (4), but it evi-
dently holds also for the expanded system.

Theorem 6. Suppose there exist a constant parameters
µ A 0, ε A 0, a symmetric positive-definite matrices X ,
S, Z J�K n M n and a matrix Y J�K m M n such that the fol-
lowing LMINOOOOOP Ψ DY Q E1X R E2Y S T X Y T CS 0 X

Y T DT T Z Y T ET
4 0 0 0 0 0

E1X R E2Y E4Y T µIq 0 0 0 0 0
X 0 0 T Q Q UVS6W 1 0 0 0 0
Y 0 0 0 T Q R UVS6W 1 0 0 0

SCT 0 0 0 0 T S SET
3 0

0 0 0 0 0 E3S T εIq 0
X 0 0 0 0 0 0 T S

XZYYYYY[ H 0

(15)
holds, with Ψ:=AX B BY B :

AX B BY < T B Z B :
µ B ε < EET .

Then, the feedback control law u
:
t < =Kx

:
t < =YX \ 1x

:
t <

is a guaranteed cost controller and

J ] ϕT ^ 0 _ X ` 1ϕ ^ 0 _�acb 0` d
ϕT ^ s _-d S ` 1 a X ` 1ZX ` 1 e ϕ ^ s _ ds (16)

is the guaranteed cost for the closed-loop uncertain
delay system.

2.4 The Problem

Suppose given a linear continuous-time uncertain de-
layed system by S (1) - (3) with an associated cost
function J by (4). Consider an expanded system S̃ by
(8) with an associated cost function J̃ by (9). Suppose
that S̃ @ S holds by Definition 1. Then, the specific
goals are as follows:f Derive conditions under which

:
S̃C ; J̃ <�@ :

SC ; J < .
Use the concept of quadratic guaranteed cost control.f Specialize the global system results into decentral-
ized control design setting.f Supply these results with a numerical example.

Derive all the above results in terms of complementary
matrices. Use the delay independent LMI approach to
compute the required gain matrices.

3. MAIN CONTRIBUTION

The following theorem gives equivalent conditions
to Theorem 4 expressed in terms of complementary
matrices.
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Theorem 7. Consider the problems (1) - (4), (8) - (9).
A pair g S̃ h J̃ i includes the pair g S h J i if and only if

UMiV j 0 h UMi k 1MdV j 0 h UMi k 1N j 0 h
UMi k 1Nd j 0 h V T MQ l V j 0 h NR l j 0

(17)
hold for all i=1 h 2 h�mnm6mnh ñ.

Proof. Consider the transition matrix Φ̃ g t h 0 i of ˜̄A,
where ˜̄A represents the state matrix of the expanded
space as a function of two variables defined by the
Peano-Baker series (Rugh 1996)

Φ̃ o t p 0 qsr I tcu t

0

˜̄A o σ1 q dσ1 tcu t

0

˜̄A o σ1 q�u σ1

0

˜̄A o σ2 q dσ2 dσ1tcu t

0

˜̄A o σ1 q5u σ1

0

˜̄A o σ2 q5u σ2

0

˜̄A o σ3 q dσ3 dσ2 dσ1 twvxvxv
(18)

where according to (5) and (12), ˜̄A g σi i =Ã y ∆Ã g σi i =
VAU y M y V∆A g σi i U for all i=1 h 2 h�mnm6m From Theo-
rem 4 pre and post-multiplying both sides of Φ̃ g t h 0 i by
U and V , respectively, it is easy to prove that UMiV=0,
i=1 h 2 h�mnmnm6h ñ, is equivalent to UΦ̃ g t h 0 i V=Φ g t h 0 i . Fol-
lowing a similar reasoning, UΦ̃ g t h s i MdV=0 is equiv-
alent to UMi k 1MdV=0. The condition UΦ̃ g t h s i N=0 is
equivalent to UMi k 1N=0 and UΦ̃ g t h s i Nd=0 is equiva-
lent to UMi k 1Nd=0, for all i=1 h 2 h5m6mnm6h ñ. The remaining
conditions V T MQ l V=0, NR l =0 are the same as in The-
orem 4. z
Remark. Theorem 7 allows to obtain expanded sys-
tems satisfying the Inclusion Principle with the same
cost function without a precise knowledge of tran-
sition matrices. This observation can be surprising
because in fact the systems (1), (8) are time-varying
systems.

Proposition 8. Consider the problems (1) - (4) and
(8) - (9). A pair g S̃ h J̃ i includes the pair g S h J i if
V T MQ l V=0, NR l =0 and

a i MV j 0 h MdV j 0 h N j 0 h Nd j 0 or
b i UM j 0 h UMd j 0 h UN j 0 h UNd j 0 m

(19)

Proof. The proof is straightforward from Theorem 7.z
Remark. If Md=0, Nd=0 in (19), i.e. if S is not a de-
layed system, then a) and b) correspond to particular
cases within the Inclusion Principle called restrictions
and aggregations, respectively, (Šiljak 1991).

Definition 3 presents the conditions under which a
control law designed in the expanded system S̃ can
be contracted and implemented into the initial system
S. However, these requirements do not guarantee that
the closed-loop system S̃C includes the closed-loop
system SC in the sense of the Inclusion Principle, i.e.
S̃C { SC . Now, consider conditions which include also
cost functions. They are presented in the following
theorem by using complementary matrices.

Theorem 9. Consider the problems (1) - (4) and (8) -
(9) satisfying S̃ { S. Suppose that u g t i =K̃x̃ g t i is a
contractible control law designed in S̃. If MV =0,
N=0, MdV=0, Nd=0, V T MQ l V=0 and NR l =0 theng S̃C h J̃ i { g SC h J i .
Proof. Suppose S̃ { S and consider u g t i =K̃x̃ g t i a con-
tractible control law designed in S̃. The corresponding
state matrix of the closed-loop expanded system S̃C is
given by

S̃C : ˙̃x g t i�j}| Ã y ∆Ã g t i�y�~ B̃ y ∆B̃ g t i�� K̃ � x̃ g t iy | C̃ y ∆C̃ g t i�y�~ D̃ y ∆D̃ g t i�� K̃ � x̃ g t � d ij Ãp g t i x̃ g t i y Ãq g t i x̃ g t � d i�m (20)

Similar expression can be obtained for the closed-
loop system SC , where the contracted gain matrix K
is given by K=K̃V from Definition 3. Consider the
relation between the state matrices of the closed-loop
systems S̃C and SC . The relation Ãp g t i =VAp g t i U+Mp

implies Mp=M y NK̃ y VBK̃ � VBK̃VU y V∆B g t i K̃ g I �
VU i , where Mp is a complementary matrix to be
determined. Since S̃C { SC is desired, the condition
UMi

p
V=0, i=1 h 2 h�mnmnm6h ñ, must be satisfied. Imposing this

requirement and using equations (12), we can prove
that MV=0, N=0 is a sufficient condition so that the
relation UMi

p
V=0 holds for all i=1 h 2 h�mnm6mnh ñ. Analo-

gously, Ãq g t i =VAq g t i U+Mq implies Mq=Md y NdK̃ y
VBK̃ � VBK̃VU y V∆B g t i K̃ g I � VU i , where Mq is
a new complementary matrix. In this case MdV=0,
Nd=0 is a sufficient condition under which UMi

qV=0,
i=1 h 2 h�mnm6mnh ñ, holds. The conditions V T MQ l V=0 and
NR l =0 are the same as in Theorem 7. z
It remains to show that the controller considered in the
above theorem is a contracted quadratic guaranteed
cost controller and the the costs of both systems are
equal. This condition presents the following theorem.

Theorem 10. Consider the systems (1) and (8) with
their corresponding cost functions (4) and (9), re-
spectively. Suppose that MV =0, N=0, MdV=0, Nd ,
V T MQ l V=0 and NR l =0 hold. Suppose that u g t i =K̃x̃ g t i
is a quadratic guaranteed cost controller designed in
the system S̃ with an associated cost matrix P̃ � 0.
Then, u g t i =Kx g t i =K̃Vx g t i is a contracted quadratic
guaranteed cost controller with an associated cost ma-
trix P=V T P̃V � 0 for S and moreover J0=J̃0 .

Proof. Consider u g t i =K̃x̃ g t i a quadratic contractible
control law for the system S̃. Then, by Definition 5,

˙̃x T g t i P̃ x̃ g t i
y x̃T g t i | Q̃ �Fy K̃T R̃ � K̃ � x̃ g t iD� 0 (21)

is satisfied. By using (12) and supposing x̃ g t i =Vx g t i ,
V T MQ l V=0, NR l =0, P=V T P̃V and K=K̃V hold, it is
easy to prove that the inequality matrix (21) implies

ẋ T g t i Px g t i.y xT g t i | Q � y KT R � K � x g t iD� 0 m (22)

Thus, if u g t i =K̃x̃ g t i is a quadratic guaranteed cost con-
troller for S̃ then u g t i =Kx g t i =K̃Vx g t i is a quadratic
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guaranteed cost controller for S. Moreover, and taking
account that X � 1=P, we have:

J0 � ϕT � 0 � X � 1ϕ � 0 ���c� 0� d
ϕT � s �-� S � 1 � X � 1ZX � 1 � ϕ � s � ds� ϕTV T � 0 � P̃Vϕ � 0 ���/� 0� d

ϕT � s ���V T S̃ � 1V � VT P̃ � VZV T � P̃V � ϕ � s � ds� ϕ̃T � 0 � X̃ � 1ϕ̃ � 0 ��� � 0� d
ϕ̃T � s � � S̃ � 1 � X̃ � 1Z̃X̃ � 1 � ϕ̃ � s � ds � J̃0 �

Then, the values of cost J and J̃ are the same. �
3.1 Overlapping State Feedback

There exist three main structures of information struc-
ture constraints on the state feedback gain matrices.
These structures correspond with the sparsity forms
of gain matrices well known in the theory of sparse
matrices. These particular forms are a block diag-
onal form, a block tridiagonal form, and a double
bordered block diagonal form corresponding with de-
centralized, overlapping, and DBBD gain matrices,
respectively. Control design of state feedback con-
trollers possessing all these structures may be effec-
tively performed using a LMI approach for linear sys-
tems, nonlinear but nominally linear uncertain systems
as well as certain classes of nonlinear systems with
quadratic nonlinearities (Gahinet et al. 1995), (Šiljak
and Zečević 2004). Generally, this approach includes
both delayed and non-delayed systems.

Standard way of reasoning supposes two overlapping
subsystems with the structure of matrices A, ∆A, C, ∆C
and B, ∆B, D, ∆D, respectively, in the form:���8� ����� ��#�#� ��� �#�#�� � ��#�#� ��� �#�#�� ��� � ���Z���� ��� ����� ���� �#�#�� ��� ��#�#������ � �Z���� (23)

where Aii, ∆Aii, Cii, ∆Cii for i=1 � 2 � 3 are ni � ni; Bi j,
∆Bi j, Di j, ∆Di j for i=1 � 2 � 3 and j=1 � 2 are ni � m j di-
mensional matrices. The dimensions of the compo-
nents x1, x2, x3 are n1, n2, n3 and satisfy n1+n2+n3=n,
respectively. The partition of ut = � ut

1 � ut
2   has two com-

ponents of dimensions m1, m2 such that m1+m2=m. A
standard particular selection of the matrix V is

V ¡ ��
In1 0 0
0 In2 0
0 In2 0
0 0 In3

�� (24)

leads in a simple natural way to an expanded sys-
tem where the state vector x2 appears repeated in
x̃t = � xt

1 � xt
2 � xt

2 � xt
3   (Šiljak 1991). The expanded con-

troller has a block diagonal form with two subblocks
of dimensions m1 � � n1 ¢ n2   and m2 � � n2 ¢ n3   as
follows:

K̃D ¡¤£ K̃11 K̃12

��� 0 0�#�#�¥�#�#� ��� �#�#�#�#�#�
0 0

�� K̃23 K̃24 ¦¨§ (25)

The corresponding contracted gain matrix has a tridi-
agonal block diagonal form as follows:

KT D ¡ £ K̃11 K̃12
�� 0�#�#�©�#�#�2�#�#�

0
�� K̃23 K̃24 ¦ § (26)

However, the design of overlapping controllers de-
pends on the structure of matrices B, ∆B, D, ∆D. Type
I corresponds with all nonzero element of all input
matrices in (23), while Type II corresponds with all
elements ��ª   21 ¡ 0 and ��ª   22 ¡ 0. The LMI control
design for Type I can be performed directly on the
original system. Type II requires to perform the LMI
control design in the expanded space because the di-
rect design usually leads to infeasibility (Šiljak and
Zečević 2004). To simplify the control design for Type
II case, let us introduce the following concept. Sup-
pose the problem (1) - (4) with K=KTD in (14).

Definition 11. Consider the problem (1) - (4). A state
feedback control law uTD � k   =KT Dx � k   � where KTD is a
tridiagonal block matrix, is said to be a td-quadratic
guaranteed cost controller with a symmetric definite-
positive cost matrix PTD if

ẋ T � t   PTD x � t   ¢ xT � t  D« Q � ¢ KT
TD

R
�
KT D ¬ x � t  ,­ 0 (27)

holds for all x � k  ¯®¡ 0 and all admissible uncertainties
satisfying (2) - (3).

Theorem 12. Consider the systems (1) and (8) with
their corresponding cost functions (4) and (9), re-
spectively. Consider the subsystem structure (23) and
the transformation matrix (24). Suppose that MV =0,
N=0, V T MQ ° V=0 and NR ° =0. If uD � k   =K̃D x̃ � k   is
a contractible quadratic guaranteed cost controller
with a cost matrix P̃D ± 0 for the system S̃, then
uTD � k   =KT Dx � k   =K̃DVx � k   is a td-quadratic guaran-
teed cost controller with a cost matrix PTD=V t P̃DV ± 0
for S and J0=J̃0 .

Proof. It is straightforward because this theorem is a
particular case of Theorem 10. �

4. EXAMPLE

4.1 Problem Statement

Consider the problem (1), (4) as follows:

A ¡¤£ � 2 0 � 1 1� 1 0 2 0
0 � 2 � 1 0
1 0 0 � 1 ¦ � B ¡ D ¡ E ¡³² 0 ´ 5 0

0 0
0 0
0 0 ´ 1 µ �

C ¡ £ 0 ´ 1 0 � 0 ´ 1 0
0 0 ´ 1 0 0

0 ´ 1 0 0 ´ 1 0
0 0 ´ 1 0 0 ´ 1 ¦ � E1 ¡ E3 ¡ « 0 ´ 1 0 0 ´ 1 0

0 0 0 0 ´ 1 ¬ �
E2 ¡ E4 ¡ « 0 ´ 1 0 ´ 1

0 0 ´ 1 ¬ � Q̃
� ¡ I6 � R̃

� ¡ I2 �
ϕ � t   ¡¶� 1 � 0 � t � 0   T � d ¡ 1 § (28)

The subsystem A22 is A22= « 0 2� 2 � 1 ¬ . The other over-
lapped subsystems corresponding to the matrices
∆A � t   , C and ∆C � t   are also 2 � 2 dimensional blocks.
Choosing the matrices Q̃

�
=I6, R̃

�
=I2 in the expanded
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space, the corresponding matrices Q · , R · in the sys-
tem S are Q · =diag ¸ 1 ¹ 2 ¹ 2 ¹ 1 º , R · =diag ¸ 1 ¹ 1 º . Find the
overlapping quadratic guaranteed cost controller for
the above system, where two overlapping subsystems
are supposed with the dimensions n1 » n3 » 1, n2 » 2
by (23). Compare these results with the centralized
control design as a reference. Use the delay indepen-
dent LMI approach for the control design.

4.2 Results

Decentralized controller. Consider the expansion of
the system S with the transformation V given in (24),
as follows:

V »½¼¾ 1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1 ¿ÀÂÁ (29)

Suppose that the complementary matrix M has the
following structure:

M » ¼Ã¾ 0 0 Ä 0 Å 5 0 0 Å 5 0
0 0 1 0 Ä 1 0
0 Ä 1 Ä 0 Å 5 1 0 Å 5 0
0 0 Ä 1 0 1 0
0 1 0 Å 5 Ä 1 Ä 0 Å 5 0
0 0 0 0 0 0 ¿ZÆÀ (30)

which satisfies MV =0. The remaining complementary
matrices are selected as N=0, Md=0, Nd=0, MQ Ç =0,
NR Ç =0. Such choice ensures that the results presented
in Section 3 are satisfied. Denote X̃D , T̃D and ỸD block
diagonal matrices and consider them as the matrices
X , T and Y appearing in Theorem 6. To obtain the
structure (25) for the gain matrix K̃D , we must impose
some conditions on the structure of the matrices X̃D ,
and ỸD . They are as follows:

X̃D » ¼Ã¾ x11 x12 x13 0 0 0
x12 x22 x23 0 0 0
x13 x23 x33 0 0 0
0 0 0 x44 x45 x46
0 0 0 x45 x55 x56
0 0 0 x46 x56 x66

¿ZÆÀ ¹
ỸD »ÉÈ y11 y12 y13 0 0 0

0 0 0 y24 y25 y26 Ê Á (31)

By applying the LMI design by (15) on this expanded
system S̃, we get the gain matrix

K̃D » È Ä 0 Å 3132 0 Å 0205 0 Å 1872 0 0 0

0 0 0 Ä 0 Å 0172 Ä 0 Å 0252 Ä 0 Å 1670 Ê Á(32)
The corresponding contracted gain matrix has the
following form

KD »ËÈ Ä 0 Å 3132 0 Å 0205 0 Å 1872 0

0 Ä 0 Å 0172 Ä 0 Å 0252 Ä 0 Å 1670 Ê Á (33)

The associated bound on the cost is J Ì J0=11 Á 84.

Centralized controller. The direct computation on the
original system and cost results in the controller:

K »ÉÈ Ä 0 Å 2189 0 Å 1366 0 Å 2644 Ä 0 Å 1177Ä 0 Å 0352 Ä 0 Å 1251 Ä 0 Å 0529 Ä 0 Å 1670 Ê (34)

with the bound on the cost equal to J Ì J0=2 Á 76.

The centralized control design case serves only as
a reference to compare the bounds on costs in both
cases. The upper bound J0 is greater than in the

centralized case because of given information struc-
tural constraints as expected. All computations have
been performed using Matlab LMI Control Toolbox
(Gahinet et al. 1995).

5. CONCLUSION

The paper contributes to the solution of the over-
lapping guaranteed cost control design problem for
a class of linear continuous-time uncertain systems
with state and control delays. Arbitrarily time-varying
unknown uncertainties with known bounds and a
given point delay are considered. Conditions preserv-
ing closed-loop systems expansion-contraction rela-
tions including the bounds equality of costs have been
proved. A LMI delay independent procedure has been
used for control design in the expanded space. The
results have been specialized on the overlapping state
feedback design. A numerical illustrative example has
been supplied.
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