203 research outputs found

    A review of Costas arrays

    Get PDF
    Costas arrays are not only useful in radar engineering, but they also present many interesting, and still open, mathematical problems. This work collects in it all important knowledge about them available today: some history of the subjects, density results, construction methods, construction algorithms with full proofs, and open questions. At the same time all the necessary mathematical background is offered in the simplest possible format and terms, so that this work can play the role of a reference for mathematicians and mathematically inclined engineers interested in the field

    Multidimensional Costas Arrays and Their Periodicity

    Full text link
    A novel higher-dimensional definition for Costas arrays is introduced. This definition works for arbitrary dimensions and avoids some limitations of previous definitions. Some non-existence results are presented for multidimensional Costas arrays preserving the Costas condition when the array is extended periodically throughout the whole space. In particular, it is shown that three-dimensional arrays with this property must have the least possible order; extending an analogous two-dimensional result by H. Taylor. Said result is conjectured to extend for Costas arrays of arbitrary dimensions

    Artin's primitive root conjecture -a survey -

    Get PDF
    This is an expanded version of a write-up of a talk given in the fall of 2000 in Oberwolfach. A large part of it is intended to be understandable by non-number theorists with a mathematical background. The talk covered some of the history, results and ideas connected with Artin's celebrated primitive root conjecture dating from 1927. In the update several new results established after 2000 are also discussed.Comment: 87 pages, 512 references, to appear in Integer

    Parallel Local Search for the Costas Array Problem

    Get PDF
    The Costas Array Problem is a highly combina- torial problem linked to radar applications. We present in this paper its detailed modeling and solving by Adaptive Search, a constraint-based local search method. Experiments have been done on both sequential and parallel hardware up to several hundreds of cores. Performance evaluation of the sequential version shows results outperforming previous implementations, while the parallel version shows nearly linear speedups up to 8,192 cores

    Testing variability-intensive systems using automated analysis: an application to Android

    Get PDF
    Software product lines are used to develop a set of software products that, while being different, share a common set of features. Feature models are used as a compact representation of all the products (e.g., possible configurations) of the product line. The number of products that a feature model encodes may grow exponentially with the number of features. This increases the cost of testing the products within a product line. Some proposals deal with this problem by reducing the testing space using different techniques. However, a daunting challenge is to explore how the cost and value of test cases can be modeled and optimized in order to have lower-cost testing processes. In this paper, we present TESting vAriAbiLity Intensive Systems (TESALIA), an approach that uses automated analysis of feature models to optimize the testing of variability-intensive systems. We model test value and cost as feature attributes, and then we use a constraint satisfaction solver to prune, prioritize and package product line tests complementing prior work in the software product line testing literature. A prototype implementation of TESALIA is used for validation in an Android example showing the benefits of maximizing the mobile market share (the value function) while meeting a budgetary constraint.Ministerio de Economía y Competitividad TIN2012-32273Junta de Andalucía TIC-5906Junta de Andalucía TIC-186

    Indications of strong adaptive population genetic structure in albacore tuna (Thunnus alalunga) in the southwest and central Pacific Ocean

    Get PDF
    Albacore tuna (Thunnus alalunga) has a distinctly complex life history in which juveniles and adults separate geographically but at times inhabit the same spaces sequentially. The species also migrates long distances and presumably experiences varied regimes of physical stress over a lifetime. There are, therefore, many opportunities for population structure to arise based on stochastic differences or environmental factors that promote local adaptation. However, with the extent of mobility consistently demonstrated by tagged individuals, there is also a strong argument for panmixia within an ocean basin. It is important to confirm such assumptions from a population genetics standpoint for this species in particular because albacore is one of the principal market tuna species that sustains massive global fisheries and yet is also a slow‐growing temperate tuna. Consequently, we used 1,837 neutral SNP loci and 89 loci under potential selection to analyze population genetic structure among five sample groups collected from the western and central South Pacific. We found no evidence to challenge panmixia at neutral loci, but strong indications of structuring at adaptive loci. One population sample, from French Polynesia in 2004, was particularly differentiated. Unfortunately, the current study cannot infer whether the divergence is geographic or temporal, or possibly caused by sample distribution. We encourage future studies to include potentially adaptive loci and to continue fine scale observations within an ocean basin, and not to assume genome‐wide panmixia

    The Telecommunications and Data Acquisition Report

    Get PDF
    This quarterly publication provides archival reports on developments in programs managed by JPL's Telecommunications and Mission Operations Directorate (TMOD), which now includes the former Telecommunications and Data Acquisition (TDA) Office. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Communications (OSC)
    corecore