
Parallel local search for the Costas Array Problem

Daniel Diaz∗, Florian Richoux†, Yves Caniou‡, Philippe Codognet†, Salvador Abreu§
∗ Université de Paris 1-Sorbonne, France

Daniel.Diaz@univ-paris1.fr
† JFLI, CNRS / UPMC / University of Tokyo, Japan

{richoux, codognet}@is.s.u-tokyo.ac.jp
‡ JFLI, CNRS / NII, Japan
Yves.Caniou@ens-lyon.fr

§ Universidade de Évora and CENTRIA FCT/UNL, Portugal
spa@di.uevora.pt

Abstract—The Costas Array Problem is a highly combina-
torial problem linked to radar applications. We present in this
paper its detailed modeling and solving by Adaptive Search, a
constraint-based local search method. Experiments have been
done on both sequential and parallel hardware up to several
hundreds of cores. Performance evaluation of the sequential
version shows results outperforming previous implementations,
while the parallel version shows nearly linear speedups up to
8,192 cores.

I. INTRODUCTION

During the last decade, the family of Local Search meth-
ods and Metaheuristics has been quite successful in solving
large real-life problems [22], [23], [24]. Applying Local
Search to Constraint Satisfaction Problems (CSP) has also
been attracting some interest [9], [18], [23], [25] as it can
tackle CSPs instances far beyond the reach of classical
propagation-based solvers.

A generic domain-independent Local Search method
named Adaptive Search was proposed in [9], [10]. It is
a metaheuristic that takes advantage of the structure of
the problem to guide the search and that can be applied
to a large class of constraints (e.g., linear and non-linear
arithmetic constraints and symbolic constraints). Moreover,
it intrinsically copes with over-constrained problems.

We will describe in this paper how the Costas Array Prob-
lem can be modeled easily in the Adaptive Search framework
and how this model can be refined progressively in order
to achieve very good performances on sequential machines.
The Costas Arrays Problem (CAP) has been introduced to
the constraint programming community in [25]. It is an
abstract problem that was motivated by a sonar application
in the 1960’s but still has practical interest in radar and
software-defined radio applications [3]. A whole community
is active around the CAP (http://www.costasarrays.org) as
several problems are not yet solved, e.g., no constructive
algorithm exists for larger values of n and the question of
the existence of a Costas array of size n for n = 32 is still
open. From a constraint programming point of view, it is
an interesting problem because CAP is conceptually related

to three well-known CSPs: the perennial Nqueens problem,
the All-Interval Series problem (prob007 of CSPLib [19]),
and the Golomb rulers problem (prob006 of CSPLib), but
it is much more difficult to solve, mainly because of a tricky,
bi-dimensional alldifferent constraint.

When attacking a highly combinatorial problem, an inter-
esting approach is also to consider parallel implementations
in order to boost performance. In the last decade, with
desktop computers turning into parallel machines with 2, 4
or even 8 core CPUs, designing and implementing efficient
parallel constraint solvers has become an increasingly devel-
oping research field. However, only a few efficient parallel
implementations of constraint solvers have been reported,
e.g., the seminal work of [34], [35] on quad-core machine
and the Comet system [23] which has been parallelized for
small clusters of PCs, both for its local search solver [28]
and its propagation-based constraint solver [29]. Recent
experiments have been done up to 12 processors [30], and
speedups tend to level off after 10 processors. It has to be
noted that it is not obvious how to scale such implemen-
tations up to a few hundreds of processors, either because
of the shared-memory nature of the solver or because of
the intrinsic sequentiality of the solving method or of the
problem itself.

In [13], [7], [6], a parallel version of a constraint solver
based on local search is defined with a multi-start approach
requiring no communication between processes (also known
as Pleasantly Parallel). On classical CSP benchmarks from
CSPLib, this simple parallelization scheme gives good re-
sults, with a factor 50-70 speedup for 256 cores, but this
is far from ideal speedup (e.g., factor 256 speedup for
256 processors), even for large problem instances. It is
thus an open question to know whether this is due to the
classical (structured) CSP benchmarks used or if this is
a limitation of the method. In this paper we address the
problem of modeling a very combinatorial problem, with a
low density of solutions (the CAP) in the sequential version
and we further investigate if it scales up to a large number
of processors and exhibits better speedups. For this we

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico da Universidade de Évora

https://core.ac.uk/display/62451733?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

used three platforms: (1) the HA8000 machine, an Hitachi
supercomputer with 15,232 cores installed at University
of Tokyo, (2) the GRID’5000 infrastructure, the French
national Grid for the research, which contains a total of
8,596 cores deployed on 9 sites distributed in France and
(3) the IBM Blue Gene/P machine JUGENE with 294,912
cores at the Jülich Supercomputing Center in Germany.
Experiments on both HA8000 and GRID’5000 show nearly
linear speedups w.r.t. the sequential version, for instance 120
for 128 cores and 230 for 256 cores. On the Blue Gene/P,
we obtained linear speed-ups up to 8,192 cores.

The rest of this paper is organized as follows. Section II
presents the Costas Array Problem and Section III the
Adaptive Search method. Section IV presents the mod-
eling of the Costas Array Problem within the Adaptive
Search formalism, and the performance of the sequential
implementation. Section V details the experiments on three
different parallel hardware: the HA8000 supercomputer, the
GRID’5000 platform and the Blue Gene/P supercomputer.
Section VI concludes the paper and briefly discusses about
future work.

II. THE COSTAS ARRAY PROBLEM

A Costas array is an n× n grid containing
n marks such that there is exactly one mark
per row and per column and the n(n−1)/2
vectors joining the marks are all different.
We give here an example of Costas array

of size 5. It is convenient to see the Costas Array Problem
(CAP) as a permutation problem by considering an array
of n variables (V1, . . . , Vn) which forms a permutation of
{1, 2, . . . , n}. The Costas array above can thus be repre-
sented by the array [3, 4, 2, 1, 5].

Historically, these arrays have been developed in the
1960’s to compute a set of sonar and radar frequencies
avoiding noise [11]. A very complete survey on Costas
arrays can be found in [14]. The problem to find a Costas
array of size n is very complex since the required time grows
exponentially with n. In the 1980’s, several algorithms have
been proposed to build a Costas array given n, such as
the Welch construction [20] and the Golomb construction
[21], but these methods cannot built Costas arrays of size
32 and some higher non-prime sizes. Nowadays, after many
decades of research, it remains unknown if there exist any
Costas arrays of size 32 or 33. Another difficult problem is
to enumerate all Costas arrays for a given size. Using the
Golomb and Welch constructions, Drakakis et. al present in
[16] all Costas arrays for n = 29. They show that among
the 29! permutations, there are only 164 Costas arrays, and
23 unique Costas arrays up to rotation and reflection. There
are constructive methods known to produce Costas arrays of
order 24 to 29 [4], [38], [15], [16].

The Costas Array Problem has been proposed as a chal-
lenging combinatorial problem by Kadioglu and Sellmann in

[25]. They propose a local search metaheuristic, Dialectic
Search, for constraint satisfaction and optimization, and
show its performance for several problems. Clearly this
problem is too difficult for propagation-based solvers, even
for medium size instances (i.e., with n around 18−20). Let
us finally note that we do not pretend that using local search
is better than constructive methods in order to solve the
CAP. We rather consider the CAP as a very good benchmark
for testing local search and constraint-based systems and to
investigate how they scale up for large instances and parallel
execution.

In [37], Rickard and Healy studied a stochastic search
method for CAP and concluded that such methods are
unlikely to succeed for n > 26. Although their conclusion
is true for their stochastic method, it cannot be extended
to all stochastic searches: their method uses a restart policy
which is too simple and they also used an approximation
of the Hamming distance between configurations in order
to guide the search which they recognized themselves not
be be a very good indicator. However, they studied in this
paper the distribution of solutions in the search space and
have shown that clusters of solutions tend to spread out from
n > 17, which justify our multi-walk approach presented in
Section V to reach linear speedup for high values of n.

III. THE ADAPTIVE SEARCH METHOD

Adaptive Search (AS) was proposed in [9], [10] as a
generic, domain-independent constraint-based local search
method. This metaheuristic takes advantage of the structure
of the problem in terms of constraints and variables and can
guide the search more precisely than a single global cost
function to optimize, such as for instance the number of
violated constraints. The algorithm also uses a short-term
adaptive memory in the spirit of Tabu Search in order to
prevent stagnation in local minima and loops.

A. Algorithm

The input of the method is a problem in CSP format: a set
of variables with their (finite) domains of possible values and
a set of constraints over these variables. For each constraint,
an error function needs to be defined: it gives, for each tuple
of variable values, an indication of how much the constraint
is violated. Consider an n-ary constraint c(X1, · · ·Xn) and
associated domains D1, · · · , Dn for each variable. An error
function fc associated to the constraint c is a real-valued
function from D1 × · · · ×Dn such that fc(X1, · · ·Xn) has
value zero iff c(X1, · · ·Xn) is satisfied. The error function
will in fact be used as a heuristic to represent the degree of
satisfaction of a constraint and will thus give an indication on
how much the constraint is violated. This idea has also been
proposed independently by [18], where it is called ”penalty
functions”, and then reused in the Comet system [23], where
it is called ”violations”. For example, the error function
associated with an arithmetic constraint |X − Y | < c, for

a given constant c ≥ 0, can be max(0, |X − Y | − c). AS
relies on iterative repair, based on variable and constraint
error information, seeking to reduce the error on the worst
variable so far. The basic idea is to compute the error
function for each constraint, then combine for each variable
the errors of all constraints in which it appears, thereby
projecting constraint errors onto the relevant variables. This
combination of errors is problem-dependent, see [9] for
details and examples, and represents the heuristic distance
to a solution. It is usually a simple sum of absolute values,
i.e., Manhattan distance, although it might also be any other
distance or maybe a weighted sum if constraints are given
different priorities. Finally, the variable with the highest error
is designated as the “culprit” and its value is modified. In
this second step, the well known min-conflict heuristic [31]
is used to select the value in the variable domain which
is the most promising, that is, the value for which the total
error in the next configuration is minimal. In order to prevent
being trapped in local minima, the AS method also includes
a short-term memory mechanism to store configurations to
avoid. More precisely, variables can be marked Tabu and
“frozen” for a given number of iterations. It also integrates
reset transitions to escape stagnation around local minima,
see Section III-B. As in every local search method, it is
also possible to restart from scratch when the number of
iterations becomes too large. The AS base algorithm is
described in Figure 1.

Adaptive Search is a simple algorithm but it turns out to
be quite efficient in practice. As a simple comparison, [6]
provides timings between AS and the Comet 2.1.1 system on
a few classical benchmarks. AS is about 40 times faster than
Comet on the N-queen problem (for N=10000 to 50000)
and 100 to 500 times faster than Comet for the Magic
Square problem (prob019 in CSPLib), for N=30 to 50. Of
course, it should be noted that Comet is a complete and very
versatile system while AS is just a C-based library. In [25]
a new metaheuristics named Dialectic Search is compared
with the 2001 version of AS [9], showing that both methods
have similar results for the Magic Square problem (instances
from N=20 to 50). However when compared with the 2003
version of AS [10], AS is about 15 to 40 times faster than
Dialectic Search (depending on the instances), on the same
reference machine. Obviously, performance comparisons are
always tricky, but one or two orders of magnitude can be
considered as significant, especially as speedups increase
with problem size. The basic code for permutation problems
and examples are available as free software at the URL:
http://cri-dist.univ-paris1.fr/diaz/adaptive/

B. Tuning Adaptive Search

1) Plateaux: In [10], a simple but very effective improve-
ment of the original algorithm was proposed. In AS, when a
variable is selected and all alternative values for this variable
give a global cost worse than the current one, this variable is

tagged as ”Tabu” for a given number of iterations. However,
what should be done when there is no improvement, but
only equal-valued moves? In that case, a ”plateau” is found
in the global cost function landscape, and the question is
to either follow this plateau or not. A simple idea is to
introduce a probability p for this. With a good tuning (e.g.,
probability of 90% to 95% of following a plateau) this boosts
the performance of the algorithm by an order of magnitude
on some problems such as Magic Square. Indeed the current
sequential AS version of Magic Square problem can solve
instances as big as 400x400 (i.e., 160,000 variables with
domains of size 160,000) in about one hour on average.

2) Reset: When too many variables become Tabu, there is
a risk of ”freezing” the configuration and of getting trapped
around a local minimum. The AS method thus needs a
diversification operator to avoid such cases. This is done by
performing a (partial) reset, i.e., by assigning fresh values
to a given percentage of the problem variables (parameter
RP of the algorithm). A reset is triggered by the total
number of variables being marked Tabu at a given iteration
(parameter RL of the algorithm). This is the generic default
reset mechanism of AS, but the reset procedure can also
be customized if needed to become dedicated to a given
problem. We use this ability for solving efficiently the CAP.

3) Random: Using a reliable pseudo-random number
generator is essential for local search algorithms. For se-
quential methods, using generic random functions provided
by standard libraries is often good enough. However, the
need for better random functions (i.e., more uniform) already
appeared in stochastic optimization methods such as Particle
Swarm Optimization (PSO) [40]. Therefore, when designing
a massively parallel method with several hundreds or thou-
sands of stochastic processes running at the same time, one
has to choose carefully their random seed and to be assured
of the correctness of the distribution. At this point, using a
generic random function can turn out to be insufficient.

To ensure equity, we choose to generate the seed used by
each process via a pseudo-random number generator based
on a linear chaotic map. This method shows robust properties
of distribution and has been implemented for cryptographic
systems, like Trident [32].

IV. SOLVING THE CAP WITH ADAPTIVE SEARCH

A. Basic Model

The CAP can be modeled as a permutation prob-
lem by considering an array of n variables (V1, . . . , Vn)
which forms a permutation of {1, 2, . . . , n} (i.e., implicit
alldifferent constraint on variables Vi). Vi = j iff
there is a mark at column i and row j. To take into
account constraints on vectors between marks (which must
be different) it is convenient to use the so-called difference
triangle.

This triangle contains n−1 rows, each row corresponding
to a distance d. The dth row of the triangle contains the

Figure 1. Adaptive Search Base Algorithm

differences Vi+d − Vi for all i = 1, . . . , n − d (i.e., the
difference of values at a distance d). Ensuring all vectors
are different comes down to ensure the triangle contains no
repeated values on any given row (i.e., alldifferent
constraint on each row). Here is the difference triangle for
the Costas array given as example in Section II.

3 4 2 1 5
d = 1 1 -2 -1 4
d = 2 -1 -3 3
d = 3 -2 1
d = 4 2

In AS, the way to define a constraint is done via error

functions. At each new configuration, the difference triangle
is checked to compute the global cost and the cost of each
variable Vi. Each row d of the triangle is checked one by
one. Inside a row d, if a pair (Vi, Vi+d) presents a difference
which has been already encountered in the row, the error is
reported as follows: increment the global cost and the cost
of both variables Vi and Vi+d by ERR(d) (a strictly positive
function). For a basic model we can use ERR(d) = 1 (to
simply count the number of errors). Obviously a solution is
found when the global cost equals 0. Otherwise AS selects
the most erroneous1 variable and will try to improve it.

1i.e., the variable with the highest total error.

B. Optimization

In the basic model, the function ERR(d) can be a
constant (e.g., ERR(d) = 1) but a better function is
ERR(d) = n2−d2 which “penalizes” more errors occurring
in the first rows (those containing more differences). The
use of this function instead of ERR(d) = 1 improves the
computation time (around 17 %).

Moreover, a remark from Chang [8] makes it possible to
focus only on distances d ≤ b(n − 1)/2c. In our example,
it is only necessary to check the 2 first rows of the triangle
(i.e., d = 1 and d = 2). This represents a further gain in
computation time (around 30 %).

Another source of optimization concerns the reset phase.
Recall that AS maintains a Tabu list to avoid to be trapped
in local minima and, when too many variables become
Tabu, the current configuration is perturbed to escape the
current local minimum. By default AS resets a certain
percentage of variables (see parameters RL and RP in the
previous algorithm). We found good results with RL = 1
and RP = 5% (as soon as 1 variable is marked Tabu,
reset 5% of the variables). Whereas this default behavior
of AS is general enough to escape any local minimum,
it sometimes “breaks” some important parts of the current
configuration (but conversely, if we want to preserve too
many variables, we can be trapped in the local minimum).
AS allows the user to define his own reset procedure: when a
reset is needed this procedure is called to propose a pertinent
alternative configuration. Our customized reset procedure
tries 3 different perturbations from the current configuration:

1) Select the most erroneous variable Vm. Consider each
sub-array starting or ending by Vm and shift it (circu-
larly) from 1 cell to the left and to the right.

2) Add a constant “circularly” (i.e., modulo n to maintain
the permutation) to each variable. The current imple-
mentation tries the following 4 constants: 1, 2, n− 2,
n − 3 (but middle values n/2, n/2 − 1, n/2 + 1 are
also pertinent).

3) Left-shift from 1 cell the sub-array from the beginning
to a (randomly chosen) erroneous variable different
from Vm. In the current implementation we test at
most 3 erroneous variables.

As soon as the global cost of a perturbation is strictly inferior
to the entry global cost the local minimum is considered
as escaped and AS continues with this (perturbed) con-
figuration. This works, on average, in 32% of the cases
(independently from n). Otherwise, all perturbations are
tested exhaustively and the best (i.e., whose global cost is
minimal) is selected. This dedicated reset procedure provides
a speedup factor of about 3.7 and is thus very effective.

C. Evaluation of the sequential implementation

In this section we study the performances of the sequential
AS implementation. Since AS is a stochastic method and

uses randomness for initial configurations and during its
execution, each benchmark has been executed 100 times.
Classically, there are three interesting ways for aggregating
those results: considering the best case, the worst case and
the average case (i.e., minimum, maximum and average
of 100 execution times). The experiments were run on a
Dell Precision T7500 (Intel Xeon W5580, 3.20 GHz and 24
GB of 1333MHz SDRAM) running Linux (the AS code is
compiled using GCC 4.4.5, with the -O3 flag).

Size Time Iterations Local min ratio

16
avg 0.08 12665 6853
min 0.00 212 117 60
max 0.45 69894 37904

17
avg 0.59 73430 38982
min 0.02 2591 1361 30
max 2.39 294580 156154

18
avg 3.49 395838 207067
min 0.03 2789 1538 116
max 19.81 2254001 1178875

19
avg 29.46 2694319 1372671
min 0.31 28911 14798 95
max 127.78 11619940 5922204

20
avg 250.68 20536809 10278723
min 3.89 319368 159127 66
max 1097.06 89791761 44945485

Table I
EVALUATION OF THE SEQUENTIAL IMPLEMENTATION (TIMES IN SEC.)

Table I presents the results of the evaluation. For each in-
stance it details the execution time (in seconds), the number
of iterations, the number of local minima encountered and
the ratio between the average time and the minimum time
(when the minimum time is zero we used the numbers of
iterations). For n = 18 and above, an exponential behavior
seems to appear: the computation time for solving instance
n is an order of magnitude greater than n − 1. More
interestingly, for all instances, the best case is much faster
than the average case (see last column of Table I). This
important property convinced us to experiment on parallel
machines as we will see later.

In [25], Kadioglu and Sellmann propose a novel and in-
teresting local search meta-heuristic called Dialectic Search
(DS). The authors show how DS performs well on the
CAP and compare DS with a tabu search algorithm using
the quadratic neighborhood implemented in Comet. The
comparison was done for instances 13 to 18 and revealed
that DS is between 2 and 3 times faster than Comet on CAP.
It is thus very interesting to compare our AS implementation
with DS. The comparison was however difficult because
Kadioglu and Sellmann used an outdated machine and no
rigorous scaling information is available to compare their
Pentium-III 733 MHz with modern processors. Fortunately
we managed to find an exactly identical machine. The
following table presents the comparison with DS considering
for both systems the average of 100 executions. Times are
given in seconds measured on a Pentium-III 733 MHz for
AS and taken from [25] for DS.

Size DS AS DS / AS
13 0.05 0.01 5.00
14 0.26 0.05 5.20
15 1.31 0.24 5.46
16 7.74 0.97 7.98
17 53.40 7.58 7.04
18 370.00 44.49 8.32

Table II
AS SPEED-UPS W.R.T DS

Unfortunately, the paper about DS does not give other
data than time executions, therefore we are not in measure
to compare the number of iterations, local minima, etc. This
table clearly shows that AS outperforms DS on the CAP: for
small instances AS is five times faster but the speedup seems
to grow with the size of the problem, reaching a factor 8.3
for n = 18.

CAP has also been used as a benchmark in the Constraint
Programming community and we can compare with a CP
Comet program made by Laurent Michel and based on the
modeling in MiniZinc by Barry O’Sullivan 2. As could be
expected, CP is much less efficient than local search, and
this Comet program is about 400 times slower than Adaptive
Search for CAP19.

V. PARALLEL IMPLEMENTATION AND PERFORMANCE
ANALYSIS

Parallel implementation of local search metaheuristics
have been studied since the early 90’s, when multiprocessor
machines started to become widely available, see [39] for
a general survey and concepts, or [33] for basic parallel
versions of Tabu search, simulated annealing, GRASP and
genetic algorithms. With the availability of clusters in the
early 2000’s, this domain became active again [12], [2].
Apart from domain-decomposition methods and population-
based method (such as genetic algorithms), one usually
distinguishes between single-walk and multiple-walk meth-
ods for Local Search. Single-walk methods consist in us-
ing parallelism inside a single search process, e.g., for
parallelizing the exploration of the neighborhood, see for
instance [26] for such a method making use of GPUs for
the parallel phase. Multiple-walk methods (also called multi-
start methods) consist in developing concurrent explorations
of the search space, either independently or cooperatively
with some communication between concurrent processes. A
key point is that independent multiple-walk methods are the
easiest to implement on parallel computers and can lead
to linear speed-up if solutions are uniformly distributed in
the search space and if the method is able to diversify
correctly [39]. However, previous experiments [6] showed
that on structured problems such as (non-random) CSPs,
independent multiple-walk parallelization does not achieve

2http://www.g12.cs.mu.oz.au/mzn/costas array/CostasArray.mzn

ideal speedups, reaching only a factor 50-70 speedup for 256
cores. It might be because solutions are not uniformly dis-
tributed in the search space, and are for instance regrouped
in ”clusters”, as was shown for solutions of SAT problems
near the phase transition in [27]. Therefore some sequential
computation is needed to get to the vicinity of such clusters.

A. Motivation and Implementation

As remarked in Section IV-C, it can be seen than in
100 sequential runs of the algorithm starting from different
(random) initial configurations, the minimal one is much
faster than the average (sometimes more than 100 times).
Then if we can run in parallel many AS engines we can
hope for a global execution time equal to the minimal one,
and therefore a good speedup.

We implemented a parallel version of AS using Open-
MPI, an implementation of the MPI standard [17]. Pre-
liminary experiments and performance results on classical
CSP benchmarks are described in [6]. The parallelization
is straightforward and based on the idea of multi-start and
independent multiple-walk: fork a sequential AS method on
every available cores. But on the opposite of the classical
fork-join paradigm, parallel AS shall terminate as soon
as a solution is found, not wait until all the processes
have finished (since some searches initialized with ”bad”
initial configurations can take some time). Thus, some non-
blocking tests are involved every c iterations to check if there
is a message indicating that some other process has found a
solution; in which case it terminates the execution properly.
This results in a high number of independent work units, a
high CPU to I/O ratio, and no inter-process communication
for computation.

Four different testbeds were used on three platforms:
• HA8000, the Hitachi HA8000 supercomputer of the

University of Tokyo with a total number of 15,232
cores. This machine is composed of 952 nodes, each
of which is composed of 4 AMD Opteron 8356 (Quad
core, 2.3 GHz) with 32 GB of memory. Nodes are
interconnected with a Myrinet-10G network attaining
5 GB/s in both directions. HA8000 can theoretically
achieve a performance of 147 Tflops, but we only
accessed to a subset of its nodes as users can only
have a maximum of 64 nodes (1,024 cores) in normal
service.

• GRID’5000 [5], the French national Grid for research,
which consists of 8,596 cores deployed on 9 sites in
France. We used two subsets of the computing re-
sources of the Sophia-Antipolis node: Suno, composed
of 45 Dell PowerEdge R410 with 8 cores each, thus
a total of 360 cores, and Helios, composed of 56 Sun
Fire X4100 with 4 cores each, thus a total of 224 cores.

• JUGENE, the IBM Blue Gene/P supercomputer at
the Jülich Supercomputing Center containing 294,912
cores. This machine is composed of 73,728 nodes, each

of which is composed of 4 Power PC 450 32-bits at
850Mhz with 2 GB of memory. The network is a 3-
dimensional torus reaching a bandwidth of 5.1GB/s.
The overall peak performance is 1 Pflops.

B. Experiments on parallel machines
Let us now present the result of the parallel experiments.

The following tables show the execution times on HA8000
(Table III), JUGENE (Table IV) and GRID’5000 (Table V).
Execution times do not include the deployment time, negli-
gible on big benchmarks. Behaviors on both platforms are
similar and exhibit good speedups. We give the timings
in seconds for 50 executions of each benchmark with the
average time, median time, minimal time and maximal time.
We can see that with more cores, the maximal time decreases
a lot and thus the difference between minimal and maximal
times decreases. Moreover, in our case the median time is
always below the average time, meaning we have more fast
runs rather than slow ones. The median time presents here a
speedup at least as good as the average time. For instance,
for n = 20 and using 256 cores on HA8000, speedup
obtained w.r.t sequential runs is a factor 170 concerning the
average time and a factor 210 for the median time.

Size 1 core 32 cores 64 cores 128 cores 256 cores

18

avg 6.76 0.25 0.23 0.24 0.26
med 4.25 0.18 0.18 0.20 0.23
min 0.23 0.00 0.00 0.00 0.00
max 22.81 1.07 0.90 0.94 0.78

19

avg 54.54 1.84 1.00 0.72 0.55
med 43.74 1.45 0.76 0.57 0.44
min 0.51 0.0 0.03 0.02 0.01
max 212.96 6.62 5.24 3.48 2.22

20

avg 367.24 13.82 8.66 3.74 2.18
med 305.79 11.53 5.06 2.36 1.44
min 9.51 0.05 0.03 0.03 0.06
max 1807.78 54.26 36.98 23.87 9.21

21

avg - 160.42 81.72 38.56 16.01
med - 114.06 53.04 30.68 10.12
min - 1.63 2.13 1.49 0.73
max - 654.79 335.66 145.59 93.13

22

avg - 501.23 249.73 128.47 60.80
med - 450.45 178.85 99.62 55.90
min - 0.23 0.35 0.26 1.58
max - 1550.25 935.51 406.15 196.26

Table III
EXECUTION TIMES (IN SEC.) ON HA8000

For small instances (n = 18), since computation times
of parallel executions on many cores are below 0.5 second,
they are maybe not significant because of interactions with
operating system operations.

For medium instances, we have for example a 226 times
speedup w.r.t. sequential execution on Suno for n = 19 on
256 cores. Indeed, for different CAP instances, speedups
w.r.t. sequential version are between 75 and 120 on 128
cores on HA8000, and between 100 and 170 on 256 cores
on HA8000, between 120 and 137 on 128 cores on Suno,
between 204 and 226 on 256 cores on Suno and between
120 and 130 on 128 cores on Helios.

Size 512 cores 1,024 cores 2,048 cores 4,096 cores 8,192 cores

21

avg 43.66 27.86 10.21 5.97 2.84
med 30.31 23.67 5.56 4.47 2.07
min 0.85 1.46 0.27 0.13 0.19
max 274.69 108.14 93.89 21.98 12.92

22

avg 265.12 148.80 76.24 36.12 20.00
med 166.47 79.63 63.24 28.00 13.41
min 1.34 1.95 0.81 0.60 0.30
max 1831.96 638.34 277.96 154.89 84.66

23

avg - - 633.09 354.69 170.38
med - - 522.68 213.22 124.67
min - - 2.41 9.32 4.94
max - - 3527.80 1873.07 748.29

Table IV
EXECUTION TIMES (IN SEC.) ON JUGENE

For bigger instances, such as n = 21 and 22, we do
not have timings on HA8000 for the sequential version
because a sequential problem resolution takes on average
more than one hour, and the maximum resource utilization
is currently limited to one hour because of power savings.
For n = 21 on Suno we have a 218 times speedup on
256 cores w.r.t. sequential execution. Concerning n = 22,
as sequential computation takes many hours, we limit our
experiments on all machines to executions on 32 cores and
above. Therefore in Figure 2, we will only give timings
from 32 to 256 cores. On JUGENE, we ran our experiments
starting from 512 cores. Indeed, despite HA8000 processors
or Grid’5000 processors at 2.4Ghz, Blue Gene/P processors
have a low frequency (850 Mhz), and are then significantly
slower to solve a given problem. Moreover, JUGENE’s job
scheduler forces a time-out of 30 minutes for any job using
less than 1025 cores, which made difficult on few cores our
experiments which require 50 runs each. This is why we
started experiments on JUGENE from 512 cores for n = 21
and n = 22 and from 2,048 cores for n = 23. For these two
instances, one can see we reach nearly linear speed-ups up
to 8,192 cores : We have a speed-up of 15.33 for n=21 w.r.t
executions over 512 cores (perfectly linear speed-up would
be 16), and of 13.25 for n=22 w.r.t executions over 512
cores. Finally, we obtain a speed-up of 3.71 for n=23 w.r.t
executions over 2,048 cores, very near to a perfect linear
speed-up of 4. Details about speed-ups on the JUGENE
machine are represented by Figure 3. We can see that on all
platforms, execution times are halved when the number
of cores is doubled, thus achieving ideal speed-up.

This is graphically depicted in the next figure on a log-
log scale. As a final result, we note that we can now solve
n = 22 in about one minute on average with 256 cores on
HA8000. We can explain these linear speed-ups due to the
good distribution of solution clusters over the search space
for n > 17 as shown in [37]. Thus, parallel searches using a
multi-start approach greatly increase its chance to start near
from a solution.

Up to now, we focused on the average execution time
in order to measure the performance of the method, but a

Suno Helios
Size 1 core 32 cores 64 cores 128 cores 256 cores 1 core 32 cores 64 cores 128 cores

18

avg 5.28 0.16 0.083 0.056 0.038 8.16 0.24 0.11 0.06
med 0.11 0.065 0.04 0.03 0.19 0.06 0.04
min 0.01 0.00 0.00 0.00 0.0 0.13 0.00 0.00 0.00
max 20.73 0.64 0.34 0.19 0.13 37.5 1.08 0.46 0.26

19

avg 49.5 1.37 0.59 0.41 0.219 52 2.3 0.87 0.40
med 1.09 0.38 0.33 0.155 1.27 0.60 0.25
min 0.67 0.02 0.01 0.00 0.02 0.72 0.05 0.0 0.01
max 279 9.41 2.74 1.82 1.12 234.45 10 4.14 2.11

20

avg 372 12.2 5.86 2.67 1.79 444 14.3 7.63 4.52
med 10.6 4.63 2.01 1.16 8.28 5.16 2.76
min 4.45 0.14 0.07 0.0 0.01 5.71 0.21 0.01 0.01
max 1456 50.6 26 19.2 8.5 2540 139 41.7 18.7

21

avg 3743 171 51.4 34.9 17.2 5391 153 101 36.7
med 108 38.5 21.8 10.8 111 68.6 24.1
min 265 5.56 0.24 0.27 1.05 96.6 2.18 0.45 0.29
max 10955 893 235 173 63.3 18863 657 560 161

22

avg - 731 381 200 103 - 1218 520 220
med - 428 286 135 69.5 - 819 276 133
min - 24.7 13.1 5.23 2.17 - 78.9 4.12 3.01
max - 6357 1482 656 451 - 4635 3184 1670

Table V
EXECUTION TIMES (IN SEC.) ON GRID’5000 (SUNO AND HELIOS)

Figure 2. Speed-ups (HA8000 - Grid’5000) for CAP 22 w.r.t. 32 cores

more detailed analysis could be done. In [1], [36], a method
is introduced to represent and compare execution times of
stochastic optimization methods by using so-called time-to-
target plots. Observe that, for the CAP, the target value to
achieve is obviously zero, meaning that a solution is found.
It is then easy to check if runtime distributions could be
approximated by a (shifted) exponential distribution of the
form: 1− e−(x−µ)/λ. Then, according to [39], it is possible
to achieve linear speed-ups by multiple independent walks
if we have an exponential runtime distribution.

Figure 4 presents time-to-target plots for CAP 21 in order
to compare runtime distributions over 32, 64, 128 and 256
cores.

Points represent execution times obtained over 200 runs
and lines correspond to the best approximation by an expo-
nential distribution. It can be seen that the actual runtime

Figure 3. Speed-ups on the JUGENE for CAP 21, 22 and 23

distributions are very close to exponential distributions.
Time-to-target plots also give a clear visual comparison
between instances of the same method running on a different
number of cores. For instance it can be seen that we have
around 50% chance to find a solution within 100 seconds
using 32 cores, and around 75%, 95% and 100% chance
respectively with 64, 128 and 256 cores.

VI. CONCLUSION AND FUTURE WORK

We detailed the modeling and solving of the CAP with the
Adaptive Search method. The CAP is a hard combinatorial
problem for medium and large instances, too difficult to
solve with classical propagation-based solver and we thus
used a constraint-based local search solver. We presented a
simple modeling and have shown how to further tune the
resolution within the Adaptive Search framework. Careful

Figure 4. Time-to-Target plots for CAP 21 over 32, 64, 128 and 256 cores

modeling and tuning, together with an efficient paralleliza-
tion, achieved very good performance. We proposed a paral-
lel version based on the idea of multi-start and independent
multiple-walk which naturally provides Pleasantly Parallel
computations and appears viable as it exhibits a nearly
linear speed-up behavior. Indeed, we obtained speed-ups
w.r.t. sequential implementation of 120 for 128 cores and
226 for 256 cores for medium instances, i.e., nearly linear.
For the largest instances studied in this paper (CAP 22
and 23), execution times are halved when the number of
cores is doubled from 32 cores onward for CAP 22 (from
512 cores on the Blue Gene/P), and linear speed-ups can
be observed up to 8,192 cores. Experiments for CAP 23
was only possible on the Blue Gene/P starting from 2,048
cores, and scales also up to 8,192 cores. We are currently
continuing our experiments by tackling larger instances and
using more cores.

Future work will focus on more complex parallel ex-
ecution methods with inter-processes communication, i.e.,
in the dependent multiple-walk scheme, in order to further
improve performance. The communication mechanism will
be designed with the goals of (1) minimizing data transfers
as much as possible, as we aim at massively parallel ma-
chines with no hierarchical memory, and (2) re-using some
common computations and/or recording previous interesting
crossroads in the resolution, from which a restart can be
operated.

VII. ACKNOWLEDGMENTS

We acknowledge that some results in this paper have been
achieved using the PRACE Research Infrastructure resource
JUGENE based in Germany at the Jülich Supercomputing
Center.

REFERENCES

[1] R. Aiex, M. Resende, and C. Ribeiro. Ttt plots: a perl program
to create time-to-target plots. Optimization Letters, 1:355–
366, 2007.

[2] E. Alba. Special issue on new advances on parallel meta-
heuristics for complex problems. Journal of Heuristics,
10(3):239–380, 2004.

[3] J. Beard, J. Russo, K. Erickson, M. Monteleone, and
M. Wright. Combinatoric collaboration on costas arrays
and radar applications. In Proceedings of the IEEE Radar
Conference, pages 260–265, Philadelphia, USA, 2004.

[4] J. Beard, J. Russo, K. Erickson, M. Monteleone, and
M. Wright. Costas array generation and search methodology.
Aerospace and Electronic Systems, IEEE Transactions on,
43(2):522 –538, april 2007.

[5] R. Bolze and al. Grid’5000: A large scale and highly
reconfigurable experimental grid testbed. Int. J. High Perform.
Comput. Appl., 20(4):481–494, 2006.

[6] Y. Caniou, P. Codognet, D. Diaz, and S. Abreu. Experiments
in parallel constraint-based local search. In EvoCOP’11, 11th
European Conference on Evolutionary Computation in Com-
binatorial Optimisation, Lecture Notes in Computer Science,
Torino, Italy, 2011. Springer Verlag.

[7] Y. Caniou, P. Codognet, D. Diaz, and S. Abreu. Parallel
constraint-based local search on the HA8000 supercomputer
(abstract). In SAC’11, Proceedings of the 2011 ACM Sym-
posium on Applied Computing, pages 920–921, Taichung,
Taiwan, 2011. ACM Press.

[8] W. Chang. A remark on the definition of Costas arrays.
Proceedings of the IEEE, 75(4):522–523, 1987.

[9] P. Codognet and D. Diaz. Yet another local search method for
constraint solving. In proceedings of SAGA’01, pages 73–90.
Springer Verlag, 2001.

[10] P. Codognet and D. Diaz. An efficient library for solving
CSP with local search. In T. Ibaraki, editor, MIC’03, 5th
International Conference on Metaheuristics, 2003.

[11] J. Costas. A study of detection waveforms having nearly ideal
range-doppler ambiguity properties. Proceedings of the IEEE,
72(8):996–1009, 1984.

[12] T. Crainic and M. Toulouse. Special issue on parallel meta-
heuristics. Journal of Heuristics, 8(3):247–388, 2002.

[13] D. Diaz, S. Abreu, and P. Codognet. Parallel constraint-
based local search on the cell/be multicore architecture. In
proceedings of IDC2010, Intelligent Distributed Computing
IV. Springer Verlag, 2010.

[14] K. Drakakis. A review of costas arrays. Journal of Applied
Mathematics, 2006:1–32, 2006.

[15] K. Drakakis, F. Iorio, and S. Rickard. The enumeration of
costas arrays of order 28 and its consequences. Advances in
Mathematics of Communications, 5(1):69–86, 2011.

[16] K. Drakakis, F. Iorio, S. Rickard, and J. Walsh. Results of
the enumeration of costas arrays of order 29. Advances in
Mathematics of Communications, 5(3):547–553, 2011.

[17] E. Gabriel and al. Open MPI: Goals, concept, and design of
a next generation MPI implementation. In Proceedings, 11th
European PVM/MPI Users’ Group Meeting, pages 97–104,
Budapest, Hungary, 2004.

[18] P. Galinier and J.-K. Hao. A general approach for constraint
solving by local search. In 2nd workshop CP-AI-OR’00,
Paderborn, Germany, 2000.

[19] I. P. Gent and T. Walsh. CSPLIB: A benchmark library
for constraints. In proceedings of CP’99, pages 480–481.
Springer Verlag, 1999.

[20] S. Golomb. Algebraic constructions for Costas arrays. Journal
Of Combinatorial Theory Series A, 37(1):13–21, 1984.

[21] S. Golomb and H. Taylor. Constructions and properties of
Costas arrays. Proceedings of the IEEE, 72(9):1143–1163,
1984.

[22] T. Gonzalez, editor. Handbook of Approximation Algorithms
and Metaheuristics. Chapman and Hall / CRC, 2007.

[23] P. V. Hentenryck and L. Michel. Constraint-Based Local
Search. MIT Press, 2005.

[24] T. Ibaraki, K. Nonobe, and M. Yagiura, editors. Metaheuris-
tics: Progress as Real Problem Solvers. Springer Verlag,
2005.

[25] S. Kadioglu and M. Sellmann. Dialectic search. In CP’09, Int.
Conf. on Principles and Practice of Constraint Programming.
Springer Verlag, 2009.

[26] T. V. Luong, N. Melad, and E.-G. Talbi. Parallel local search
on GPU. Technical Report RR 6915, INRIA, Lille, France,
2009.

[27] E. Maneva and A. Sinclair. On the satisfiability threshold and
clustering of solutions of random 3-sat formulas. Theoretical
Computer Science, 407(1-3):359–369, 2008.

[28] L. Michel, A. See, and P. V. Hentenryck. Distributed
constraint-based local search. In F. Benhamou, editor, pro-
ceedings of CP’06, pages 344–358. Springer Verlag, 2006.

[29] L. Michel, A. See, and P. Van Hentenryck. Parallelizing
constraint programs transparently. In C. Bessiere, editor,
proceedings of CP’07, pages 514–528. Springer Verlag, 2007.

[30] L. Michel, A. See, and P. Van Hentenryck. Parallel and
distribited local search in comet. Computers and Operations
Research, 36:2357–2375, 2009.

[31] S. Minton, M. D. Johnston, A. B. Philips, and P. Laird.
Minimizing conflicts: A heuristic repair method for constraint
satisfaction and scheduling problems. Artificial Intelligence,
58(1-3):161–205, 1992.

[32] A. B. Orue, G. Álvarez, A. Guerra, G. Pastor, M. Romera, and
F. Montoya. Trident, a new pseudo random number generator
based on coupled chaotic maps. CoRR, abs/1008.2345, 2010.

[33] P. M. Pardalos, L. S. Pitsoulis, T. D. Mavridou, and M. G. C.
Resende. Parallel search for combinatorial optimization:
Genetic algorithms, simulated annealing, tabu search and
GRASP. In proceedings of IRREGULAR, pages 317–331,
1995.

[34] L. Perron. Search procedures and parallelism in constraint
programming. In proceedings of CP’99, pages 346–360.
Springer Verlag, 1999.

[35] L. Perron. Practical parallelism in constraint programming.
In CPAIOR’02, 4th International Workshop on Integration
of AI and OR techniques in Constraint Programming for
Combinatorial Optimization Problems, Le Croisic, France,
2011.

[36] C. Ribeiro, I. Rosseti, and R. Vallejos. Exploiting run time
distributions to compare sequential and parallel stochastic
local search algorithms. Journal of Global Optimization,
pages 1–25, published online 2011/08/17.

[37] S. Rickard and J. Healy. Stochastic search for costas arrays.
In Proceedings of the 40th Annual Conference on Information
Sciences and Systems, Princeton, NJ, USA, March 2006.

[38] J. C. Russo, K. G. Erickson, and J. K. Beard. Costas array
search technique that maximizes backtrack and symmetry
exploitation. In CISS, pages 1–8. IEEE, 2010.

[39] M. Verhoeven and E. Aarts. Parallel local search. Journal of
Heuristics, 1(1):43–65, 1995.

[40] T. Xiang, X. Liao, and K. Wong. An improved particle
swarm optimization algorithm combined with piecewise lin-
ear chaotic map. Applied Mathematics and Computation,
190(2):1637–1645, 2007.

