3 research outputs found

    An ADI extrapolated Crank-Nicolson orthogonal spline collocation method for nonlinear reaction-diffusion systems: a computational study

    Full text link
    An alternating direction implicit (ADI) orthogonal spline collocation (OSC) method is described for the approximate solution of a class of nonlinear reaction-diffusion systems. Its efficacy is demonstrated on the solution of well-known examples of such systems, specifically the Brusselator, Gray-Scott, Gierer-Meinhardt and Schnakenberg models, and comparisons are made with other numerical techniques considered in the literature. The new ADI method is based on an extrapolated Crank-Nicolson OSC method and is algebraically linear. It is efficient, requiring at each time level only O(N)O({\cal N}) operations where N{\cal N} is the number of unknowns. Moreover,it is shown to produce approximations which are of optimal global accuracy in various norms, and to possess superconvergence properties

    Numerical Solution of Coupled System of Nonlinear Partial Differential Equations Using Laplace-Adomian Decomposition Method

    Get PDF
    Aim of the paper is to investigate applications of Laplace Adomian Decomposition Method (LADM) on nonlinear physical problems. Some coupled system of non-linear partial differential equations (NLPDEs) are considered and solved numerically using LADM. The results obtained by LADM are compared with those obtained by standard and modified Adomian Decomposition Methods. The behavior of the numerical solution is shown through graphs. It is observed that LADM is an effective method with high accuracy with less number of components
    corecore