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ABSTRACT

Aim of the paper is to investigate applications of Laplace Adomian Decomposition Method (LADM) on nonlinear physical
problems. Some coupled system of non-linear partial differential equations (NLPDEs) are considered and solved
numerically using LADM. The results obtained by LADM are compared with those obtained by standard and modified
Adomian Decomposition Methods. The behavior of the numerical solution is shown through graphs. It is observed that
LADM is an effective method with high accuracy with less number of components.
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1. INTRODUCTION

The partial differential equations (PDEs) have so many essential applications of science and engineering such as wave
propagation, shallow water waves, fluid mechanics, thermodynamic, chemistry and micro electro mechanic system, etc. It
is difficult to handle nonlinear part of these systems, although most of the scientists applied numerical methods to find the
solutions of these systems that based on linearization, perturbed and discretizations. Debnath [1] applied the
characteristics method and Logan [2] used the Rieman invariants method to handle systems of PDEs. Wazwaz [3] used
the Adomian decomposition method (ADM) to handle the systems of PDEs. Laplace Decomposition Method (LDM) is free
of any small or large parameters and has advantages over other approximation techniques like perturbation, LDM requires
no discretization and linearization, therefore, results obtained by LDM are more efficient and realistic. This method has
been used to obtain approximate solutions of a class of nonlinear ordinary and PDEs [4-7]. In this paper, we compute
numerical solutions to nonlinear systems of PDEs by using LADM. The numerical solutions become easier and higher
accuracy than the standard Adomian Decomposition Method (ADM).

2. LADM for NONLINEAR COUPLED of PDEs
Consider the general nonlinear coupled of PDEs written in an operators form (see [8])
L @) +RyU)+My)+Nyuv)=fy(x,1)
{Lt(v)+R2(v)+Mz(v)+N2(u,v)=f2(x,t) L)
Subject to the initial conditions

{U(X,O)=gl(x),0SX </,
V(x,0)=0,(x),0<x </,, (2)

where 51 and fz are real constants and the notations of Lt :g, Rland R2 symbolized the linear spatial
ot

differential operators, the notations Ml, MZ, NlanszsymboIized the nonlinear differential operators and

fL(x,t),f,(x,t) are given functions. The method consists of first applying the Laplace transform to both sides of
equations in system (1) and then by using initial conditions, we have

(x) 1

£uy=>1"~ £{f (x t)}—f E{R,(U)F+EM U)I+E{N,(uV)}
: [ ]

(x) 1

Ey}=—— 92 + 5 Hax t)}—*[£{R2(V )} +E{M (v )} +E{N o (v )}]

in the Laplace decomposition method we assume the solution is in an infinite series, given as follows
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u(x ,t):iuk(x,t),
VX, t)=D v (x,t),
k=0

where U (x,t) and Vi (X,t) are to be recursively computed. Also the nonlinear terms |\/|1, M 2 Nl

and N o are decomposed as an infinite series of Adomian polynomials (see [9,10]),

MiU)= A, Nyuv)=>B,, (5)
k=0 k=0

For the nonlinear operators Ml(u), and Nl(U,V) the Adomian's polynomials can be generated for all forms of
nonlinearity. They are defined by the following relations

l dn n
Aq g g, Up) =~ M Y Au x|
nldA = »
1 dn n K n K
Bn(uo,uo,...,un;vo,vo,...,vn):md/In Ny D AU (x ), D A (xt) || ©
- k=0 k=0

A=0

Substituting (4) and (6) into (3) and applying the linearity of the Laplace transform, we get the following recursively formula

B0 0= 2004 L .0

Eo(x ,t)}=g2T(X)+sl£{f2(x,t)} )
and
E{uk+1(x,t)}:_:'£{Rl(uk (x,t)+A +B,}, k=0
(8)

BV (X ,t)}:—i£{R2(vk (x.1)+C, +D, ), k>0

Applying the inverse Laplace transform, we can evaluate U} (X ,t) and v K (X ,t)

3. APPLICATIONS

In order to verify numerically whether the proposed methodology leads to the accurate solutions, we evaluate LADM using
the approximation for some examples of non-linear systems of PDEs. To show the efficiency of the present methods for
our problems in comparison with the exact solution, we report the absolute error. The calculations in this paper have been
done using the Maple 18 software. The results are listed in tables 1-2 and figures 1-4 below.

Example 1: Consider the coupled system of nonlinear PDE of the form [11]
D +V W, —V W, =-p
Vi Wy Py +PWy =V ©)
W+ PV, + PV, =W

with the following initial conditions
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rp(xvy’o):eXJr
w(x,y,0)=e*"

w(x,y,0)=e¥,

The exact solution of the system (9) is [11].
X+ —t

p(x,y,t)=e*"

v(x,y,t):ex‘y+t;

w(x,y,t)=ey*"

N

(10

Solution:_To solve the system of equations (9)-(10) by means of LADM, we construct a correctional functional which

reads
1 1
£{p}:§p(x ,y,0)+g£{—p —V, W +vywx}

1 1
£{v}=gv (x ,y,0)+g£{v —W, py, — pxwy}

1 1
£E{w} = gw(x ,y,0)+g£{w —PyVy —PyVy }

We can define the Adomian polynomials as follows

Vi X,y t)}(aaywn K (XY t)]

II
M:

| \%\Q) 920)

k=0

II
M:

%\Q)

nk(xyt)

(

O[apn K (XY t)J ai nk (X, Y t))

We define an iterative scheme

8}/ nk(X yt))

=
Il
o

M:

G

n

=i( nk(xyt)]( nk(th)’
k=0
:;(aan k(X Y. t) [af, Pn- k(X y t)J’
=0
:kz“((’j( Pn- k(X y t) (a{;wn k(X y t)j’
=0
[a

k
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£{|oo(><.y,t)}=Slex+y

EGo(x.,y D} = o)

G o(x ¥ )} = Te? @
£, .1 (X ,y,t)}:slﬁ{—pn(x Y.)-A, +B,}, n>0

B a6,y D} = £, (Y D) -C, By}, 020

B0 1.0,y D}= £, (Y ) -F, <Gy}, 020

the Adomian's polynomials An , Bn ’Cn ) En ) Fn and G n are generated according to (6), we can give the first few
Adomian's polynomials as follows

Ay=1 A, =t +1 A, ) Agzit6+1t4+t2+1
4 % 4

B, =1 B, =t*+1,B, IR B, N T
4 % 4

C,=—-e%,C,=e?(t*-1),C, =-%e2y (t*—4t2+4),

C, =%e2y (t° -9t +36t>-36),Eg =€’ E; =—% (t*-1),

E, _Llez (t*—4t%+4),E, __ Loz (t®—ot* +36t% -36),
4 36
Fo=—e2 F =eZ({t?-1),F, :%ezy (t*—4t2+4),

F, :3_16eZX t®—9t* +36t%-36),G,=e>,G, =& (t*-1),
1

G, :%ezx (t4—4t2+4),G3 :_£e2x (t°—9t*+36t%—36),

Applying the inverse Laplace transform, finally, According to (11) the Oth components
Po(X,y 1))=Y vo(x,y,t) =" and wy(x,y,t) =€’ written as follows:

Po(X,y,t)= ety Vo(x,y,t)= ey Wo(X,y,t) =e¥ ™ where, K > 0. So, we get the following
components:

p X,y t)=e*Vtv,(x,y,t) ="V tw,(x,y,t)=¢"""t,

p,(X,y,t) :%e“ytz,vz(x,y 1) :%ex‘ytz,wz(x,y 1) :%ey‘x t2,

ps(x,y,t) =—%e“yt3,v3(x Y1) =%ex‘yt3,w3(x,y t) =%ey‘X t3
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Py (X, Yy, t) = 1 0,
265252859812191058636308480000000

Vao(X,y,t)= ! X V%,
265252859812191058636308480000000

Wo(x,y t)= 1 ey 30

265252859812191058636308480000000 ’

Similarly, we can also find other components, and the approximate solution for calculating 50th . Using (4), the series
solutions are therefore given by

p(x,y.t) =—$e“y (t°—5t*+20t> —60t 2 +120t —120+---),

V(X,y,t)=$ex_y(t5+5t4+20t3+60t2+120t+120+~--),
1 —X (+5 4 3 2
V(><,y,t)=@ey (t°+5t% +20t% +60t2 +120t +120+---).

. . t —t : . . . .
By using the Taylor expansion for € and € = we can find the exact solutions. The numerical behaviors of approximate

solutions of LADM of p(x VY ,t), Vv (X VY ,t) and W (X VY ,t)with different values of time are compared with the
exact solution are shown through figure1(a)-(c)

p(x,y,t) LADM p(x,y,t) exact

(@)
300( 300(
400 400
30000 300
20000 20000
100 100
-4 -4 -4 -4
-2 e -2 -2 S )
0 . 0 0 : 0
y 3)«?:: 2 X ) 2 g 2 X
v(x,y,t) LADM v(X,y,t) exact
(b)
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» 2P x y 2 X
w(x,y,t) LADM w(x,y,t) exact
(©)

Figure 1. (a) Exact and numerical solution of p(x,y, t), -5 < x £ 5, -5 <y < 5 for different values of t; (b) Exact and
numerical solution of v(x,y, t), =5 < x < 5, -5 <y < 5 for different values of t; (¢c) Exact and numerical solution of w(x,y, t),
-5 <x <5, -5 <y <5 for different values of t
Example 2: The coupled Burgers system
U, —U,, —2uu, +(uv), =0
— (14)

Vi =V, —2V, +(uv), =0
d & o 3 . :
where (g =—0(X,t), 0 =—q (X ,t), with initial conditons U (X,0)=sinx, v (X,0)=sIinX . The

oS oS
exact solution of the system (14) is U (X ,t) =v (X ,t) =sinx et (see [11] and [12] ).

Solution; To solve the system of equation (14) by means of LADM , we construct a correctional functional which reads

£{u}= Slu (x,0) +51£{uXX +2uu, —(uv), }

£{v}:slv (x,0)+$££{vXX +2v, —(uv), }

(15)
We can define the Adomian polynomials as follows
n 62 n a
An :Zjuk(xlt)l Bn :2Zuk(x,t)7un_k (X,t)l
k=0 OX k=0 ox
n 8 n 82
C = P u X lt — X 1t 1 F = —V X ,t
n kZ::,)aX(n—k( )Vn k( )) n kZ::‘)aXZ k( ) (16)
c 0
En= zzvk (X)) Vv, (x,1),
k=0 OX
We define an iterative scheme
1.
Euy(x,t)}==sinx
S
1.
£{v,(x,t)}==sinx
S
1
E{up 1 (x ,t)}=g£{An+Bn—Cn}, n>0 .
£{Vh+:|_(x't)}zlE’{Fn+En _Cn}: nZO
S

Applying the inverse Laplace transform, finally, the Adomian's polynomials An, Bn,Cn, En and F, are generated
according to (6), we can give the first few components of the Adomian's polynomials respectively as follows
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Ay =—sinx, By =2sinx cosx,C, =2sinx cosx, Ey =2sinx cosx, Fy = —sinx,

A; =sinx (t —1), B; = —4tsinx cosx,C, = 2(t2 +1)sinx cosx, E; =—4t sinx cosx,

F, =sinx (t —1),A, = —sinx +tsint —%sinx(fj‘t2 —2t(2(t?+3t +3)cosx +3))
+2t cosx sinx (t2 +3t +3), B, = 2sinx (%cosx(3t2 —2t(2(t% +3t +3)cosx +3))
+§tsin2x(t2+3t +3)) +2t2sinx cosx +lsinx(3t2—2t(2(t2+3t +3)cosx

+3))cosx, C, :%(%cosx (3t% — 2t (2(t% +3t +3)cosx +3))+§tsin2x(t2 +3t +3))
sinx(3t? — 2t (2(t? +3t +3)cosx +3)) + 2t >sinxcosx + 2sin X cosx,

E, =25inx(%cosx (Bt% —2t (2(t% + 3t +3)cosx +3))+§tsin2x(t2 +3t +3))
+§tsin2x(t2 +3t +3)) + 2t 2sinx cos x +%sinx(3‘t2 —2t(2(t% +3t +3)cosx

+3))cosx ,F, = —sinx +tsint —%sinx (Bt?2 — 2t (2(t% +3t +3)cosx +3))

+2t cosx sinx (t2 + 3t +3)

According to (7), the Oth components UO(X,t) and VO(X ,{) written as follows: UO(X, t) = sin(x)

Vo(x9 t) :=sin(x) , where, N > 0. So, we get the following components:

u;(x,t) =—tsinx,v,;(x,t) =—-tsinx

U, (x,t) :%sinx (Bt2 -2t (2(t? +3t +3)cosx +3))

v, (X ,t) :%sinx (32— 2t (2(t% + 3t +3)cosx +3))

us(x,t) :%tzsin‘*xazao—m4 —84t3 +525t2 + 40t ((2t * +14t 3

+42t % + 63t + 42) cos+ 42)) + % (—630 — 21cos(3t*—35t 2 —80t 2 — 60t + 60)

—5t2(8cos®x (2t * +14t°> +42t2 + 63t +42) + 21) +14t (cos? x (5t + 6)
(2t3—15t —30) + 45)) tsin x

Va(x,t) _ 1 25indx (1260 — 70t * —84t 3 + 525t 2 + 40t ((2t * +14t 3
3 630

+42t % + 63t + 42) cos+ 42)) + % (—630 —21cos(3t*—35t 2 —80t 2 — 60t + 60)

—5t2(8cos®x (2t * +14t°3 +42t2 + 63t +42) + 21) +14t (cos? x (5t + 6)
(2t3—15t —30) + 45)) tsin x

- ) . . . th . .
Similarly, we can also find other components, and the approximate solution for calculating 5. Using (4), the series
solutions are therefore given by

u(x,t)=sinx —tsinx +%sinx(3t2—2t(2(t2+3t +3)cosX +3+--))

v (x,t) =sinx —t sinx +%sinx(3t2—2t(2(t2+3t +3)CoSX +3+++)
and

Figures 2. (a) and (b) show the exact and numerical solution of system (14) with 10th terms by LADM.
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X '

LADM and exact for u(x,t) LADM and exact for v(x,t)
(@) (b)

Figure 2. (a) show the exact and LADM numerical solution u(x, t) of example 2, -5<x<5,-1<t<1; (b) show the
exact and LADM numerical solution v (x, t) of example 2, -5<x<5,-1<t<1.

Example 3. we consider the nonlinear system [13]
u; =uu, —|—VUy
(18)
A :VVy +uv,,
with the initial conditions U(X,Y,0) =X +Vy; Vv(X,y,0)=x+y, 0<x,y <1.

0<t<T -

X+Yy
1-2t° 1-2t°

Solution :_Taking the Laplace transform on both sides of Egs. (10) then, by using the differentiation property of Laplace
transform and initial conditions, as the same procedure in the above example when we using equations (9)-(10) for the

The exact solution given as (x ,y,t) = X+y. v(X,y,t) =

system (10) and according to (3) we have the following Oth components

uo(x) »t)=x+y ;VO(X, ¥,t) ;=X + ¥, and the recursive relation can be written as follows:
u(x, 3, 0) =2 (x+y)t:v(x01) =2 (x+y) tiu,(x,yt) =4 (x+y) £
v, (x, 3, 1) =4 (x +y) 7 ;u3(x,y, t) =8 (x+y) £ ;v3(x,y, t) =8 (x+y) £
uy(x, y, 1) =16 (x +y) t4;v4(x, v, t) =16 (x +y) t4

Uy (X, 3, 1) = 1048576 (x + ) I Voo (X, 3, £) 1= 1048576 (x +y) I

- ) . . . th .
Similarly, we can also find other components, and the approximate solution for calculating more 207 . Using (3), the
series solutions are therefore given by

U(X,y,t) =V (X, Y, t) = (X+Y) + 2(X+ Y) t+ 4(x+ y) t?+ 8(x+ y) 3+ 16(x+ y) t*+---
=(X +y)[1+2t +4t%+83+16t% +--]

_ X+y
(cry)a-2yt =T
that converges to the exact solutions U (X ,y,t) = )](__+2>tl v (X Y ’t) = )](__+2>; !

and

. . . . th .
Flgu re 3 ensure that the previous obtained results of system (18) with 30" terms by LADM it converges to the exact
solutions. Table 1 show the absolute error between the exact solution and the results obtained from the LADM solution
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)

and comparison with the results obtained by the standard algorithm for Adomian's polynomials ADM and modified ADM
solution of system of equation (18) (see [14] and [16]).

v(x,y,t) ) LADM

u(x,y,t) and v(x,y,t) exact

Figures 3. show the exact and LADM numerical solutions of u(x, t) and v (x, t) for example 3, -5<x<5,-1<sy=<1;
t=0.1.

Table 1: The numerical results in comparison with the analytical solutions for various values of x , y and t for example 3

The absolute error

t Yy X Exact(U )=Exact(V ) DM AVID [16] :ﬁgl[ﬂli(]j
0.125 0.312500000 6.55e-016 3.2000e-008 3. 0000e-010
0125 0.785 1.137500000 2.39%e-015 1.1600e-007 0.0000e+000
0.1 0.500 0.500 1.250000000 2.62e-015 1.2800e-007 0.0000e+000
0.125 1.250000000 2.62e-015 1.2800e-007 0.0000e+000
0875 0.785 2.075000000 4.35e-015 2.1200e-007 0.0000e+000
0.125 0.416666667 1.83e-009 4.3690e-005 4. 2700e-008
0125 0.785 1.516666667 6.67e-009 1.5903e-004 1. 5900e-007
0.2 0.500 0.500 1.666666667 7.33e-009 1.7476e-004 1. 6600e-007
0.125 1.666666667 7.33e-009 1.7476e-004 1. 6600e-007
0875 0.785 2.766666667 1.22e-008 2.9010e-004 2. 8600e-007
0.125 0.625000000 1.37e-005 3.7791e-003 1. 4145e-005
0125 0.785 2.275000000 4.99e-005 1.3756e-002 5. 1480e-005
0.3 0.500 0.500 2.500000000 5.48e-005 1.5116e-002 5. 6574e-005
0.125 2.500000000 5.48e-005 1.5116e-002 5. 6574e-005
0875 0.785 4.150000000 9.10e-005 2.5093e-002 9. 3897e-005
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We note from the above results, the absolute error obtained by the proposed algorithm LADM as compared with the
absolute error of the standard algorithm for Adomian's polynomials ADM and modified ADM given results more accurate.

Example 4 The mathematical models on many phenomena in applied sciences lead to non-linear PDEs such as the
homogeneous form of the system of two dimensional Burger's equations which is proposed as mathematical model of free
turbulence [15, 16]

1
U +Uu, +VU, ZE(UXX +Uy, ),

19)
1
Ve HWV UV, :E(VXX +vyy),
subject to the initial conditions
3 1
U(X ’y’O) _Z_ 4(1+eR(y—X)/8)'
3 1
2 _ (20)

the exact solution [8]:

p

u(x t)—§— .
Y "2 4(1+eR(_t+4y—4x)/32)’

3 1
V(X,y’t)—2_4(1+6R(—t+4y—4x)/32)’

where R is Reynolds number. As the same procedure in the above examples when we use (3)-(6) for the system (19)-(20)

and according to (7) —(8), we have the following Oth components:

Ug(x,y,t) = 3_ -
oX, Y1) = 4 4(1+eR(y—x)/8) )
3 1
Vo(X,yt) = 2_4(1+eR(y—x)/8) ! (21)

and the recursive relation can be written as follows:

Una (X, Y}=£7(E(F, —A, —B,)),

] (22)
Vn+1(X’y’t)}:£ (£(Gn -C, _En))’
where N > 0 and the Adomian polynomials An , Bn ,Cn,En , Fn and Gnare defind as follows
— (0 ;
4= 20 (e (1, (60)) )
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k=0 y
n
0
C, = 1) —— 1)
p k:ka(x’y’ ) (6y (Vo (B ))j
(23)
n
0
E = t)-| — DANE
v= 20 (5 (v (e 0) )
n
1 & 2 ‘
Fn ’_ RkZ()[axz (uk(x’y’t))+ ayz (“k(X,y,f))],
n
Ly il o
G =— — (v ()Y +—= (v.(x, 1) :
w2 | () e 2 ()
We can give the first few Adomian's polynomials of respectively to get the following components:
S R(y+0)| - R+
e 1 2+3e¢ Re
0- 3
128 [ _%R(_y_i_x))
1+e
, “g Ry ( T R(-y+x) o R(-ytx) )
4 1 R ¢ t\3e —2¢ -2
1 4096 _LR(_erx) 4
(l—l—e 8 )
-5 R(=y+x) — R(=y+x)
B 1 Re 4+3e
0" 128 3
5 R(=y+3)
1+e
) -—=R(-y+x) -— R (-y+x) -—=R(-y+x) j
B = 1 Re t\3e +2e —4
1 4
4096 __R(_y+x))
1+e
~= R(-y+x) ~= R(-y+x)
C = 1 Re 4+3e¢
0- 128 3
“g Rly+x)
1+e
, “g R+ ( “SR(-y+x) = R(-y+x) )
C - 1 Re t\3e +2e —4
(. 4
4096 ( -—R(-y+X)j
I+e
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( —iR(—y+x>) ~LR(-y4x)
E 1 2+3e Re
0 3
128 [ __R(_y+x))
1+e
) - R(-y+x) ( -—R(-y+x) - R(-y+x) ]
£ = 1 Re t\3e —2e —2
14096 L)
(1+e )
——R(—y+x>( -+ R(-y+x) )
1 Re e —1
F = -
0 128 3
o R(-y+x)
(l—l-e )
Fl:=
| | ( ——R(—y+x)R( o H R
- t
4096 i © ©

-+ R (-y+2) [ ——R(—y+x>)
GO = 1;8 e R\{-1+e .
[ —%R(—y-{—x))
1+e
Gl =
|
| | (—gR(—yH) ( TRy
- e R\ -Re t
4
4096 [ _%R(_ﬁx))
1+e

—%R(—y-ﬁ-x) —%R(—y-l—x) )J
+4Re t—32e¢ —Rt+ 32

and the recursive relation can be written as follows:
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1+e
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S Ry ( “LR(-y+)

Re e 8 —1)t(Rt+64)

v, (x, v, 1) == 1
2\ A ) D 3
8192 ( —%R(—y+x)j
1+4+e

Similarly, we can also find other components, and Using (3), the series solutions are therefore given by

-%R(—yﬂ) —%R(—y-f-x) —%R(—y-f-x)
u(x t)'=—1 Re t—96¢ —160e — 64
7y’ . 128 -LR(-+)2
(1+ 8507 ]
e
| | 1
g Rty gy Ry +x) “g Ry +x)
V(o y. 1) = 1 Re t+9e +224¢ + 128
’y’ . 128 _iR_J’_ 2
[1 3 (-y x)j
+e

and

Figure 4. (a)-(d) show the exact and numerical solution of system (19) with 3th terms by LADM also table 2 show
the absolute error between the exact solution and the results obtained from the LADM solution and comparison with
the results obtained by the standard algorithm ADM (see [16]).

S
SR>
”’-’:::zzifflltlllﬂli‘ y
R e
4 7 -4
2

0.1

3 ~0.2
03 047 75040302
> X

u(x,y,t) LADM u(x,y,t) exact LADM and exact for u(x,y,t)
@

v(x,y,t) LADM v(x,y,t) exact LADM and exact for v(x,y,t)
(b)
Figures 4. (a) and (b) show the exact and LADM of u(x,y, t) and v (x, y,t) for example 4,0.1<x<0.5; 0.1<y<0.5;
t=0.2; R=50
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Figures 4. (c) and (d) show the exact and LADM of u(x,y, t) and v (x, y,t) for example 4,0.1<x<0.5; 0.1<y<0.5;

t=0.5; R=100

Table 2: The numerical results in comparison with the analytical solutions for various values of x and t for example 4 when
y =1, R=150 and R =100 are respectively

The absolute error
t X Exact(U ) Exact(V ) LADM(U ) AMD(U ) [16] LADM(V ) AMD(V )[16]
R=50 R=100 R=50 R=50 R=100 R=100
0.1 0.7487736486 0.7499939249 2.73e-004 7.4512e-003 1.88e-006 5.1579e-006
0.2 0.7477185907 0.7499787972 5.04e-004 1.3845e-003 6.55e-006 1.8001e-005
0.2 0.3 0.7457712717 0.7499260107 9.20e-004 2.5604e-003 2.28e-005 6.2817e-005
0.4 0.7422137941 0.7497419422 1.65e-003 4.6943e-003 7.96e-005 2.1906e-004
0.5 0.7358362425 0.7491015994 2.84e-003 8.4719e-003 2.77e-004 7.6234e-004
0.1 0.7480460278 0.7499844874 6.09e-004 1.7787e-003 1.87e-006 1.8237e-005
0.2 0.7463741051 0.7499458640 1.28e-003 3.2970e-003 6.53e-006 1. 6.36e-005
0.5 0.3 0.7433101792 0.7498111486 2.07e-003 6.0701e-003 2.28e-005 2.2192e-004
0.4 0.7377855554 0.7493420815 3.73e-003 1.1040e-002 8.01e-005 7.7219e-004
0.5 0.7281090401 0.7477185907 6.53e-003 1.9654e-002 2.84e-004 2.6661e-003

The numerical results show that using of LADM by 3- components gives results more accurate than the results using 5-
components by standard ADM which is presented in [16].

4. CONCLUSION

LADM is a powerful tool which is capable of handling coupled system of nonlinear of partial differential equations. In this
paper the LADM has been successfully applied to find approximate solutions for the homogeneous form of the system of
two dimensional Burger's equations without any discretization. The method presents a useful way to develop an analytic
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treatment for these systems. The proposed scheme can be applied for system more than two linear and nonlinear partial
differential equations.
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