29 research outputs found

    Intelligent Approaches to interact with Machines using Hand Gesture Recognition in Natural way: A Survey

    Full text link

    Systems and WBANs for Controlling Obesity

    Get PDF
    According to World Health Organization (WHO) estimations, one out of five adults worldwide will be obese by 2025. Worldwide obesity has doubled since 1980. In fact, more than 1.9 billion adults (39%) of 18 years and older were overweight and over 600 million (13%) of these were obese in 2014. 42 million children under the age of five were overweight or obese in 2014. Obesity is a top public health problem due to its associated morbidity and mortality. This paper reviews the main techniques to measure the level of obesity and body fat percentage, and explains the complications that can carry to the individual's quality of life, longevity and the significant cost of healthcare systems. Researchers and developers are adapting the existing technology, as intelligent phones or some wearable gadgets to be used for controlling obesity. They include the promoting of healthy eating culture and adopting the physical activity lifestyle. The paper also shows a comprehensive study of the most used mobile applications and Wireless Body Area Networks focused on controlling the obesity and overweight. Finally, this paper proposes an intelligent architecture that takes into account both, physiological and cognitive aspects to reduce the degree of obesity and overweight

    Mobile security and smart systems

    Get PDF

    Cloud Platform for Research Crowdsourcing in Mobile Testing

    Get PDF
    Mobile application testing and testing over a cloud are two highly topical fields nowadays. Mobile testing presents specific test activities, including verification of an application against a variety of heterogeneous smartphone models and versions of operating systems (OS), build distribution and test team management, monitoring and user experience analytics of an application in production, etc. Cloud benefits are widely used to support all these activities. This study conducts in-depth analyses of existing cloud services for mobile testing and addresses their weaknesses regarding research purposes and testing needs of the critical and business-critical mobile applications.   During this study, a Cloud Testing of Mobile Systems (CTOMS) framework for effective research crowdsourcing in mobile testing was developed. The framework is presented as a lightweight and easily scalable distributed system that provides a cloud service to run tests on a variety of remote mobile devices. CTOMS provides implementation of two novel functionalities that are demanded by advanced investigations in mobile testing. First, it allows full multidirectional testing, which provides the opportunities to test an application on different devices and/or OS versions, and new device models or OS versions for their compatibility with the most popular applications in the market, or just legacy critical apps, etc. Second, CTOMS demonstrates the effective integration of the appropriate testing techniques for mobile development within such a service. In particular, it provides a user with suggestions about coverage of configurations to test on using combinatorial approaches like a base choice, pair-wise, and t-way. The current CTOMS version supports automated functional testing of Android applications and detection of defects in the user interface (UI). This has a great value because requirements for UI and user experience are high for any modern mobile application.    The fundamental analysis of possible test types and techniques using a system like CTOMS was conducted, and ways of possible enhancements and extensions of functionality for possible research are listed. The first case studies prove the work of implemented novel concepts, their usefulness, and their convenience for experiments in mobile testing. The overall work proves that a study of cloud mobile testing is feasible even with small research resources.  M.S

    NFC based remote control of services for interactive spaces

    Full text link
    Ubiquitous computing (one person, many computers) is the third era in the history of computing. It follows the mainframe era (many people, one computer) and the PC era (one person, one computer). Ubiquitous computing empowers people to communicate with services by interacting with their surroundings. Most of these so called smart environments contain sensors sensing users’ actions and try to predict the users’ intentions and necessities based on sensor data. The main drawback of this approach is that the system might perform unexpected or unwanted actions, making the user feel out of control. In this master thesis we propose a different procedure based on Interactive Spaces: instead of predicting users’ intentions based on sensor data, the system reacts to users’ explicit predefined actions. To that end, we present REACHeS, a server platform which enables communication among services, resources and users located in the same environment. With REACHeS, a user controls services and resources by interacting with everyday life objects and using a mobile phone as a mediator between himself/herself, the system and the environment. REACHeS’ interfaces with a user are built upon NFC (Near Field Communication) technology. NFC tags are attached to objects in the environment. A tag stores commands that are sent to services when a user touches the tag with his/her NFC enabled device. The prototypes and usability tests presented in this thesis show the great potential of NFC to build such user interfaces

    The new era of e-learning: mobile learning & interactive class for the new curriculum

    Get PDF
    published_or_final_versio
    corecore