124 research outputs found

    Acoustic Analysis Using Symmetrised Implicit Midpoint Rule

    Get PDF
    In wave propagation phenomena, time-advancing numerical methods must accurately represent the amplitude and phase of the propagating waves. The acoustic waves are non-dispersive and non-dissipative. However, the standard schemes both retain dissipation and dispersion errors. Thus, this paper aims to analyse the dissipation, dispersion, accuracy, and stability of the Runge–Kutta method and derive a new scheme and algorithm that preserves the symmetry property. The symmetrised method is introduced in the time-of-finite-difference method  for solving problems in aeroacoustics. More efficient programming for solving acoustic problems in time and space, i.e. the IMR method for solving acoustic problems, an advection equation, compares the square-wave and step-wave Lax methods with symmetrised IMR (one-and two-step active). The results of conventional methods are usually unstable for hyperbolic problems. The forward time central space square equation is an unstable method with minimal usefulness, which can only study waves for short fractions of one oscillation period. Therefore, nonlinear instability and shock formation are controlled by numerical viscosities such as those discussed with the Lax method equation. The one- and two-step active symmetrised IMR methods are more efficient than the wave method

    Richardson Extrapolation

    Get PDF

    Diagonally Implicit Runge-Kutta Methods for Ordinary Differential Equations. A Review

    Get PDF
    A review of diagonally implicit Runge-Kutta (DIRK) methods applied to rst-order ordinary di erential equations (ODEs) is undertaken. The goal of this review is to summarize the characteristics, assess the potential, and then design several nearly optimal, general purpose, DIRK-type methods. Over 20 important aspects of DIRKtype methods are reviewed. A design study is then conducted on DIRK-type methods having from two to seven implicit stages. From this, 15 schemes are selected for general purpose application. Testing of the 15 chosen methods is done on three singular perturbation problems. Based on the review of method characteristics, these methods focus on having a stage order of two, sti accuracy, L-stability, high quality embedded and dense-output methods, small magnitudes of the algebraic stability matrix eigenvalues, small values of aii, and small or vanishing values of the internal stability function for large eigenvalues of the Jacobian. Among the 15 new methods, ESDIRK4(3)6L[2]SA is recommended as a good default method for solving sti problems at moderate error tolerances
    corecore