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Abstract
The numerical treatment of an atmospheric chemical scheme, which contains 56 
species, is discussed in this paper. This scheme is often used in studies of air pol-
lution levels in different domains, as, for example, in Europe, by large-scale envi-
ronmental models containing additionally two other important physical processes—
transport of pollutants in the atmosphere (advection) and diffusion phenomena. We 
shall concentrate our attention on the efficient numerical treatment of the chemical 
scheme by using Implicit Runge–Kutta Methods combined with accurate and effi-
cient advanced versions of the Richardson Extrapolation. A Variable Stepsize Varia-
ble Formula Method is developed in order to achieve high accuracy of the calculated 
results within a reasonable computational time. Reliable estimations of the compu-
tational errors when the proposed numerical methods are used in the treatment of 
the chemical scheme will be demonstrated by presenting results from several repre-
sentative runs and comparing these results with “exact” concentrations obtained by 
applying a very small stepsize during the computations. Results related to the diur-
nal variations of some of the chemical species will also be presented. The approach 
used in this paper does not depend on the particular chemical scheme and can easily 
be applied when other atmospheric chemical schemes are selected.

Keywords Atmospheric chemical schemes · Ordinary differential equations · 
Implicit Runge–Kutta methods · Richardson Extrapolation

1 Introduction

Long-range transport of air pollutants in the atmosphere is often studied (as, for 
example, in [29, 31]) by applying complex mathematical models described by 
non-linear systems of partial differential equations (PDEs), which, after spatial 
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discretization, lead to huge systems of ordinary differential equations (ODEs). 
If some splitting procedure is applied, then the chemical reactions together with 
the deposition and the emission terms can be handled separately, as a non-linear 
system of ODEs, at every grid-point of the domain in which the discretized sys-
tem of PDEs is defined. This is done for an arbitrary grid-point. We choose this 
approach in order to explain in a simple manner how good numerical procedures 
can be designed for the chemical part of a large air pollution model. Such models 
can also be used to investigate the impact of future climatic changes on the pollu-
tion levels (see [30, 32]).

Different chemical schemes can be implemented in the air pollution models. 
These schemes play a very important role in the air pollution studies. The num-
ber of chemical species involved in the large-scale air pollution models varies 
as a rule from 20 to about 200 (see, for example, [1, 2, 5–7, 10, 11, 15, 16, 19, 
22–24]).

The use of less than 20 chemical species will require crude parameterization 
of some of the chemical processes and, therefore, the choice of such chemical 
schemes is in general not advisable when long-range transport of air pollutants in 
the atmosphere is to be studied.

On the other side, the application of chemical schemes with more than 200 
species leads to huge computational tasks when long-term simulations, as those 
reported in [30, 32], are to be carried out by running the air pollution models over 
many consecutive years.

A chemical scheme containing 56 species [31] will be used in this study. More-
over, we shall concentrate our attention on the necessity to increase the compu-
tational efficiency during the treatment of the chemical scheme and shall inves-
tigate the implementation of some reliable and accurate numerical algorithms in 
the handling of the selected scheme. This can successfully be done by separat-
ing the chemical scheme from the other parts of the air pollution models. This 
approach facilitates very essentially the search for optimal numerical algorithms 
when the chemical reactions are to be handled numerically. There is an additional 
benefit of the treatment of the problem in this way: the chemical scheme together 
with the efficient algorithms used to handle it numerically can easily be imple-
mented in any large-scale air pollution model when the investigation is success-
fully finished. Finally, reliable information about some interesting phenomena, 
such as, for example, diurnal variations of some chemical species, can sometimes 
be easily obtained by using only the chemical scheme. This possibility will be 
demonstrated in the end of this paper.

2  Mathematical description of the problem

The chemical reactions together with the deposition and emissions terms of a 
large-scale air pollution model can be described mathematically by the following 
initial value problem for non-linear ordinary differential equations (ODEs):
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Here f   is a given function defined in some domain   D ⊂ ℝ ×ℝ
s   (it will always 

be assumed in this paper that   f   is a one-valued function in the whole domain 
D ). Later further assumptions will be made about the smoothness of the function f, 
see Sect. 4.2. If high-order versions of the Richardson Extrapolation (RE) are to be 
used, then one must also assume that f is, as well as y, sufficiently many times con-
tinuously differentiable. The components of the solution vector y(t) ∈ ℝ

s are con-
centrations of the chemical species at time t ∈ [a, b] . As mentioned above, s = 56 is 
used in this paper, but the main ideas are very general and similar results can easily 
be obtained when other chemical schemes are used (as, for example, the schemes 
with s = 35 and s = 168 from [31]).

Assume that t0 = a , tn = tn−1 + hn (where hn > 0 for n = 1, 2,⋯ , N ) 
and tN = b . Denote y0 = y(a) = η . Then some numerical method for solv-
ing systems of ODEs has to be used to calculate successively approximations 
y1 ≈ y

�
t1
�
, y2 ≈ y

�
t2
�
,⋯ , yN ≈ y(tN) of the exact solution of (1) on some non-equi-

distant set of grid-points {t1, t2,⋯ , tN} . Normally, it is desirable to select at every 
step as large as possible stepsize hn with which the calculated by the selected numer-
ical method approximation yn will satisfy some accuracy requirement, as for exam-
ple, ‖y(tn) − yn‖∕‖y(tn)‖ ≈ TOL , where TOL > 0 is some prescribed in advance 
error tolerance. Moreover, we say that the order of accuracy of the numerical solu-
tion yn  is p when

This means that two important computational tasks are to be resolved:

(a) it is necessary to select appropriate numerical methods for solving non-linear 
systems of ODEs by which sufficiently accurate approximations yn can be cal-
culated

  and
(b) it is worthwhile to derive and implement reliable error estimators by which the 

accuracy of the approximations yn, n = 1, 2,⋯ , N  can be evaluated in a reliable 
way.

The solution of these two important tasks will be presented and discussed in the next 
two sections.

3  Selection of appropriate numerical methods for solving ODEs

The choice of numerical methods, which can efficiently be used in the treatment of 
atmospheric chemical schemes, is a very difficult task. There are at least three prob-
lems, which are creating great difficulties when the atmospheric chemical schemes 
are treated numerically.

(1)
y� = f(t, y), t ∈ [a, b], a < b, y ∈ D ⊂ ℝ

s

and y(a) = η, η ∈ ℝ
s being a given constant.

y
�
tn
�
− yn = O(hp).
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The first problem is caused by the fact that the chemical schemes are very 
badly scaled. This is demonstrate in Table 1, where the maximum and minimum 
values of four chemical species are given.

The second problem is caused by the fact that some components of their solution 
vectors vary very quickly in some parts of the interval [a, b] forming extremely sharp 
gradients [29, 31]. This is illustrated in Fig. 1 where the diurnal variations of two 
chemical species are plotted. It is seen that some components of the solution vector 
y(t) ∈ Rs are varying very quickly in some rather short intervals (containing as a 
rule the time changes from day to night and from night to day).

The third problem is the stiffness of the systems of ODEs, by which chemical 
schemes are described mathematically. The fact that (1) is a stiff system of ODEs 
implies that implicit numerical methods have to be selected and used in the solu-
tion process. The application of stable Implicit Runge–Kutta Methods (IRKMs), 
see [3, 4, 12, 14, 17, 18, 21], is a good choice and such methods will be discussed 
in the remaining part of this section.

We selected three IRKMs and used these methods in the experiments, results 
of which will be reported in Sect. 6:

Table 1  Typical minimum and 
maximum values of four of 
the 56 chemical species in an 
interval of 24 h (from 12 o’clock 
in a given day to 12 o’clock in 
the next day)

Chemical species Minimum value Maximum value

OP 1.0E−25 1.6E+04
OH 3.3E+04 2.2E+07
PAN 9.4E+05 1.3E+10
Ozone 1.4E+12 1.8E+12

Fig. 1  Diurnal variation of two chemical species. Both the “exact” solution (the solution calculated with 
a very small stepsize, see the explanations related to the obtaining of the “exact” solution that are given 
in Sect. 6) and the numerical solution, which is calculated by using the method, which will be discussed 
in Sect. 5, are given in the two plots
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(a) EULERB (the First Order Backward Differentiation Formula),
(b) DIRK23 (a two-stage third-order Diagonally Implicit Runge–Kutta Method)
  and
(c) FIRK35 (a three-stage fifth-order Fully Implicit Runge–Kutta Method).

3.1  Introduction of EULERB

The first of the three selected numerical methods, EULERB, is the well-known and 
often used First Order Backward Differentiation Formula (called also the Implicit Euler 
Method or Backward Euler Method). EULERB is a one-stage first-order IRKM that is 
based on the use of the following formula:

The method is very robust and has good stability properties (L-stable, see [14, 18]), 
but it is not very accurate.

3.2  Introduction of DIRK23

The second of the three selected numerical methods, DIRK23, is a two-stage third-
order Diagonally Implicit Runge–Kutta Method, which is based on the following 
formulae:

DIRK23 has good stability properties (being an A-stable method, [18]) and it is 
more accurate than EULERB, but it is more time-consuming too. At every time-step 
it is necessary to handle successively the two non-linear systems of algebraic Eqs. (4) 
and (5), each of which contains s equations, while only one such system is to be solved 
when EULERB is used.

3.3  Introduction of FIRK35

The third of the three selected numerical methods, FIRK35, is a three-stage fifth-order 
Fully Implicit Runge–Kutta Method based on the following formulae:

(2)yn = yn−1 + hnf(tn, yn), n ∈ {1, 2, … , N}.

(3)yn = yn−1 + 0.5hn
�
kn
1
+ kn

2

�
, n ∈ {1, 2,… , N},

(4)kn
1
= f

�
tn−1 +

3 +
√
3

6
hn, yn−1 +

3 +
√
3

6
hnk

n
1

�
,

(5)kn
2
= f

�
tn−1 +

3 −
√
3

6
hn, yn−1 −

√
3

3
hnk

n
1
+

3 +
√
3

6
hnk

n
2

�
.
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FIRK35 is much more accurate than EULERB and DIRK23. It has excellent sta-
bility properties, being L-stable, [14, 18]. However, it is much more time-consuming 
than the other two numerical methods, because one has to handle the systems of 3s 
non-linear algebraic equations formed by (7), (8), and (9) at every step n , while systems 
of s non-linear algebraic equations are to be solved at each step when EULERB and 
DIRK23 are used.

4  Applying advanced versions of the Richardson Extrapolation

Any of the introduced in the previous section IRKMs can be used in combination with 
nine advanced versions of the Richardson Extrapolation, which were introduced and 
studied in [33, 34]. These versions can be applied in order to increase the order of accu-
racy and/or to obtain reliable error estimations.

The theory of the Advanced Richardson Extrapolation can be based on the four 
important theorems, which are listed below without proofs (the proofs can be found in 
[33, 34]).

It should be mentioned here that all results presented in [33, 34] and formulated 
below are valid for one-step methods for solving systems of ODEs. However, these the-
orems are also valid for Runge–Kutta methods, because the class of the Runge–Kutta 
methods is a sub-class of the class of one-step methods.

The first theorem is telling us how to obtain each of the nine advanced versions of 
the Richardson Extrapolation.

The second theorem is providing results related to the accuracy of the advanced ver-
sions of the Richardson Extrapolation.

The third theorem is establishing rules for the calculation of reliable error estima-
tions by using the advanced versions of the Richardson Extrapolation.

The fourth theorem is telling us how to obtain information about the stability prop-
erties of the different versions of the Richardson Extrapolation.

(6)yn = yn−1 +
16 −

√
6

36
hnk

n
1
+

16 +
√
6

36
hnk

n
2
+

1

9
hnk

n
3
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(7)
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1
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�
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4.1  Derivation of nine advanced versions of the Richardson Extrapolation

Theorem  1 Let y[q]
0

= y(a) = η for ∀q ∈ {0, 1,… , 8} . Assume that some integer 
q ∈ {0, 1,… , 8} has been selected and that y[q]

n−1
∈ ℝ

s is available. Calculate first 
q + 2 auxiliary vectors z[0]

n
 , z[1]

n
 , …, z[q+1]n  in ℝs by using y[q]

n−1
 together with any one-

step method and by performing respectively 1, 2,… , 2q+1 steps with stepsizes h , h∕2 , 
…, h∕2q+1 . Then vector y[q]n  (the q-Times Repeated Richardson Extrapolation, the q 
TRRE) can be obtained by using the following two formulae:

The first term in P[q]
n

 is obtained by multiplying the first term in S[q] with z[q+1]n  , the 
second term in P[q]

n
 is obtained by multiplying the second term in S[q] with z[q]n  and 

one must continue in this way. The last term in P[q]
n

 is obtained by multiplying the 
last term in S[q] with z[0]

n
.

Note that any of the three IRKMs discussed in the previous sections can be used 
in the calculation of the approximations z[0]

n
 , z[1]

n
 , …, z[q+1]n  , but one can also apply 

any other IRKM or even an arbitrary one-step method as stated in Theorem 1.
Three examples for advanced Richardson Extrapolation formulae are given 

below (all other formulae can be found in [33, 34]).

Classical Richardson Extrapolation, CRE:

Repeated Richardson Extrapolation, RRE:

Two-Times Repeated Richardson Extrapolation, 2TRRE:

(10)y[q]
n

=
P[q]
n

�
z
[q + 1]
n , z

[q]
n ,… , z[0]

n

�

S[q]
,

(11)S[q] =

q+1�

j=1

�
2p+j−1 − 1

�
.

(12)y[0]
n

=
P[0]
n

S[0]
=

2pz[1]
n

− z[0]
n

2p − 1
.

(13)y[1]
n

=
P[1]
n

S[1]
=

22p+1z[2]
n

− 3(2p)z[1]
n

+ z[0]
n

22p+1 − 3(2p) + 1
.

(14)y[2]
n

=
P[2]
n

S[2]
=

23p+3z[3]
n

− 7
�
22p+1

�
z[2]
n

+ 7(2p)z[1]
n

− z[0]
n

23p+3 − 7
�
22p+1

�
+ 7(2p) − 1

.
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4.2  Accuracy of the advanced versions of the Richardson Extrapolation

Theorem 2 Consider an arbitrary one-step method for solving non-linear systems 
of ODEs dy∕dt = f(t, y) . Assume that

(a) the order of accuracy of the selected one-step method is p ≥ 1

and
(b) it is used together with a q TRRE where 0 ≤ q ≤ 8.

Then the order of accuracy of the approximation y[q]n  (where vector y[q]n  is calcu-
lated as shown in Theorem 1) is at least p + q + 1 when the function f in the right-
hand-side of the system of ODEs dy∕dt = f(t, y) is at least p + q + 1 times continu-
ously differentiable.

The nine advanced versions of the Richardson Extrapolation, the abbreviations 
used in this paper (as well as in [33, 34]) and their orders of accuracy, according 
to Theorem 2, are listed in Table 2.

4.3  Error estimators for the advanced versions of the Richardson Extrapolation

Theorem 3 Assume that z[0]
n

 , z[1]
n

 , y[q−1]n  and y[q]n  are calculated as shown in Theo-
rem 1 as well as that the order of accuracy of the underlying one-step method is p . 
Then error estimations at step n , where n = 1, 2,… , N , can be obtained by using the 
following two formulae:

Table 2  The nine versions of the Richardson Extrapolation, the abbreviations that will be used in the 
remaining part of this paper and the orders of accuracy are given in this table

The integer p used in the last column of the table is the order of accuracy of the underlying numerical 
method for solving numerically systems of ODEs. This means that p = 1 , p = 3 and p = 5 when EUL-
ERB, DIRK23 and FIRK35 are respectively used. The Classical Richardson Extrapolation (the CRE) 
was introduced in [20]. Some properties of the Repeated Richardson Extrapolation (the RRE) were stud-
ied in [8]

q Names of the nine versions Abbreviation Order of 
accuracy

0 Classical Richardson Extrapolation CRE p + 1
1 Repeated Richardson Extrapolation RRE p + 2
2 Two Times Repeated Richardson Extrapolation 2TRRE p + 3
3 Three Times Repeated Richardson Extrapolation 3TRRE p + 4
4 Four Times Repeated Richardson Extrapolation 4TRRE p + 5
5 Five Times Repeated Richardson Extrapolation 5TRRE p + 6
6 Six Times Repeated Richardson Extrapolation 6TRRE p + 7
7 Seven Times Repeated Richardson Extrapolation 7TRRE p + 8
8 Eight Times Repeated Richardson Extrapolation 8TRRE p + 9
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and

Remark 1 Formula (16) is explaining the general rule that is used in the calculation 
of EST[pq]n  , q ∈ {1, 2,… , 8} , but in the practical computations there is no need to 
calculate vector y[q−1]n  . The difference in the right-hand-side of (16) can easily be 
expressed by applying, as in (15), the vectors z[k]

n
 , k = 0, 1,… , q + 1, which must 

nevertheless be calculated and used in the computation of y[q]n  , see Theorem 1.

Two examples, the error estimations for q = 1 and q = 2 , are given below. All for-
mulae related to the error estimations, when different versions of the Richardson 
Extrapolation are used with q > 2 , are given in [33].

Error estimation for the Repeated Richardson Extrapolation, RRE:

Error estimation for the Two-Times Repeated Richardson Extrapolation, 2TRRE:

4.4  Stability properties of the advanced versions of the Richardson Extrapolation

Theorem 4 If 0 ≤ q ≤ 8 and � ∈ ℂ
− , then the value of the stability function of the 

qTRRE can be calculated by using the following formula:

where S[q] is defined by (11) and R(ν) is the value of the stability function of the 
underlying numerical method for solving systems of ODEs.

The formulae for all functions P
[q]

(R(ν)) , q ∈ {0, 1,… , 8} , are listed in [34]. The 
important issue is that if we know the value R(ν) of the stability function of the 
underlying one-step method for some ν ∈ ℂ

− , then we are able to calculate, by 
using (19), the values of the stability functions R[q](ν) of all advanced versions 
of the Richardson Extrapolation, i.e. the values of the stability functions for all 
q ∈ {0, 1,… , 8}.

(15)EST
[p0]
n =

z[1]
n

− z[0]
n

2p − 1

(16)EST
[pq]
n = y

[q]
n − y

[q−1]
n , q ∈ {1, 2,… , 8}.

(17)EST
[p1]
n =

2pz[2]
n

− (2p + 1)z[1]
n

+ z[0]
n

22p+1 − 3(2p) + 1
.

(18)EST
[p2]
n =

22p+1z[3]
n

−
�
22p+1 + 3 ⋅ 2p

�
z[2]
n

+ (3 ⋅ 2p + 1)z[1]
n

− z[0]
n

23p+3 − 7
�
22p+1

�
+ 7(2p) − 1

.

(19)R[q](ν) =
P
[q]

(R(ν))

S[q]
,
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There are many different stability definitions (see [3, 4, 13, 14, 17, 21]). The 
result presented in (19) is valid for any stability function used in the different 
definitions. However, the classical definition for absolute stability, which was 
introduced by G. Dahlquist in 1963, [9], is used in all calculations, which are dis-
cussed in the remaining part of this section. Some results from these calculations 
are presented in Fig. 2. It is explained below how these results were obtained.

If we calculate the values of  R[q](ν)  for some q ∈ {0, 1,… , 8} on a sufficiently 
dense regular set of points ν ∈ ℂ

− , then we shall be able to obtain reliable infor-
mation about the stability of the qTRRE in the continuous domain containing this 
set of points.

The idea sketched in the previous paragraph was implemented in the following 
way. Consider the square SQ in the negative part of the complex plane with vertices 
the coordinates of which are given by (0.0, 0.0), �0.0, 105i�, �−105, 105i�, �−105, 0.0� . Dis-
cretize the square SQ by using an equidistant set PSQ of grid-points on the lines 
parallel to the coordinate axes such that the distance between two neighbour grid-
points (either in the vertical direction or in the horizontal direction) is d = 0.001 . It 
is clear that the total number of grid-points in PSQ is O(1016) . The values of the 
function R[q](ν) were calculated for all ν ∈ PSQ by using each of the three 

Fig. 2  Part of the absolute stability region of the three-stage fifth-order Fully Implicit Runge–Kutta 
Method (FIRK35) combined with the Seven Times Repeated Richardson Extrapolation (7TRRE). There 
are only some points in the small square near the origin of the coordinate system where ���R

[7](ν)
��� ≥ 1 . 

This means that instability may occur if the Jacobian matrix of function f  of the system dy∕dt = f(t, y) 
has eigenvalues close to the origin of the coordinate system (Color figure online)
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underlying Implicit Runge–Kutta Methods (IRKMs) for solving ODEs from Sect. 3 
with all q ∈ {0, 1,… , 8} , i.e. with all nine advanced versions of the Richardson 
Extrapolation discussed in Sect. 4. The results from the 27 runs (the runs with the 
three underlying methods for solving ODEs, each of these methods being combined 
with all nine versions of the Richardson Extrapolation) were very similar. It is clear 
that one should expect the computations to remain stable when the condition 
���R
[q](ν)

��� < 1.0 is satisfied. This condition was fulfilled in all runs for all points in 
the set PSQ , excepting only a few points near the origin of the coordinate system.

One example, which is an illustration of the conclusion made above, is given in 
Fig. 2. The three-stage fifth-order Fully Implicit Runge–Kutta Method, the FIRK35, 
is used in this example together with the Seven-Times Repeated Richardson Extrap-
olation, the 7TRRE, to obtain the results, which are shown in the plot given in 
Fig. 2. It shows the domain where one should expect the computational process to 
remain stable because ���R

[q](ν)
��� < 1.0 for all points in this domain. The inequality 

���R
[q](ν)

��� ≥ 1.0 holds only for a few points located near the origin of the coordinate 
system. This means that one must be careful if the Jacobian matrix of function f has 
small eigenvalues with negative real parts that are close to the imaginary axis.

As mentioned above very similar results, as those shown in Fig. 2, were obtained 
in the other 26 runs.

It should also be mentioned that the inequality ���R
[0](ν)

��� < 1.0 is satisfied for 
∀ν ∈ PSQ when the Classical Richardson Extrapolation, CRE, is combined with 
EULERB and DIRK23. This indicates that the combinations of CRE with EULERB 
and DIRK23 are stable in the whole square SQ.

It must be emphasized that the investigation of the stability of the advanced ver-
sions of the Richardson Extrapolation is very important and must always be carried 
out. The following fact explains why this is so. The combination of the Classical 
Richardson Extrapolation, the CRE, with the well-known Trapezoidal Rule (which 
is A-stable), results in an unstable numerical method, see [9].

5  Development of a variable stepsize variable formula method

It is clear (see the last column in Table 2) that the accuracy of the computational 
process can be increased very considerably when the value of parameter q is 
increased. For example, the order of accuracy is becoming 14 when the 8TRRE is 
used together with FIRK35. However, it is necessary to pay something for the high 
accuracy: the computational work is also increased very considerably. This explains 
why it is worthwhile to carry out the computations with an attempt to keep both the 
error of the calculated solution and the number of the computational operations suf-
ficiently small. This aim can be achieved by selecting, at each step n ∈ {1, 2,… , N} 
of the computational process, as large as possible stepsize hn and a version qTRRE 
with as small as possible value of parameter q ∈ {0, 1,… , 8} under the essential 
requirement that the computational error remains sufficiently small (according to a 
prescribed error tolerance TOL > 0 ). This means that it is necessary to develop a 
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Variable Stepsize Variable Formula Method (a VSVFM) in an attempt to optimize 
the computational process.

VSVFMs have been studied in many papers. Some ideas from [25–28] are used in 
the derivation of the algorithm, which is described below.

The major rules used in our Variable Stepsize Variable Formula Method, our 
VSVFM, which is based on the application of any of the three underlying IRKMs 
presented in Sect.  3 together with the nine advanced versions of the Richardson 
Extrapolation from Sect. 4, are sketched below.

A key parameter RATIO is calculated at every time-step by using the formula:

The value of the integer q is telling us what is the particular version of the 
Richardson Extrapolation which is used at step n . The integer  p  is the order of 
the underlying numerical method for solving systems of ODEs. The coefficient δ 
( δ < 1.0 ), from the right-hand-side of (20), is a precaution factor used always in the 
preparation of VSVFMs (see, for example, [18]); δ = 0.9 is selected in all experi-
ments results of which are presented in this paper.

The five major actions, which are to be performed at the end of any step  n 
( n = 1, 2,⋯ , N ), can be formulated as shown in Table 3. It is clearly seen that all 
these actions depend essentially on the value of parameter RATIO.

It should be emphasized that only the most important actions are described in 
Table 3. Several additional rules must also be used. For example, no new increase 
of the stepsize is in general allowed several steps after increasing it. This rule is 
useful, because the theory, on which the numerical methods for solving systems of 
ODEs are based, is strictly speaking valid only in the case where a constant stepsize 
is used. Therefore, the stepsize should not be varied too often and/or with a too large 
amount. There is a parameter WAIT in the program, which is used to keep the same 
stepsize at least during two consecutive steps. However, if the check of parameter 
RATIO indicates that either Case 4 or Case 5 (see Table 3) has taken place, then 
the step is always rejected and the computations are repeated by applying a reduced 
stepsize.

6  Numerical results

The chemical scheme with 56 species was run over a time-interval of 24 h, start-
ing at 12 o’clock at a given day and finishing at 12 o’clock on the next day. This 
is a very relevant and important choice, because this interval contains the periods 
of changes from day-time to night-time and from night-time to day-time when 
some chemical species vary very quickly (see the plots given in Fig.  1) and can 
cause great problems for the numerical methods. The time is measured in seconds. 
This means that the time-interval, which is actually used in all computations, was 
[a, b] = [43200, 129600] . This interval was divided into 168 sub-intervals (the 

(20)

RATIO = δ

�
TOL

EST
[pq]
n

� 1

p+q+1

, n = 1, 2,… , N, q = 0, 1, … , 8, p = 1, 3 or 5.
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length of each sub-interval being approximately 514.285 seconds) and the “exact” 
solution was calculated at the end of each sub-interval by applying a constant step-
size h = 10−5 and by running FIRK35 combined with the 8TRRE.

6.1  Accuracy results

All three numerical methods from Sect.  3 were run with different values of the 
error tolerance TOL, but the code was always forced to reach the end-point 
of each of the 168 sub-intervals and the achieved accuracy at the end of each of 
the 168 sub-intervals of the interval [a, b] was checked by using the formula 
‖yexact − ycalculated‖2∕max(‖yexact‖2, 10−6).

Table 4  Results obtained by running DIRK23 combined with different versions of the Richardson 
Extrapolation used as a VSVFM

Five different values of the error tolerance TOL are used and the code is always trying to keep the order 
of the local error estimation (which is calculated during the different runs) approximately equal to TOL

TOL Successful steps Rejected steps Exact maximal error Estimated maximal error

10−7 342 0 9.203 * 10−8 6.384 * 10−8

10−8 428 0 1.906 * 10−8 4.655 * 10−9

10−9 362 0 3.128 * 10−9 4.791 * 10−10

10−10 925 0 3.932 * 10−10 3.703 * 10−11

10−11 3231 10 9.882 * 10−12 3.473 * 10−12

Table 5  Results obtained by running FIRK35 combined with different versions of the Richardson 
Extrapolation used as a VSVFM

Eleven different values of the error tolerance TOL are used and the code is trying to keep the order of the 
local error estimation (which is calculated during the different runs) approximately equal to TOL

TOL Successful steps Rejected steps Exact maximal error Estimated 
maximal 
error

10−10 349 0 1.528E−11 4.770E−11

10−11 359 0 5.188E−12 7.807E−12

10−12 430 3 7.031E−13 8.479E−13

10−13 532 6 7.531E−14 8.337E−14

10−14 571 8 1.014E−14 9.979E−15

10−15 786 9 4.947E−15 9.475E−16

10−16 1074 13 3.184E−16 9.933E−17

10−17 619 9 2.593E−17 4.544E−19

10−18 1245 9 1.602E−17 6.809E−19

10−19 1381 20 1.059E−18 9.332E−20

10−20 1023 17 5.133E−19 9.507E−21



233

1 3

Journal of Mathematical Chemistry (2022) 60:219–238 

We started with DIRK23 and used five values of parameter TOL . The results, 
which are given in Table 4 show clearly that the VSVFM algorithm, the major prop-
erties of which were described in Table 3, is working very well in this situation.

Much more accurate results can be achieved, as shown in Table 5, when FIRK35 
is used with eleven values of the error tolerance TOL.

Finally, if one is not interested in achieving high accuracy, then EULERB can be 
used with large values of the error tolerance. This is demonstrated in Table 6, where 
five values of TOL are used.

The results shown in Tables 4, 5 and 6 indicate that the number of steps is in gen-
eral not changed too much when the value of the error tolerance TOL is varied. The 
figures presented in Table 7 explain why this is so: decreasing the value of the error 
tolerance, i.e. the increase of the accuracy requirements, leads in most of the cases 
not to a decrease of the stepsize, but to the selection of more accurate versions of the 
Richardson Extrapolation. This is important in the efforts to achieve some compu-
tational balance, because the use of Variable Stepsize Variable Formula Methods, 
VSVFMs, require some extra checks and calculations at each step, which are needed 
in the efforts to find the answers to the following questions:

(a) Is the step successful or should it be rejected?
(b) Should the stepsize be increased and, if this is the case, by how much should it 

be increased?
(c) Should the stepsize be decreased and, if this is the case, by how much should it 

be decreased?

Table 6  Results obtained by running EULERB combined with different versions of the Richardson 
Extrapolation used as a VSVFM

Five different values of the error tolerance TOL are used and the code is trying to keep the order of the 
local error estimation (which is calculated during the different runs) approximately equal to TOL

Successful steps Rejected steps Exact maximal error Estimated 
maximal 
error

10−2 345 0 1.054 * 10−1 8.428 * 10−3

10−3 348 0 4.092 * 10−2 7.153 * 10−4

10−4 411 4 9.614 * 10−3 8.191 * 10−5

10−5 434 10 2.048 * 10−3 6.522 * 10−6

10−6 456 2 7.588 * 10−5 9.217 * 10−7

Table 7  Numbers of calls of different versions of the Richardson Extrapolation when two values of the 
error tolerance TOL are used in runs where the underlying method is FIRK35

TOL CRE RRE 2TRRE 3TRRE 4TRRE 5TRRE 6TRRE 7TRRE 8TRRE

10−11 213 93 21 15 8 3 1 3 2

10−20 3 156 96 266 221 136 95 49 18
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It is important to avoid, if possible, the use of expensive Richardson Extrapola-
tion versions. The results from many runs (not only the runs reported in this section) 
indicate that the most expensive versions of the Richardson Extrapolation are used 
only a few times even in the cases where the error tolerance is extremely small. This 
is illustrated in Table 7. If the error tolerance is TOL = 10−11 , then the most time 
consuming version of the Richardson Extrapolation, the 8TRRE, is called only two 
times (see the first line of Table 7). Even if TOL = 10−20 , 8TRRE was called only 
18 times. This is very small number compared with the total number of steps (com-
pare the figures given in the second line of Table 7).

It should be mentioned here that all runs, results from which were presented in 
this sub-section, were performed by using extended computer precision (i.e. work-
ing with about 32 significant digits of the real numbers).

6.2  Diurnal variations of some chemical species

The diurnal variations of two chemical species were shown in Fig.  1 in order to 
illustrate the fact that sharp gradients may appear in some short intervals (during 
changes from night-time to day time and from day time to night-time). The diur-
nal variations do not necessarily lead to the creation of sharp gradients. This fact 
is demonstrated in some of the plots shown in Fig. 3, where the diurnal variations 
of six of the 56 chemical species are presented. As in Fig. 1, two curves are given 
in each plot: one of these curves is presenting the numerical solution calculated by 
the code (by using error tolerance TOL = 0.001 in this particular case), the other 
one the “exact solution” calculated by using a very small stepsize. It is seen that the 
calculated solution is very close to the “exact solution” on the whole interval of 24 h 
(86,400 s).

7  Concluding remarks

Remark 2 About the stability of the computational process. The three underly-
ing numerical methods, the three IRKMs, have excellent stability properties (see 
Sect. 3). However, there is a danger that the combinations of any of these methods 
with some of the versions of the Richardson Extrapolation may result in unstable 
computational process (see Sect. 4 and the comments related to Fig. 2). Our experi-
ments show that the combination of any of the underlying numerical methods with 
any of the nine versions of the Richardson Extrapolation is producing stable results. 
The instability problems are avoided because the VSVFM is changing automatically 
the stepsize and/or the value of q every time when numerical difficulties appear.

Remark 3 About the use of other underlying numerical methods for solving ODEs. 
The results presented in Sect. 6 were obtained by applying the same rules for chang-
ing the stepsize and the version of the Richardson Extrapolation when the three dif-
ferent underlying methods for solving ODEs, which were introduced in Sect. 3, are 
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used. This fact indicates that the strategy for varying the stepsize and the Richard-
son Extrapolation versions does not depend too much on the underlying methods and 
other underlying methods can also be selected and successfully used. However, it must 
be emphasized here that it is important to investigate the stability properties of the 

Fig. 3  Diurnal variation of six chemical species. Both the “exact” solution (the solution calculated with a 
very small stepsize) and the numerical solution (calculated by using the VSVFM, which was discussed in 
Sect. 5) are given in the six plots
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combinations of the selected underlying method with all nine versions of the Richard-
son Extrapolation (the same rules as those explained after Theorem 4 may be used).

Remark 4 About the reduction of the number of advanced versions of the Richard-
son Extrapolation used in the code. The numerical results indicate that the com-
putationally expensive versions of the Richardson Extrapolation are not used often 
when the algorithm sketched in Table 3 is used. If one wishes to be sure that these 
versions will never be used during the runs, then the algorithm described in Table 3 
could be slightly modified in order to prevent the use of expensive versions. If the 
required accuracy is not very high and/or if the solved problem is not very diffi-
cult, then it might be worthwhile to introduce a parameter MAX_q ≤ 8 so that if, for 
example, MAX_q = 2 , then only the first three versions of the Richardson Extrapo-
lation (with q = 0 , q = 1 and q = 2 ) will be used in the run. Some other values of 
parameter MAX_q , with q ∈ {0, 1,… , 8} , can also be selected and used.

Remark 5 About the used chemical scheme. We were mainly interested in the effi-
cient implementation of advanced versions of the Richardson Extrapolation together 
with three underlying Implicit Runge–Kutta Methods. Therefore, the properties 
of the used chemical scheme were shortly described. The important issue is that 
the described algorithms are not depending very much on the particular chemical 
scheme that is used and can also be applied if other chemical schemes are selected. 
Some more details about the treatment of the chemical schemes in the air pollu-
tion models can be found in [29, 31]. Information about other atmospheric chemical 
schemes, which can be used in large-scale air pollution models can be found, for 
example, in [1, 2, 5–7, 10, 11, 15, 16, 19, 22–24].
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