7 research outputs found

    Nonrepetitive Colourings of Planar Graphs with O(logn)O(\log n) Colours

    Get PDF
    A vertex colouring of a graph is \emph{nonrepetitive} if there is no path for which the first half of the path is assigned the same sequence of colours as the second half. The \emph{nonrepetitive chromatic number} of a graph GG is the minimum integer kk such that GG has a nonrepetitive kk-colouring. Whether planar graphs have bounded nonrepetitive chromatic number is one of the most important open problems in the field. Despite this, the best known upper bound is O(n)O(\sqrt{n}) for nn-vertex planar graphs. We prove a O(logn)O(\log n) upper bound

    Connection Matrices and the Definability of Graph Parameters

    Full text link
    In this paper we extend and prove in detail the Finite Rank Theorem for connection matrices of graph parameters definable in Monadic Second Order Logic with counting (CMSOL) from B. Godlin, T. Kotek and J.A. Makowsky (2008) and J.A. Makowsky (2009). We demonstrate its vast applicability in simplifying known and new non-definability results of graph properties and finding new non-definability results for graph parameters. We also prove a Feferman-Vaught Theorem for the logic CFOL, First Order Logic with the modular counting quantifiers

    Nonrepetitive Colouring via Entropy Compression

    Full text link
    A vertex colouring of a graph is \emph{nonrepetitive} if there is no path whose first half receives the same sequence of colours as the second half. A graph is nonrepetitively kk-choosable if given lists of at least kk colours at each vertex, there is a nonrepetitive colouring such that each vertex is coloured from its own list. It is known that every graph with maximum degree Δ\Delta is cΔ2c\Delta^2-choosable, for some constant cc. We prove this result with c=1c=1 (ignoring lower order terms). We then prove that every subdivision of a graph with sufficiently many division vertices per edge is nonrepetitively 5-choosable. The proofs of both these results are based on the Moser-Tardos entropy-compression method, and a recent extension by Grytczuk, Kozik and Micek for the nonrepetitive choosability of paths. Finally, we prove that every graph with pathwidth kk is nonrepetitively O(k2)O(k^{2})-colourable.Comment: v4: Minor changes made following helpful comments by the referee

    Characterisations and Examples of Graph Classes with Bounded Expansion

    Get PDF
    Classes with bounded expansion, which generalise classes that exclude a topological minor, have recently been introduced by Ne\v{s}et\v{r}il and Ossona de Mendez. These classes are defined by the fact that the maximum average degree of a shallow minor of a graph in the class is bounded by a function of the depth of the shallow minor. Several linear-time algorithms are known for bounded expansion classes (such as subgraph isomorphism testing), and they allow restricted homomorphism dualities, amongst other desirable properties. In this paper we establish two new characterisations of bounded expansion classes, one in terms of so-called topological parameters, the other in terms of controlling dense parts. The latter characterisation is then used to show that the notion of bounded expansion is compatible with Erd\"os-R\'enyi model of random graphs with constant average degree. In particular, we prove that for every fixed d>0d>0, there exists a class with bounded expansion, such that a random graph of order nn and edge probability d/nd/n asymptotically almost surely belongs to the class. We then present several new examples of classes with bounded expansion that do not exclude some topological minor, and appear naturally in the context of graph drawing or graph colouring. In particular, we prove that the following classes have bounded expansion: graphs that can be drawn in the plane with a bounded number of crossings per edge, graphs with bounded stack number, graphs with bounded queue number, and graphs with bounded non-repetitive chromatic number. We also prove that graphs with `linear' crossing number are contained in a topologically-closed class, while graphs with bounded crossing number are contained in a minor-closed class
    corecore