24,869 research outputs found

    Models for Paired Comparison Data: A Review with Emphasis on Dependent Data

    Get PDF
    Thurstonian and Bradley-Terry models are the most commonly applied models in the analysis of paired comparison data. Since their introduction, numerous developments have been proposed in different areas. This paper provides an updated overview of these extensions, including how to account for object- and subject-specific covariates and how to deal with ordinal paired comparison data. Special emphasis is given to models for dependent comparisons. Although these models are more realistic, their use is complicated by numerical difficulties. We therefore concentrate on implementation issues. In particular, a pairwise likelihood approach is explored for models for dependent paired comparison data, and a simulation study is carried out to compare the performance of maximum pairwise likelihood with other limited information estimation methods. The methodology is illustrated throughout using a real data set about university paired comparisons performed by students.Comment: Published in at http://dx.doi.org/10.1214/12-STS396 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Thurstonian Scaling of Compositional Questionnaire Data

    Get PDF
    To prevent response biases, personality questionnaires may use comparative response formats. These include forced choice, where respondents choose among a number of items, and quantitative comparisons, where respondents indicate the extent to which items are preferred to each other. The present article extends Thurstonian modeling of binary choice data (Brown & Maydeu-Olivares, 2011a) to “proportion-of-total” (compositional) formats. Following Aitchison (1982), compositional item data are transformed into log-ratios, conceptualized as differences of latent item utilities. The mean and covariance structure of the log-ratios is modelled using Confirmatory Factor Analysis (CFA), where the item utilities are first-order factors, and personal attributes measured by a questionnaire are second-order factors. A simulation study with two sample sizes, N=300 and N=1000, shows that the method provides very good recovery of true parameters and near-nominal rejection rates. The approach is illustrated with empirical data from N=317 students, comparing model parameters obtained with compositional and Likert scale versions of a Big Five measure. The results show that the proposed model successfully captures the latent structures and person scores on the measured traits

    Beyond Classification: Latent User Interests Profiling from Visual Contents Analysis

    Full text link
    User preference profiling is an important task in modern online social networks (OSN). With the proliferation of image-centric social platforms, such as Pinterest, visual contents have become one of the most informative data streams for understanding user preferences. Traditional approaches usually treat visual content analysis as a general classification problem where one or more labels are assigned to each image. Although such an approach simplifies the process of image analysis, it misses the rich context and visual cues that play an important role in people's perception of images. In this paper, we explore the possibilities of learning a user's latent visual preferences directly from image contents. We propose a distance metric learning method based on Deep Convolutional Neural Networks (CNN) to directly extract similarity information from visual contents and use the derived distance metric to mine individual users' fine-grained visual preferences. Through our preliminary experiments using data from 5,790 Pinterest users, we show that even for the images within the same category, each user possesses distinct and individually-identifiable visual preferences that are consistent over their lifetime. Our results underscore the untapped potential of finer-grained visual preference profiling in understanding users' preferences.Comment: 2015 IEEE 15th International Conference on Data Mining Workshop

    How to reduce the number of rating scale items without predictability loss?

    Get PDF
    Rating scales are used to elicit data about qualitative entities (e.g., research collaboration). This study presents an innovative method for reducing the number of rating scale items without the predictability loss. The "area under the receiver operator curve method" (AUC ROC) is used. The presented method has reduced the number of rating scale items (variables) to 28.57\% (from 21 to 6) making over 70\% of collected data unnecessary. Results have been verified by two methods of analysis: Graded Response Model (GRM) and Confirmatory Factor Analysis (CFA). GRM revealed that the new method differentiates observations of high and middle scores. CFA proved that the reliability of the rating scale has not deteriorated by the scale item reduction. Both statistical analysis evidenced usefulness of the AUC ROC reduction method.Comment: 14 pages, 5 figure
    • 

    corecore