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Models for paired comparison data: a review with emphasis
on dependent data

Manuela Cattelan

Department of Statistical Sciences
University of Padua
Italy

Abstract: Thurstonian and Bradley-Terry models are the most commonly applied models
in the analysis of paired comparison data. Since their introduction, numerous developments
of those models have been proposed in different areas. This paper provides an updated
overview of these extensions, including how to account for object- and subject-specific co-
variates and how to deal with ordinal paired comparison data. Special emphasis is given to
models for dependent comparisons. Although these models are more realistic, their use is
complicated by numerical difficulties. We therefore concentrate on implementation issues.
In particular, a pairwise likelihood approach is explored for models for dependent paired
comparison data and a simulation study is carried out to compare the performance of max-
imum pairwise likelihood with other methods, such as limited information estimation. The
methodology is illustrated throughout using a real data set about university paired compar-
isons performed by students.

Keywords: Bradley-Terry model, limited information estimation, paired comparisons, pair-
wise likelihood, Thurstonian models.

1 Introduction

Paired comparison data originate from the comparison of objects in couples. This
type of data arises in numerous contexts, especially when the judgement of a person
is involved. Indeed, it is easier for people to compare pairs of objects than ranking a
list of items. There are other situations that may be regarded as comparisons from
which a winner and a loser can be identified without the presence of a judge. Both
these instances can be analysed by the techniques described in this paper.

Since paired comparison data occur in various fields, the literature about their
analysis is spread over numerous disciplines which use different terminologies. In
fact, the objects involved in the paired comparisons can be beverages, carbon type-
writer ribbons, lotteries, players, moral values, physical stimuli and many more.
Here, the elements that are compared are called objects or sometimes stimuli. The
paired comparisons can be performed by a person, an agent, a consumer, a judge,
etc., so the terms subject or judge will be employed to denote the person that makes
the choice, whenever there is one.

The bibliography by Davidson and Farquhar (1976), which includes more than
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350 papers related to paired comparison data, testifies the widespread interest for
this type of data. This interest is still present, especially in the psychometric and
the statistical literature in which various developments and extensions of models
for paired comparison data have been proposed. These extensions are most often
based on the Thurstone (1927) and the Bradley-Terry (Bradley and Terry, 1952)
models. The paper focuses on recent extensions of the two models, especially those
subsequent to the review by Bradley (1976) and the monograph by David (1988),
including in particular the work that has been done in the statistical and the psy-
chometric literature.

The two classical models for the analysis of paired comparison data are presented
in Section 2, while extensions for ordinal paired comparison data are reviewed in
Section 3. Section 4 surveys how explanatory variables can be included in the
model. Section 5 reviews models that include dependence among the observations
and outlines the inferential problems related to such an extension. Here, a pairwise
likelihood approach is proposed to estimate these models and a simulation study
is performed in order to compare the estimates produced by maximum likelihood,
limited information estimation and pairwise likelihood. Section 6 reviews existing
R (R Development Core Team, 2011) packages for the statistical analysis of paired
comparison data and Section 7 concludes.

2 Linear models

Let Ysij denote the random variable associated with the result of the paired compar-
ison between object i and j, j > i = 1, . . . , n, made by subject s = 1, . . . , S and let
Y s = (Ys 12, . . . , Ys n−1 n) be the vector of the results of all paired comparisons made
by subject s. When s = 1 or the difference between judges is not accounted for in the
model, then the subscript s will be dropped. If all paired comparisons are performed,
they number N = n(n− 1)/2 when there is just one judge and SN = Sn(n− 1)/2
in a multiple judgement sampling scheme, that is when all paired comparisons are
made by all S subjects.

Let µi ∈ R, i = 1, . . . , n, denote the true worth of the objects. Traditional
models were developed assuming only two possible outcomes of the comparisons, so
Yij is a binary random variable and πij , the probability that object i is preferred to
object j, depends on the difference between the worth of the two objects

πij = F (µi − µj), (1)

where F is a symmetric distribution function. Such models are called linear models
by David (1988). When F is the normal cumulative distribution function, formula
(1) defines the Thurstone (1927) model, while if F is the logistic cumulative distribu-
tion function, then the Bradley-Terry model (Bradley and Terry, 1952) is recovered.
Other specifications are possible, for example Stern (1990) suggests to use a gamma
distribution. The Thurstone model is also known as the Thurstone-Mosteller model
since Mosteller (1951) presented some inferential techniques for the model, while
the Bradley-Terry model was independently proposed also by Zermelo (1929) and
Ford (1957). Indeed, an intuitive justification of the Bradley-Terry model is that,
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when only two outcomes are possible, the probability that i is preferred to j is
πij = πi/(πi + πj), where πi = expµi. Model (1) is called unstructured model and
the aim of the analysis is to make inference on the vector µ = (µ1, . . . , µn)′ of worth
parameters which can be used to determine a final ranking of all the objects com-
pared. Note that the specification of model (1) through all the pairwise differences
µi−µj implies that a constraint is needed in order to identify the parameters. Var-
ious constraints can be specified, for example the sum constraint,

∑n
i=1 µi = 0, or

the reference object constraint, µi = 0 for one object i ∈ {1, . . . , n}, can be used.
If it is of interest to make inference on contrasts between the worth parameters,

for example for testing H0 : µi = µj by means of the test statistic (µ̂i− µ̂j)/(var(µ̂i−
µ̂j))1/2, where µ̂i is the maximum likelihood estimator of µi, the whole covariance
matrix of the worth parameters is needed. However, it is very inconvenient to report
that matrix and a useful alternative may be to report quasi-standard errors (Firth
and Menezes, 2004) instead of the usual standard errors since they allow approximate
inference on any of the contrasts. In fact, quasi-standard errors can be employed for
making inference on the differences of worth parameters as if they were independent.

Interval estimation may present some problems, too. In fact, when the reference
object constrained is employed, there is no standard error for the fixed parameter.
The problem may be overcome by means of quasi-variances that allow the compu-
tation of quasi-confidence intervals for all parameters.

Example. A program supported by the European Union offers an international
degree in Economics and Management. Twelve universities take part in this pro-
gram, and in order to receive a degree, a student in the program must spend a
semester in another university joining the program. Usually, some universities re-
ceive more preferences than others and this may cause organisational problems. A
study was carried out among 303 students of the Vienna University of Economics
who were asked in which university they would prefer to spend the period abroad
between six universities situated in Barcelona, London, Milan, Paris, St. Gallen and
Stockholm compared pairwise. This example will be used throughout the paper with
an illustrative purpose. For an exhaustive analysis of the data refer to Dittrich et
al. (1998) and Dittrich et al. (2001). The data set is available in both the prefmod
(Hatzinger, 2010) and the BradleyTerry2 (Turner and Firth, 2010a) R packages,
see Section 6. Table 1 reports the aggregated data on the 15 paired comparisons.
For example, the first row shows that in the paired comparison between London
and Paris 186 students prefer London, 91 students prefer Paris and 26 students do
not have a preference between the two universities. Moreover, 91 students unin-
tentionally overlooked the comparison between Paris and Milan which has only 212
answers. Table 2 shows the estimate of the worth parameters for the six universities
using the Thurstone model and adding half of the number of no preferences to each
university in the paired comparison. In Section 3 a more proper way to handle no
preference data will be discussed. Here, the reference object constraint is used and
the worth of Stockholm is set to zero. The estimates show that Stockholm is the
least preferred university, while London is the most preferred one followed by Paris,
Barcelona, St. Gallen and Milan. The estimated probability that London is preferred
to Paris is Φ(0.982 − 0.561) = 0.66, where Φ denotes the cumulative distribution
function of a standard normal random variable. If it is of interest to test whether
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Table 1: Universities paired comparison data. 1 and 2 refer to the number of choices
in favour of the university in the fist and the second column, respectively, while X
denotes the number of no preferences expressed.

1 X 2
London Paris 186 26 91
London Milan 221 26 56
Paris Milan 121 32 59
London St. Gallen 208 22 73
Paris St. Gallen 165 19 119
Milan St. Gallen 135 28 140
London Barcelona 217 19 67
Paris Barcelona 157 37 109
Milan Barcelona 104 67 132
St. Gallen Barcelona 144 25 134
London Stockholm 250 19 34
Paris Stockholm 203 30 70
Milan Stockholm 157 46 100
St. Gallen Stockholm 155 50 98
Barcelona Stockholm 172 41 90

the worth of St. Gallen is significantly higher than the worth of Milan, the standard
error of the difference between these two worth parameters can be approximated
by means of the quasi-standard errors as (0.0302 + 0.0312)1/2 = 0.043. The value
of the test statistic is (0.325 − 0.240)/0.043 = 1.98, which yields a p-value of 0.02,
hence the hypothesis of equal worth parameters between St. Gallen and Milan is not
supported by the data.

Table 2: Estimates (Est.), standard errors (S.E.) and quasi-standard errors
(Q.S.E.) of the universities worth parameters employing a Thurstone model.

Est. S.E. Q.S.E.
Barcelona 0.333 0.043 0.030
London 0.982 0.045 0.033
Milan 0.240 0.044 0.031
Paris 0.561 0.044 0.031
St. Gallen 0.325 0.043 0.030
Stockholm 0 - 0.031
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2.1 Applications

There are many different areas in which paired comparison data arise. Here, only the
most recent applications are considered, further references can be found in Bradley
(1976), Davidson and Farquhar (1976) and David (1988).

When human perceptions are involved, it is easier to perform paired compar-
isons than ranking all the objects at once. Ellermeir et al. (2004) and Choiser and
Wickelmaier (2007) analyse pairwise evaluations of sounds, while Bäuml (1994) and
Kissler and Bäuml (2000) present applications involving facial attractiveness. Duin-
eveld et al. (2000) employ the Bradley-Terry model to analyse consumer preference
data on orange soft drinks, while Francis et al. (2002) transform partial rank data
into paired comparison data to study the value orientation of people in different Eu-
ropean countries. In Mazzucchi et al. (2008) the Bradley-Terry model is applied to
a reliability problem. A panel of wiring experts is asked to state which is the riskier
one between different scenarios compared pairwise in order to determine the proba-
bility of wire failure as a function of influencing factors in an aircraft environment.
Jerome et al. (2009) show that a questionnaire based on paired comparison data is a
suitable methodology to capture user voice as regards sexual health services. Finally,
Maydeu-Olivares and Böckenholt (2008) list 10 reasons to use Thurstone’s method
for modelling subjective health outcomes including the ease for respondents, the ex-
istence of extensions for modelling inconsistent choices and for including covariates
and the possibility to discover the determinants of the valuations.

There are also many instances in which paired comparisons arise even without
the presence of a judge, as in sport data. For example, Joe (1990) and Henery
(1992) employ the Bradley-Terry model and the Thurstone model, respectively, to
rank chess players. Applications to tennis data are shown in Agresti (2002) and
McHale and Morton (2011) while dynamic extensions for this type of data have
been proposed by Barry and Hartigan (1993), Fahrmeir and Tutz (1994), Knorr-
Held (2000) and Cattelan et al. (2010) whereas an extension for continuous data is
presented in Stern (2011). Stigler (1994) uses the Bradley-Terry model for ranking
scientific journals and the same model is exploited in genetics by Sham and Curtis
(1995). Many applications of the Bradley-Terry model can be found also in zoological
data in order to investigate aspects of animal behaviour (Stuart-Fox et al., 2006;
Whiting et al., 2006; Head et al., 2008).

3 Ordinal paired comparisons

Traditional models for the analysis of paired comparison data introduced in Section
2 where developed assuming only two outcomes. Extensions for the case of three
possible outcomes, in which a no preference judgement can be expressed or a tie can
occur are proposed by Glenn and David (1960) for the Thurstone-Mosteller model
and by Rao and Kupper (1967) and Davidson (1970) for the Bradley-Terry model.
Subsequently, the situation in which subjects are requested to express a degree of
preference has been considered (Agresti, 1992). Suppose that objects i and j are
compared and the subject can express strong preference for i over j, mild preference
for i, no preference, mild preference for j over i or strong preference for j. If H
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denotes the number of grades of the scale, then in this example H = 5.
Let Yij = 1, . . . ,H, where 1 denotes the least favourable response for i and H is

the most favourable response for i. Agresti (1992) shows how cumulative link and the
adjacent categories models for the analysis of ordinal data can be adapted to ordinal
paired comparison data. The cumulative link models exploit the latent random
variable representation. Let Zij be an underlying continuous random variable and
let τ1 < τ2 < . . . < τH−1 denote thresholds such that Yij = h when τh−1 < Zij ≤ τh.
Then,

pr(Yij ≤ yij) = F (τyij − µi + µj), (2)

where −∞ = τ0 < τ1 < . . . < τH−1 < τH =∞ and F is the cumulative distribution
function of the latent variable Zij . F can be either the logistic or the normal
distribution function leading to the cumulative logit or the cumulative probit model,
respectively. The symmetry of the model imposes that τh = −τH−h, h = 1, . . . ,H
and τH/2 = 0 when H is even. When H = 3 there are two threshold parameters
τ1 and τ2 such that τ1 = −τ2 and model (2) corresponds to the extension of the
Bradley-Terry model introduced by Rao and Kupper (1967) when a logit link is
considered and the extension of the Thurstone model by Glenn and David (1960)
when the probit link is employed.

An alternative model proposed by Agresti (1992) is the adjacent categories
model. In this case the link is applied to adjacent response probabilities, rather
than cumulative probabilities:

log
[

pr(Yij = h)
pr(Yij = h+ 1)

]
= τh − µi + µj , (3)

where the same symmetry constraints of the threshold parameters as described for
the cumulative link models must be satisfied. Model (3) reduces to the Bradley-
Terry model when only 2 categories are allowed and to the model proposed by
Davidson (1970) when 3 categories are allowed. According to Agresti (1992), model
(3) is simpler to interpret than cumulative link models since the odds ratio refers to a
given outcome instead of referring to groupings of outcomes. The adjacent categories
model, as well as the Bradley-Terry model, have also a log-linear representation
(Dittrich et al., 2004).

An application of the adjacent categories model to market data is illustrated in
Böckenholt and Dillon (1997b). In the experiment consumers are asked to allocate
11 chips between two products of different brands. The number of chips allocated
to each product can be analysed by means of models for ordinal paired comparison
data. Böckenholt and Dillon (1997a) discuss the problem of the bias that may be
present in the data due to the different allocation procedures adopted by different
people. In fact, people may tend to prefer one of the two products either strongly or
very mildly, thus using actually only a subset of all the possible categories. Hence,
judges may not only have different preferences for the objects, but also vary in the
way they use the response scale.

Example. In the paired comparisons of universities, students were allowed
to express no preference between two universities. Therefore, the data should be
analysed by means of a model for ordinal data. Table 3 shows the estimates of a
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Table 3: Estimates (Est.), standard errors (S.E.) and quasi-standard errors
(Q.S.E.) of the universities worth parameters employing a cumulative extension
of the Thurstone model.

Est. S.E. Q.S.E.
Barcelona 0.332 0.041 0.028
London 0.998 0.043 0.031
Milan 0.241 0.041 0.029
Paris 0.566 0.042 0.030
St. Gallen 0.324 0.040 0.028
Stockholm 0 - 0.029
τ2 0.153 0.007 -

cumulative probit extension of the Thurstone model for the university data. In this
particular case, the estimates of the worth parameters and their standard errors are
very similar to those of Table 2 and the ranking of universities remains the same,
but in general, especially when the number of no preferences is large, results can be
different. Moreover, in this case we can estimate the probability of no preference
between London and Paris which is Φ(0.153− 0.998 + 0.566)−Φ(−0.153− 0.998 +
0.566) = 0.11 and the estimated probability that London is preferred to Paris reduces
to 1 − Φ(0.153 − 0.998 + 0.566) = 0.61, hence the estimated probability that Paris
is preferred to London is 0.28.

4 Explanatory variables

It is often of interest to analyse whether some explanatory variables have an impact
on the results of the paired comparisons. Besides the characteristics of the objects,
some subject-specific covariates may influence the result of the comparisons.

4.1 Object-specific covariates

In the statistical literature, there has been an early interest in the analysis of object-
specific covariates and the detection of which features may influence the outcome of
a comparison. Let xi = (xi1, . . . , xiP )′ be a vector of P explanatory variables related
to object i and β be a P -dimensional parameter vector. Then, in the context of the
Bradley-Terry model, Springall (1973) proposes to describe the worth parameters
as the linear combination

µi = x′iβ, i = 1, . . . , n. (4)

A paired comparisons model with explanatory variables is called structured model.
The same extension can be applied to Thurstonian models. Note that since only the
differences µi − µj = (xi − xj)′β enter the linear predictor, an intercept cannot be
identified.
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Dittrich et al. (1998) consider the log-linear representation of the Bradley-Terry
model introduced by Sinclair (1982) in case multiple paired comparisons are made
by multiple subjects and show how object-specific covariates can be included in this
type of specification.

Spline representations for the covariates in the context of paired comparison data
are proposed by De Soete and Winsberg (1993). A Thurstone model is considered
in which for each object a small set of physical measurements is available and the
case in which µi = f(xi), where f is a P -variate function, is discussed. De Soete
and Winsberg (1993) analyse both the case of additive univariate spline models, in
which there is a separate spline transformation g for each dimension, i.e. f(xi) =∑P

p=1 gp(xip), and the case of a multivariate spline model in which f(xi) is assumed
to be a general multivariate spline function of xi. However, the Authors conclude
that large data sets may be necessary to estimate nonlinearities reliably.

Example. It is of interest to check whether some particular features of the
universities influence the preferences of students. The universities specialise in dif-
ferent subjects, specifically the two universities in London and Milan specialise in
economics, those in Paris and Barcelona specialise in management science and the
remaining two in finance. Probably, some subjects are more popular and universities
that specialise in those subjects will receive more preferences. Another element that
may influence the choice is the location of the university, on this respect universi-
ties can be divided into two groups: universities in a Latin country (Italy, France
or Spain) and universities in other countries. Table 4 shows the estimates of a
Thurstonian model which includes covariates as described in formula (4). The refer-
ence category is a university that specialises in finance and is not in a Latin country.
It is evident that universities that specialise in management are preferred, followed
by those that specialise in economics. Finally, universities in northern countries
are preferred to universities in Latin countries. Consider the universities in Lon-
don and Paris. The former specialises in economics and is not in a Latin country
while the latter specialises in management science and is in a Latin country. In
this structured model, the estimated probability that London is preferred to Paris is
1−Φ(0.150− (0.827−1.022+ 0.743)) = 0.66, the estimated probability of no prefer-
ence is Φ(0.150−(0.827−1.022+0.743))−Φ(−0.150−(0.827−1.022+0.743)) = 0.10
and the estimated probability of a loss for London is 0.24.

Table 4: Estimates (Est.) and standard errors (S.E.) of a Thurstonian model for
university data including object-specific covariates.

Est. S.E.
Economics 0.827 0.038
Management 1.022 0.052
Latin country -0.743 0.043
τ2 0.150 0.007
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4.2 Subject-specific covariates

The results of the comparisons can be influenced also by characteristics of the subject
that performs the paired comparison, hence it may be of interest to take into account
the individual differences in order to understand how they affect the preference for
an item over another.

In the log-linear representation of the Bradley-Terry model, Dittrich et al. (1998)
show how to include categorical subject specific covariates, while Francis et al. (2002)
tackle the problem of continuous subject-specific covariates.

When modelling the data, subject-specific covariates can be included in different
ways. For example, Dillon et al. (1993) consider a marketing application in which
consumers are divided in latent classes. Consumers inside the same class share
the same worth parameters for the objects, while subjects in different classes have
different worth parameters. In this case the probability of belonging to a certain class
is a function of the subject explanatory variables, while subjects belonging to the
same class have preferences for objects that follow an unstructured Bradley-Terry
model.

A semiparametric approach which accounts for subject-specific covariates is pro-
posed by Strobl et al. (2011) who suggest a methodology to partition recursively the
subjects that perform the paired comparisons on the basis of their covariates. Af-
ter the subjects have been split, an unstructured Bradley-Terry model is estimated
for each of the homogeneous subsamples. This semiparametric method does not
require to specify a functional form for the covariates and allows to identify groups
of subjects with covariates that are structurally different for which different sets of
preferences are recovered.

Example. Some features of the students that performed the universities paired
comparisons were collected. In particular, it is known whether students have good
knowledge of English, Italian, Spanish and French and which is the main topic of
their studies. It is conceivable that, for example, students with a good knowledge of
Spanish are more inclined to prefer the university in Barcelona. It is also reasonable
to expect that students whose main discipline of study is commerce may prefer a
university that specialises in management. Table 5 shows the estimates of a model
including some subject-specific covariates. The notation French:Paris means that
the model includes a dummy variable which is equal to 1 only when subjects with
a good knowledge of French make a paired comparison including the university in
Paris. The good knowledge of a foreign language induces students to choose the
university situated in the country where that foreign language is spoken. Consider a
student with a good knowledge of both English and French and whose main discipline
of study is management, then the estimated probability that this student prefers
London to Paris is 1−Φ(0.160−(0.141+0.757−0.652−0.789+0.835−0.238)) = 0.46
while the estimated probabilities of no preference and preference for Paris are 0.13
and 0.41, respectively. If this student’s main discipline of study was not management,
which is the subject in which Paris specialises, then the above estimated probabilities
of preferring London, no preference and preferring Paris would become 0.55, 0.12
and 0.33, respectively.

The same data set is studied in Strobl et al. (2011) as an application for their
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Table 5: Estimates (Est.) and standard errors (S.E.) of universities data with
subject- and object-specific covariates.

Est. S.E.
Economics 0.757 0.066
Management 0.789 0.080
Latin country -0.835 0.071
Discipline:Management 0.238 0.054
English:London 0.141 0.075
French:Paris 0.652 0.049
Italian:Milan 1.004 0.094
Spanish:Barcelona 0.831 0.095
τ2 0.160 0.007

recursive partitioning methodology. Further subject-specific explanatory variables
are available: the gender, the indicator of whether a student works full time and
the aim for an international degree. Strobl et al. (2011) consider all the available
covariates and find that students can be divided into subsamples sharing the same
worth parameters only on the basis of the knowledge of Italian, Spanish and French
and the main discipline of study.

5 Models for dependent data

The models presented so far are estimated assuming independence among all obser-
vations. The inclusion of a dependence structure is not only more realistic, but also
has an impact on the transitivity properties of the model. Intransitive choices occur
when object i is preferred to j and object j is preferred to k, but in the paired com-
parison between i and k, the latter is preferred. These are also called circular triads.
Paired comparison models can present different transitivity properties. Assume that
πij ≥ 0.5 and πjk ≥ 0.5, then a model satisfies

• weak stochastic transitivity if πik ≥ 0.5;

• moderate stochastic transitivity if πik ≥ min(πij , πjk);

• strong stochastic transitivity if πik ≥ max(πij , πjk).

The Bradley-Terry and Thurstone model as presented so far satisfy strong stochastic
transitivity. This property may be desirable sometimes, for example when asking
wiring experts which is the riskier situation between different scenarios in an aircraft
environment. In this case it is desirable that choices are consistent, so Mazzucchi
et al. (2008) use transitivity to check the level of reliability of experts. However,
in some situations choices can be systematically intransitive, for example when the
same objects have more than one aspect of interest and different aspects prevail in
different comparisons.
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Causeur and Husson (2005) propose a 2-dimensional Bradley-Terry model in
which the worth parameter of each object is bidimensional and can thus be repre-
sented on a plane. In fact, the traditional Bradley-Terry model provides a linear
score for all the objects compared and hence may not be appropriate when worth are
not transitively related, while a bidimensional worth parameter gives more insights
into the relations among objects. A further multidimensional extension is proposed
by Usami (2010). However, this methodology does not provide a final ranking of all
objects.

A different method that allows the inclusion in the model even of systematic
intransitive comparisons while yielding a ranking of all the objects consists in mod-
elling the dependence structure among comparisons. The development of inferential
techniques for dependent data has recently allowed an investigation of models for
dependent observations.

5.1 Multiple judgement sampling

The assumption of independence is questioned in the case of the multiple judgement
sampling, that is when S people make all the N paired comparisons. It seems more
realistic to assume that the comparisons made by the same person are dependent.
This aspect has received much attention in the literature during the last decade.

5.1.1 Thurstonian models

The original model proposed by Thurstone (1927) includes correlation among the
observations. The model was developed for analysing sensorial discrimination and
assumes that the stimuli T = (T1, . . . , Tn)′ compared in a paired comparison exper-
iment follow a normal distribution with mean µ = (µ1, . . . , µn)′ and variance ΣT ,
T ∼ N(µ,ΣT ). Hence, the single realisation ti of the stimulus Ti can vary and the
result of the paired comparison between the same two stimuli can be different in
different occasions. Assume that only either a preference for i or a preference for j
can be expressed, then in a paired comparison when Ti > Tj object i is preferred,
or alternatively, when the latent random variable Zij = Ti − Tj is positive, a win
for i is observed, otherwise a win for j occurs. The most general model assumes an
unrestricted, non-diagonal ΣT . However, this complicates noticeably the estimation
procedures and in many applications estimation is carried out assuming that the
observations are independent.

Psychometricians are interested in understanding the relations between stimuli,
hence they are primarily interested in the unstructured and unrestricted Thurstone
model which is the model without any constraint on the covariance matrix but
those necessary for identification. Indeed, the original model is over-parametrised
and some restrictions are needed. Thurstone (1927) proposes different specifications
of the covariance matrix ΣT , among them the Case III, which assumes that ΣT =
diag(σ2

1, . . . , σ
2
n), and Case V, which assumes a homogeneous ΣT = σ2In, where In

denotes the identity matrix of dimension n. However, it is not possible to distinguish
between Case V and an unrestricted ΣT since every positive definite matrix of the
form ΣT + d1′+ 1d′ where 1 is a vector of n ones and d is an n-dimensional vector
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of constants, produces the same probability of the outcomes (Tsai, 2000). This
means that it is not possible to distinguish, in terms of likelihood, between a model
with 0 correlation between all stimuli and a model with correlation d between all
stimuli. The advantage is that while Case V satisfies strong stochastic transitivity,
an unrestricted Thurstonian model satisfies only moderate stochastic transitivity
(Takane, 1989).

Subsequent developments of the original model by Thurstone first address the is-
sue of accounting for within and between judges variability (Takane, 1989; Böckenholt
and Tsai, 2001). Then, an extension that allows for different worth of the items
in different comparisons and systematic intransitive behaviour, which consists in
choices by judges that systematically produce circular triads, is proposed by Tsai
and Böckenholt (2006) and Tsai and Böckenholt (2008). Note that in these models
the evaluations made by different judges are assumed independent while those made
by the same person are correlated.

Takane (1989) extends the Thurstone model including a vector of pair specific
errors, which seems appropriate in the context of multiple judgement sampling. Let
Zs = (Zs 12, . . . , Zs n−1 n)′ be the vector of all latent continuous random variables
pertaining to subject s, then

Zs = AT + es, (5)

where es = (es12, es13, . . . , esn−1 n)′ is the vector of pair-specific errors which has
zero mean, covariance Ω and is independent of T and of es′ for another subject
s′ 6= s and A is the design matrix of paired comparisons whose rows identify the
paired comparisons and columns correspond to the objects. For example, if n = 4
the paired comparisons are (1, 2), (1, 3), (1, 4), (2, 3), (2, 4) and (3, 4)

A =



1 −1 0 0
1 0 −1 0
1 0 0 −1
0 1 −1 0
0 1 0 −1
0 0 1 −1

 .

A similar model is employed by Böckenholt and Tsai (2001), who assume that εs ∼
N(0, ω2IN ) and consider the inclusion of covariates in the model. The identification
restrictions needed to estimate this model are discussed in Maydeu-Olivares (2001),
Maydeu-Olivares (2003), Tsai and Böckenholt (2002) and Tsai (2003). The problem
arises because binary data allow to identify only the correlation matrix corresponding
to the covariance matrix of the latent variable Zs. In this case ΣZ = Cov(Zs) =
AΣTA

′ + Ω, where ΣT is an unrestricted covariance matrix. As demonstrated by
Tsai (2003), n + 2 constraints are needed in order to identify a model with such
a covariance matrix, including the constraint on the worth parameters. As for the
mean parameters, many different constraints of the covariance matrix are possible.
For example, Maydeu-Olivares (2003) sets all the diagonal elements of ΣT equal to
1 and one of the diagonal elements of Ω to 1.

Takane (1989) proposes a factor model for ΣT in order to overcome the over-pa-
rameterisation problem. A factor model assumes that ΣT = XX ′ + Ψ, where X is
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an n×r matrix which represents the loadings of vector T and Ψ is a diagonal matrix.
The more general analysis of covariance structure proposed by Takane (1989) can
accommodate both the wandering vector (De Soete and Carroll, 1983; Carroll and
De Soete, 1991) and the wandering ideal point (De Soete et al., 1989) models. The
former model assumes that each subject is represented by a vector emanating from
the origin whose termini follow a multivariate normal distribution and the objects
are represented by points in an r dimensional space. In each paired comparison,
a subject samples randomly a vector and the object whose orthogonal projection
on the vector is larger is preferred. The wandering ideal point model assumes that
each subject is represented by a normally distributed random point. Each time the
subject has to perform a paired comparison, a random point is sampled and the
object with smaller Euclidean distance from the sampled point is preferred. The
wandering vector and wandering ideal point models do not impose the number of
dimensions which is determined from the data alone. So they are powerful models
to analyse human choice behaviour and inferring perceptual dimensions, but also to
analyse the behaviour of organisms at different levels of evolution.

A further extension of model (5) is proposed in Tsai and Böckenholt (2008) who
unify Tsai and Böckenholt (2006) with Takane (1989) to obtain a general class of
models that can account simultaneously for transitive choice behaviour and system-
atic deviations from it. In this case the latent variable is

Zs = AT +BV s, (6)

where V s = (Vs1(2), Vs1(3), . . . , Vs2(1), Vs2(3), . . . , Vsn (n−1))′ is a vector of zero mean
random effects which capture the random variation in judging an object when com-
pared to another specific object and B is a matrix with rows corresponding to the
paired comparisons and columns corresponding to the elements of V s, so for example
if n = 3, V s = (Vs1(2), Vs1(3), Vs2(1), Vs2(3), Vs3(1), Vs3(2))′ and

B =

 1 0 −1 0 0 0
0 1 0 0 −1 0
0 0 0 1 0 −1

 .

It is assumed that V s, the within-judge variability, is normally distributed with
mean 0 and covariance ΣV so that Zs ∼ N(Aµ,AΣTA

′ + BΣVB
′). Particular

care is needed when specifying the structure of ΣV to not incur in identification
issues.

5.1.2 Models with logit link

The dependence between evaluations made by the same judge has been introduced
also in models employing logit link functions.

Lancaster and Quade (1983) consider multiple judgements by the same person
and introduce correlation in the Bradley-Terry model assuming that the worth pa-
rameters are random variables. Let πij denote the probability that i is preferred to
j in a two categorical paired comparison experiment. Lancaster and Quade (1983)
assume that each πij is a random variable following a Beta distribution with shape
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parameters aij and bij . The Bradley-Terry model is imposed on the means of the
Beta distributions, that is E(πij) = aij/(aij + bij) = πi/(πi + πj). Hence, the aver-
age preference probabilities of the population of judges will satisfy the Bradley-Terry
model even though each judge may not. However, the proposed model introduces
correlation only between comparisons of the same judge on the same pair of objects,
while the other comparisons remain independent.

Matthews and Morris (1995) extend on Lancaster and Quade (1983) considering
a model with three possible response categories. They assume that probabilities of
preference for one of the objects or ties follow a Dirichlet distribution.

Böckenholt and Dillon (1997a) state that the approach by Agresti (1992) which
allows for within-judge dependencies by fitting an ordinal extension of the Bradley-
Terry model to the marginal paired comparison distribution can be useful only when
individual preference differences are of secondary importance in the data analysis.
Böckenholt and Dillon (1997a) consider an H categorical response model and, since
the adjacent categories model reduces to the Bradley-Terry model in case of two
response categories, the Authors propose the log-odds ratio as the relevant associa-
tion measure. For example, in case of two categorical responses the 2× 2 subtables
formed by the possible outcomes of two paired comparisons can be considered. In
case of H categorical responses the odds-ratios are

γi,kj = ln
(

pr(Yik = h, Yij = h)pr(Yki = h+ 1, Yji = h+ 1)
pr(Yki = h, Yij = h+ 1)pr(Yik = h+ 1, Yij = h)

)
.

Böckenholt (2001) considers the case in which the worth of object i for subject
s is

µsi = µi +
P∑

p=1

βipxsip + Usi,

where Usi is a random component and xsi is a vector of P subject-specific (and
possibly item specific) covariates. Böckenholt (2001) employs a logit link function
and assumes that U s = (Us1, . . . Usn)′ follows a multivariate normal distribution
with mean 0 and covariance ΣU .

In the log-linear representation of the Bradley-Terry model, Dittrich et al. (2002)
include further parameters that account for dependence between choices involving
a common object.

5.2 Object-related dependencies

In the multiple judgement sampling the dependence among observations derives
from repeated comparisons made by the same person, usually involving a common
object. In case paired comparisons are not performed by a judge, the correlation
may arise from the fact that the same object is involved in multiple paired compar-
isons. For example, when zoological or sport data are considered, it is realistic to
assume that comparisons involving the same animal or the same player are corre-
lated. In this perspective, Firth (2005) suggests to set µi = x′iβ + Ui, where Ui is a
zero mean object-specific random effect. This approach is investigated in Cattelan
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(2009). This model has many elements in common with those proposed by psycho-
metricians and poses similar inferential challenges. However, while in pshychometric
applications n is not very large because it is unlikely that a person will make all the
paired comparisons when n > 10, this will typically happen in sport tournaments
or in paired comparison data about animal behaviour. Moreover, in the multiple
judgement sampling scheme S independent replications of all the comparisons are
available, but in other contexts this does not occur.

5.3 Inference

Thurstonian models are most commonly specified when dealing with dependent
paired comparison data mainly for computational convenience, nevertheless infer-
ence in those models poses non-trivial problems. The first issue in the unstructured
and unrestricted Thurstonian models proposed in the psychometric literature regards
identifiability of the model itself which requires some constraints. Then, estimation
of models for paired comparison dependent data presents numerical difficulties.

5.3.1 Estimation

In Thurstonian models estimation is problematic since the computation of the like-
lihood of the paired comparisons expressed by a judge requires the approximation
of an integral of dimension N , the number of the paired comparisons. The latent
variable Zs can be standardised as Z∗s = D(Zs −Aµ) where D = [Diag(ΣZ)]1/2,
and ΣZ denotes the covariance matrix of Zs expressed as in model (5) or in model
(6). Then, Z∗s follows a multivariate normal distribution with mean 0 and correla-
tion matrix ΣZ∗ = DΣZD. Object i is preferred to object j when z∗sij ≥ τ∗ij , where
the vector of the thresholds is given by τ ∗ = −DAµ. Then, the probability of the
observed results for the paired comparisons performed by the judge s in case of only
two possible outcomes is

Ls(ψ;Y s) =
∫

Rs12

· · ·
∫

Rsn−1 n

φN (z∗s; ΣZ∗)dz∗s, (7)

where ψ denotes the model parameters, φN (·; ΣZ∗) denotes the density function of
an N -dimensional normal random variable with mean 0 and correlation matrix ΣZ∗

and

Rsij =
{

(−∞, τ∗ij) if Ysij = 1
(τ∗ij ,∞) if Ysij = 2.

In case there is more than one judge, the likelihood is the product of the probability
of the observations for each judge

L(ψ;Y ) =
S∏

s=1

Ls(ψ;Y s).

Note that the dimension of integral (7) is equal to N = n (n− 1)/2, the number of
paired comparisons, so its growth is quadratic with the increase in the number of
objects.
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There are different algorithms to approximate multivariate normal probabilities.
The algorithm proposed by Genz and Bretz (2002) is based on quasi-Monte Carlo
methods and Craig (2008) warns against the randomness of this method for likeli-
hood evaluation. A deterministic approximation is developed by Miwa et al. (2003),
but it is available only for integrals of dimension up to 20 since even for such a
dimension its computation is very slow. Different methods have been proposed to
overcome this problem, some of them are described below.

Maydeu-Olivares (2001), Maydeu-Olivares (2002) and Maydeu-Olivares and Böckenholt
(2005) propose a limited information procedure for multiple judgement sampling
which is performed in three stages. The first stage consists in estimating the thresh-
old parameters exploiting the empirical univariate proportions of wins. In the sec-
ond stage the elements of ΣZ∗ , which are tetrachoric correlations, are estimated
employing the bivariate proportions of wins. Finally, in the third stage the model
parameters ψ are estimated by minimising the function

G = [κ̃− κ(ψ)]′Ŵ [κ̃− κ(ψ)],

where κ̃ denotes the thresholds and tetrachoric correlations estimated in the first
and second stages, κ(ψ) denotes the thresholds and tetrachoric correlations under
the restrictions imposed on those parameters by the model parameters ψ and Ŵ is
a non negative definite matrix. Let Ξ denote the asymptotic covariance matrix of
κ̃. Then it is possible to use Ŵ = Ξ̂

−1
, (Muthén, 1978), Ŵ = diag(Ξ̂)−1 (Muthén

et al., 1997) or Ŵ = I (Muthén, 1993). The last two options seem more stable in
data sets with a small number of objects (Maydeu-Olivares, 2001). This method
is very fast and Maydeu-Olivares (2001) states that it may have an edge over full
information methods because it uses only the one and two dimensional marginals of
a large and sparse contingency table.

A pairwise likelihood (Le Cessie and Van Houwelingen, 1994) approach proved
useful for data with object-related dependencies (Cattelan, 2009), so it may be
a valid alternative also in multiple judgement sampling. Pairwise likelihood is a
special case of the broader class of composite likelihoods (Lindsay, 1988; Varin et
al., 2011). Pairwise likelihood for paired comparison models consists of the product
of the marginal bivariate probabilities

Ls
pair(ψ;Y s) =

n−2∏
i=1

n−1∏
j=i+1

n−1∏
k=i

n∏
l=j+1

pr(Ysij = ysij , Yskl = yskl).

The pairwise likelihood of all the observations is the product of the pairwise like-
lihoods relative to the single judges Lpair(ψ;Y ) =

∏S
s=1 Ls

pair(ψ;Y s). The log-
arithm of the pairwise likelihood for subject s is `spair(ψ;Y s) = logLs

pair(ψ;Y s)
while the whole pairwise log-likelihood is `pair(ψ;Y ) =

∑S
s=1 `

s
pair(ψ;Y s). Un-

der regularity conditions, the maximum pairwise likelihood estimator is consis-
tent and asymptotically normally distributed with mean ψ and covariance ma-
trix G(ψ) = H(ψ)−1J(ψ)H(ψ)−1, where J(ψ) = var {∇`pair(ψ;Y )} and H(ψ) =
E
{
−∇2`pair(ψ;Y )

}
, see Cox and Reid (2004). Pairwise likelihood reduces notice-

ably the computational effort since it requires only the computations of bivariate
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normal probabilities. Moreover, in the multiple judgement sampling scheme the
standard errors can be computed straightforwardly by exploiting the independence
between the observations of different judges. In fact, H(ψ) can be estimated by the
Hessian matrix computed in the maximum pairwise likelihood estimate, while J(ψ)
can be estimated through the cross-product

∑S
s=1∇`spair(ψ̂;Y s)∇`spair(ψ̂;Y s)′.

5.3.2 Simulation studies

Simulation studies were performed in order to check the performance of the pro-
posed pairwise likelihood approach. The results of the pairwise likelihood method
are compared to the limited information estimation method proposed by Maydeu-
Olivares and Böckenholt (2005) in two different settings employing model (5) and
model (6). It is assumed that n = 4, hence also a full likelihood approach based on
the algorithm by Miwa et al. (2003) can be used since the integral has dimension 6.

The first simulation setting is the same as that proposed in Maydeu-Olivares
(2001), where the model Zs = AT + es is assumed with

µ =


0.5

0
−0.5

0

 ΣT =


1

0.8 1
0.7 0.6 1
0.8 0.7 0.6 1

 ,

and the covariance matrix of e is Ω = ω2I4. For identification purposes it is necessary
to set the diagonal elements of ΣT equal to 1, µ4 = 0 and ω2 = 1. Hence, in this case
ΣT is actually a correlation matrix. Table 6 shows the estimates and standard errors
of 1,000 simulations assuming S = 100 judges. For limited information estimation
the matrix Ŵ = I is employed. In this setting in which ΣT is actually a correlation
matrix, all the methods seem to perform comparably well.

Table 6: Empirical means and standard errors of 1,000 simulated estimates obtained
by maximum likelihood (ML), limited information estimation (LI) and pairwise like-
lihood (PL) with S = 100.

ML LI PL
True value Est. S.E. Est. S.E. Est. S.E.

µ1 0.5 0.507 0.128 0.507 0.130 0.504 0.128
µ2 0 0.008 0.128 0.009 0.123 0.008 0.124
µ3 -0.5 -0.491 0.151 -0.495 0.152 -0.494 0.150
σ12 0.8 0.791 0.128 0.783 0.131 0.790 0.130
σ13 0.7 0.693 0.170 0.689 0.169 0.693 0.179
σ14 0.8 0.781 0.132 0.775 0.133 0.780 0.142
σ23 0.6 0.576 0.192 0.566 0.192 0.575 0.189
σ24 0.7 0.670 0.164 0.665 0.163 0.670 0.189
σ34 0.6 0.575 0.207 0.571 0.199 0.574 0.200
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The second simulation setting considers model (6) proposed by Tsai and Böckenholt
(2008). Since only differences are recoverable, the model can be defined using means
and variances of the differences Ti − Tn for i = 1, . . . , n − 1. The assumed worth
parameters of these differences are (−0.2, 1,−1.5) while the covariance matrix is 1.5 1 1.3

1 4 2.5
1.3 2.5 3

 .

Differently from the previous setting, this specification of the model allows to es-
timate also the variance of the differences Ti − Tn and to check whether they are
different for the various objects. This aspect is of particular interest in psychomet-
rics.

Tsai and Böckenholt (2008) propose a specification of the matrix B which de-
pends only on one parameter b whose value is set equal to 0.5. Table 7 presents
the results of the simulations. Maximum likelihood based on numerical integration
is the method that performs best, but it can be exploited only because n is small.
However, pairwise likelihood estimation seems to perform quite well, especially if
compared to limited information estimation which seems not satisfactory in this
case with S = 100, as already noticed in Tsai and Böckenholt (2008). It is possible
to consider an increase in the number of objects n or an increase in the number of
subjects S that perform the comparisons. Tsai and Böckenholt (2008) conduct also
a larger simulation with n = 4 and S = 300. The Authors conclude that in this case
limited information estimation produces estimates which are accurate enough. How-
ever, pairwise likelihood yields estimates which are acceptable even with S = 100
and larger S may reduce the standard errors of the estimates.

Finally, notice that pairwise likelihood can be employed also in situations with
large n and S = 1 or S very small as happens in sports data or animal behaviour
applications (Cattelan, 2009).

Example We fit model (5) to universities data by means of pairwise likelihood.
A full likelihood approach based on numeric approximation is not used since it is
necessary to approximate 303 integrals of dimension 15 and this would take very
long. It is assumed that Ω = ω2I15. The constraints employed for estimation are
those proposed in Maydeu-Olivares and Hernández (2007). In this case the diagonal
elements of ΣT are set equal to 1 and the additional constraint

∑n
k=2 σk1 = 1, where

σkl denotes the element in row k and column l of the matrix ΣT , is used. The con-
straints proposed by Maydeu-Olivares and Hernández (2007) are employed because
they facilitate the interpretation of the results. Indeed, with these constraints a
positive covariance means that strong preference for a stimulus is associated with
strong preference for the other stimulus, while a negative covariance means that
strong preference for one stimulus is associated with weak preference for the other
stimulus. The estimate of the threshold parameter (with standard error in brackets)
is τ̂2 = 0.205 (0.018) while the variance parameter is ω̂2 = 0.180 (0.026). Table 8
shows the estimates of the mean and correlation matrix for the six universities. A
high correlation is estimated between Barcelona and Milan, so strong preference for
Barcelona is associated with strong preference for Milan. Even though some corre-
lations do not seem significant, it appears that a strong preference for St. Gallen is
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Table 7: Empirical means and standard errors of 1,000 simulations estimated by
maximum likelihood (ML), limited information (LI) and pairwise likelihood (PL) with
S = 100.

ML LI PL
True value Est. S.E. Est. S.E. Est. S.E.

µ1 -0.2 -0.207 0.191 -0.226 0.205 -0.215 0.192
µ2 1 1.003 0.307 1.068 0.417 1.025 0.331
µ3 -1.5 -1.511 0.317 -1.594 0.489 -1.542 0.357
σ2

1 1.5 1.535 0.785 2.058 1.967 1.698 1.054
σ2

2 4 4.015 1.678 5.342 4.424 4.446 2.420
σ2

3 3 2.996 1.277 3.913 3.170 3.322 1.929
σ12 1 0.942 0.615 1.340 1.443 1.116 0.874
σ13 1.3 1.273 0.649 1.716 1.476 1.433 0.954
σ23 2.5 2.467 1.007 3.351 2.673 2.767 1.534
b 0.5 0.530 0.407 0.720 0.820 0.581 0.501

associated with a weak preference for all the other universities but Stockholm. The
worth parameters denote the same ranking of all universities as the one arising from
Table 3.

6 Software

Critchlow and Fligner (1991) show that through the loglinear representation of the
Bradley-Terry model standard programs can be used to estimate it. In the literature
some estimation algorithms for the model assuming independent observations have
been proposed. For example, Hunter (2004) develops a maximization-minimization
algorithm for estimating Bradley-Terry models both with order effects and ties.
However, the implementation of the estimation algorithms proposed in the literature
can be difficult for the final user. Fortunately, fitting models to paired comparison
data is facilitated by some R packages which allow fitting of the classical models and
in some cases also of more complicated models.

The eba package (Wickelmaier and Schmid, 2004) fits elimination by aspects
models (Tversky, 1972) to paired comparison data. The elimination by aspects
model assumes that different objects present various aspects. The worth of each
object is the sum of the worth associated with each aspect possessed by the object.
When all objects possess only one relevant aspect, then the elimination by aspects
model reduces to the Bradley-Terry model. Therefore, in case only one aspect per
object is specified, the function eba fits an unstructured Bradley-Terry model. Co-
variates cannot be included and ties are not allowed, but eba can estimate an order
effect in case one of the objects enjoys some benefits from the order of the presenta-
tion. The eba function requires only that all worth parameters are positive, hence
any multiple of the worth parameters produces the same value of the likelihood. The
function strans checks how many violations of weak, moderate and strong stochas-
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Table 8: Estimates and standard errors (in brackets) of mean and correlation pa-
rameters of model (5) for universities data.

Barcelona London Milan Paris St. Gallen Stockholm µ

Barcelona 1 0.405
(fixed) (0.073)

London 0.058 1 1.346
(0.084) (fixed) (0.087)

Milan 0.724 0.185 1 0.308
(0.062) (0.097) (fixed) (0.074)

Paris 0.171 0.054 0.331 1 0.748
(0.094) (0.117) (0.113) (fixed) (0.086)

St. Gallen -0.303 -0.139 -0.298 -0.496 1 0.371
(0.113) (0.139) (0.144) (0.157) (fixed) (0.081)

Stockholm 0.350 0.316 0.339 0.144 0.287 1 0
(0.079) (0.091) (0.097) (0.113) (0.130) (fixed) (fixed)

tic transitivity are present in the data and the function thurstone fits a Thurstone
model to the data assuming independent observations.

The prefmod package (Hatzinger, 2010) fits Bradley-Terry models exploiting
their loglinear representation. Ordinal paired comparisons are allowed, but the
model reduces the categories to three or two depending on whether there is a no
preference category or not. There are three different functions for estimating mod-
els for paired comparison data: the llbt.fit function which estimates the loglinear
version of the Bradley-Terry model through the estimation algorithm described in
Hatzinger and Francis (2004), the llbtPC.fit function that estimates the loglinear
model exploiting the gnm (Turner and Firth, 2010b) function for fitting generalised
nonlinear models and the pattPC.fit function which fits paired comparison data
using a pattern design, that is all possible patterns of paired comparisons. Miss-
ing covariates are not allowed, in such a case the corresponding data are removed.
The function pattPC.fit allows to include a covariate for the interaction between
comparisons that have one item in common. However, the response table grows
dramatically with the number of objects since in case of only two possible outcomes
the number of patterns is 2N , so no more than 6 objects can be included with 2 re-
sponse categories and not more than 5 with three response categories. The function
pattPC.fit handles also some cases in which the responses are missing not at ran-
dom, while the function pattnpml.fit fits a mixture model to overdispersed paired
comparison data using nonparametric maximum likelihood in which the number of
latent classes is specified by the user.

The BradleyTerry2 package (Turner and Firth, 2010a) expands the previous
BradleyTerry (Firth, 2008) package and allows to fit both unstructured and struc-
tured paired comparison models with logit, probit and cauchit link functions. Model
fitting is either by maximum likelihood, penalised quasi-likelihood (when there are
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random effects as specified in Section 5.2) or bias-reduced maximum likelihood
(Firth, 1993). In case of unstructured models it is possible to choose the refer-
ence category whose worth is set to zero. The structured model can include also
object-specific random effects that are assumed normally distributed, in this case
the model is estimated by means of penalised quasi-likelihood (Breslow and Clayton,
1993). If there are missing explanatory variables, an additional worth parameter
for the object with missing covariates is estimated. Order effects and more gen-
eral comparison-specific covariates can be included, but only win-loss responses are
allowed. It is possible to use bias-reduced maximum likelihood to produce finite esti-
mates and standard errors even in case of complete separation of the data, situation
which occurs for example when an object is preferred in all the paired comparisons
in which it is involved.

The package psychotree (Strobl et al., 2011) implements the method for re-
cursive partitioning of the subjects on the basis of their explanatory variables and
estimates an unstructured Bradley-Terry model for each of the final subsamples of
subjects, see Section 4.2.

There are various packages for estimating models for paired comparison data,
nevertheless even some of the most simple specifications cannot be straightforwardly
fitted. For example, there is no function that estimates a Thurstone model when
ties are allowed.

7 Conclusions

Paired comparison data are often criticised because they are relative and not ab-
solute measures. However, this is the reason why they are so widely employed
in applications, especially when the judgement of a person is required. Thursto-
nian and Bradley-Terry models are usually applied for the analysis of this type
of data and the paper reviews some of the many extensions of those models that
have been proposed in the literature. However, there are many other aspects which
have not been considered here, for example the problem of optimal design (Graßhoff
and Schwabe, 2008; Goos and Großmann, 2011), the development of models for
multi-dimensional data when objects are evaluated with respect to multiple aspects
(Böckenholt, 1988; Dittrich et al., 2006), the temporal extension for comparisons
repeated in time (Fahrmeir and Tutz, 1994; Glickman, 2001; Böckenholt, 2002; Dit-
trich et al., 2008), the estimation of abilities of individuals belonging to a team that
performs the paired comparisons (Huang et al., 2006; Menke and Martinez, 2008)
and many more.

Here, particular attention has been focused on models for dependent data. De-
pendencies arise when different paired comparisons are performed by the same judge.
Hence, the issue of the dependence structure of the data has been investigate both
in the statistic and psychometric literature. Thurstonian models seem particularly
suitable to account for dependence between observations. Unfortunately, inference
in those models requires the approximation of integrals whose dimension is equal to
the number of paired comparisons, which increases rapidly with n. The proposed
pairwise likelihood method seems to perform well in different scenarios.
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Psychometric models are as unstructured and unrestricted as possible, but this
produces identifiability issues and the necessary constraints cause difficulties in the
interpretation of the estimates. Moreover, since different covariance matrices yield
the same value of the likelihood, the best solution has to be chosen on the basis of
goodness of fit statistics. These statistics may be problematic since the correspond-
ing contingency table may be very sparse. In some instances, the mean of Pearson
chi-square statistics associated with all the 2 × 2 tables that can be formed with
the results of the paired comparisons is considered, in other instances the fit to the
triples of results is employed. Maydeu-Olivares (2001) proposes a goodness of fit
statistic which overcomes the problem of sparseness of the contingency table, but it
actually regards the fitting of thresholds and tetrachoric correlations and not of the
observed data.

All the models for dependent data are presented assuming win-loss responses,
however it is easy to extend them to ordinal paired comparison data exploiting the
latent variable Zs and introducing threshold parameters as described in Section 3.

In some instances, for example when n is large, not all paired comparisons are
made by all judges, but each person performs only a part of all the comparisons.
These data can be analysed by means of the presented models with small modifica-
tions.
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