13,698 research outputs found

    Branching laws for Verma modules and applications in parabolic geometry. I

    Full text link
    We initiate a new study of differential operators with symmetries and combine this with the study of branching laws for Verma modules of reductive Lie algebras. By the criterion for discretely decomposable and multiplicity-free restrictions of generalized Verma modules [T. Kobayashi, http://dx.doi.org/10.1007/s00031-012-9180-y {Transf. Groups (2012)}], we are brought to natural settings of parabolic geometries for which there exist unique equivariant differential operators to submanifolds. Then we apply a new method (F-method) relying on the Fourier transform to find singular vectors in generalized Verma modules, which significantly simplifies and generalizes many preceding works. In certain cases, it also determines the Jordan--H\"older series of the restriction for singular parameters. The F-method yields an explicit formula of such unique operators, for example, giving an intrinsic and new proof of Juhl's conformally invariant differential operators [Juhl, http://dx.doi.org/10.1007/978-3-7643-9900-9 {Progr. Math. 2009}] and its generalizations. This article is the first in the series, and the next ones include their extension to curved cases together with more applications of the F-method to various settings in parabolic geometries

    Hybrid PDE solver for data-driven problems and modern branching

    Full text link
    The numerical solution of large-scale PDEs, such as those occurring in data-driven applications, unavoidably require powerful parallel computers and tailored parallel algorithms to make the best possible use of them. In fact, considerations about the parallelization and scalability of realistic problems are often critical enough to warrant acknowledgement in the modelling phase. The purpose of this paper is to spread awareness of the Probabilistic Domain Decomposition (PDD) method, a fresh approach to the parallelization of PDEs with excellent scalability properties. The idea exploits the stochastic representation of the PDE and its approximation via Monte Carlo in combination with deterministic high-performance PDE solvers. We describe the ingredients of PDD and its applicability in the scope of data science. In particular, we highlight recent advances in stochastic representations for nonlinear PDEs using branching diffusions, which have significantly broadened the scope of PDD. We envision this work as a dictionary giving large-scale PDE practitioners references on the very latest algorithms and techniques of a non-standard, yet highly parallelizable, methodology at the interface of deterministic and probabilistic numerical methods. We close this work with an invitation to the fully nonlinear case and open research questions.Comment: 23 pages, 7 figures; Final SMUR version; To appear in the European Journal of Applied Mathematics (EJAM

    Scale relativity and fractal space-time: theory and applications

    Full text link
    In the first part of this contribution, we review the development of the theory of scale relativity and its geometric framework constructed in terms of a fractal and nondifferentiable continuous space-time. This theory leads (i) to a generalization of possible physically relevant fractal laws, written as partial differential equation acting in the space of scales, and (ii) to a new geometric foundation of quantum mechanics and gauge field theories and their possible generalisations. In the second part, we discuss some examples of application of the theory to various sciences, in particular in cases when the theoretical predictions have been validated by new or updated observational and experimental data. This includes predictions in physics and cosmology (value of the QCD coupling and of the cosmological constant), to astrophysics and gravitational structure formation (distances of extrasolar planets to their stars, of Kuiper belt objects, value of solar and solar-like star cycles), to sciences of life (log-periodic law for species punctuated evolution, human development and society evolution), to Earth sciences (log-periodic deceleration of the rate of California earthquakes and of Sichuan earthquake replicas, critical law for the arctic sea ice extent) and tentative applications to system biology.Comment: 63 pages, 14 figures. In : First International Conference on the Evolution and Development of the Universe,8th - 9th October 2008, Paris, Franc

    Fourier, Gegenbauer and Jacobi Expansions for a Power-Law Fundamental Solution of the Polyharmonic Equation and Polyspherical Addition Theorems

    Full text link
    We develop complex Jacobi, Gegenbauer and Chebyshev polynomial expansions for the kernels associated with power-law fundamental solutions of the polyharmonic equation on d-dimensional Euclidean space. From these series representations we derive Fourier expansions in certain rotationally-invariant coordinate systems and Gegenbauer polynomial expansions in Vilenkin's polyspherical coordinates. We compare both of these expansions to generate addition theorems for the azimuthal Fourier coefficients

    Notes on conformal invariance of gauge fields

    Full text link
    In Lagrangian gauge systems, the vector space of global reducibility parameters forms a module under the Lie algebra of symmetries of the action. Since the classification of global reducibility parameters is generically easier than the classification of symmetries of the action, this fact can be used to constrain the latter when knowing the former. We apply this strategy and its generalization for the non-Lagrangian setting to the problem of conformal symmetry of various free higher spin gauge fields. This scheme allows one to show that, in terms of potentials, massless higher spin gauge fields in Minkowski space and partially-massless fields in (A)dS space are not conformal for spin strictly greater than one, while in terms of curvatures, maximal-depth partially-massless fields in four dimensions are also not conformal, unlike the closely related, but less constrained, maximal-depth Fradkin--Tseytlin fields.Comment: 38 page

    Probability & incompressible Navier-Stokes equations: An overview of some recent developments

    Full text link
    This is largely an attempt to provide probabilists some orientation to an important class of non-linear partial differential equations in applied mathematics, the incompressible Navier-Stokes equations. Particular focus is given to the probabilistic framework introduced by LeJan and Sznitman [Probab. Theory Related Fields 109 (1997) 343-366] and extended by Bhattacharya et al. [Trans. Amer. Math. Soc. 355 (2003) 5003-5040; IMA Vol. Math. Appl., vol. 140, 2004, in press]. In particular this is an effort to provide some foundational facts about these equations and an overview of some recent results with an indication of some new directions for probabilistic consideration.Comment: Published at http://dx.doi.org/10.1214/154957805100000078 in the Probability Surveys (http://www.i-journals.org/ps/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore