45 research outputs found

    The Application of Chordal Graphs to Inferring Phylogenetic Trees of Languages

    Get PDF
    Phylogenetic methods are used to build evolutionary trees of languages given character data that may include lexical, phonological, and morphological information. Such data rarely admits a perfect phylogeny. We explore the use of the more permissive conservative Dollo phylogeny as an alternative or complementary approach. We propose a heuristic search algorithm based on the notion of chordal graphs. We test this approach by generating phylogenetic trees from three datasets, and comparing them to those produced by other researchers

    Characterization of Super Strongly Perfect Graphs in Chordal and Strongly Chordal Graphs

    Get PDF
    A Graph G is Super Strongly Perfect Graph if every induced sub graph H of G possesses a minimal dominating set that meets all the maximal complete sub graphs of H. In this paper, we have investigated the characterization of Super Strongly Perfect graphs using odd cycles. We have given the characterization of Super Strongly Perfect graphs in chordal and strongly chordal graphs. We have presented the results of Chordal graphs in terms of domination and co - domination numbers Îł and . We have given the relationship between diameter, domination and co - domination numbers of chordal graphs. Also we have analysed the structure of Super Strongly Perfect Graph in Chordal graphs and Strongly Chordal graphs

    The hardness of perfect phylogeny, feasible register assignment and other problems on thin colored graphs

    Get PDF
    AbstractIn this paper, we consider the complexity of a number of combinatorial problems; namely, Intervalizing Colored Graphs (DNA physical mapping), Triangulating Colored Graphs (perfect phylogeny), (Directed) (Modified) Colored Cutwidth, Feasible Register Assignment and Module Allocation for graphs of bounded pathwidth. Each of these problems has as a characteristic a uniform upper bound on the tree or path width of the graphs in “yes”-instances. For all of these problems with the exceptions of Feasible Register Assignment and Module Allocation, a vertex or edge coloring is given as part of the input. Our main results are that the parameterized variant of each of the considered problems is hard for the complexity classes W[t] for all t∈N. We also show that Intervalizing Colored Graphs, Triangulating Colored Graphs, and Colored Cutwidth are NP-Complete

    Fast and accurate supertrees: towards large scale phylogenies

    Get PDF
    Phylogenetics is the study of evolutionary relationships between biological entities; phylogenetic trees (phylogenies) are a visualization of these evolutionary relationships. Accurate approaches to reconstruct hylogenies from sequence data usually result in NPhard optimization problems, hence local search heuristics have to be applied in practice. These methods are highly accurate and fast enough as long as the input data is not too large. Divide-and-conquer techniques are a promising approach to boost scalability and accuracy of those local search heuristics on very large datasets. A divide-and-conquer method breaks down a large phylogenetic problem into smaller sub-problems that are computationally easier to solve. The sub-problems (overlapping trees) are then combined using a supertree method. Supertree methods merge a set of overlapping phylogenetic trees into a supertree containing all taxa of the input trees. The challenge in supertree reconstruction is the way of dealing with conflicting information in the input trees. Many different algorithms for different objective functions have been suggested to resolve these conflicts. In particular, there are methods that encode the source trees in a matrix and the supertree is constructed applying a local search heuristic to optimize the respective objective function. The most widely used supertree methods use such local search heuristics. However, to really improve the scalability of accurate tree reconstruction by divide-and-conquer approaches, accurate polynomial time methods are needed for the supertree reconstruction step. In this work, we present approaches for accurate polynomial time supertree reconstruction in particular Bad Clade Deletion (BCD), a novel heuristic supertree algorithm with polynomial running time. BCD uses minimum cuts to greedily delete a locally minimal number of columns from a matrix representation to make it compatible. Different from local search heuristics, it guarantees to return the directed perfect phylogeny for the input matrix, corresponding to the parent tree of the input trees if one exists. BCD can take support values of the source trees into account without an increase in complexity. We show how reliable clades can be used to restrict the search space for BCD and how those clades can be collected from the input data using the Greedy Strict Consensus Merger. Finally, we introduce a beam search extension for the BCD algorithm that keeps alive a constant number of partial solutions in each top-down iteration phase. The guaranteed worst-case running time of BCD with beam search extension is still polynomial. We present an exact and a randomized subroutine to generate suboptimal partial solutions. In our thorough evaluation on several simulated and biological datasets against a representative set of supertree methods we found that BCD is more accurate than the most accurate supertree methods when using support values and search space restriction on simulated data. Simultaneously BCD is faster than any other evaluated method. The beam search approach improved the accuracy of BCD on all evaluated datasets at the cost of speed. We found that BCD supertrees can boost maximum likelihood tree reconstruction when used as starting tree. Further, BCD could handle large scale datasets where local search heuristics did not converge in reasonable time. Due to its combination of speed, accuracy, and the ability to reconstruct the parent tree if one exists, BCD is a promising approach to enable outstanding scalability of divide-and-conquer approaches.Die Phylogenetik studiert die evolutionĂ€ren Beziehungen zwischen biologischen EntitĂ€ten. Phylogenetische BĂ€ume sind eine Visualisierung dieser Beziehungen. Akkurate AnsĂ€tze zur Rekonstruktion von Phylogenien aus Sequenzdaten fĂŒhren in der Regel zu NP-schweren Optimierungsproblemen, sodass in der Praxis lokale Suchheuristiken angewendet werden mĂŒssen. Diese Methoden liefern akkurate BĂ€ume und sind schnell genug, solange die Eingabedaten nicht zu groß werden. Teile-und-herrsche-Verfahren sind ein vielversprechender Ansatz, um Skalierbarkeit und Genauigkeit dieser lokalen Suchheuristiken auf sehr großen DatensĂ€tzen zu verbessern. Beim Teile-und-herrsche-Ansatz zerlegt man ein großes phylogenetisches Problem in kleinere Teilprobleme, die einfacher und schneller zu lösen sind. Die Teilprobleme, in diesem Fall ĂŒberlappende TeilbĂ€ume, mĂŒssen dann zu einem gesamtheitlichen Baum kombiniert werden. Superbaummethoden verschmelzen solche ĂŒberlappenden phylogenetischen BĂ€ume zu einem Superbaum, der alle Taxa der EingangsbĂ€ume enthĂ€lt. Die Herausforderung bei der Superbaumrekonstruktion besteht darin, mit widersprĂŒchlichen EingabebĂ€umen umzugehen. Es wurden viele verschiedene Algorithmen mit unterschiedlichen Zielfunktionen entwickelt, um solche WidersprĂŒche möglichst sinnvoll aufzulösen. Verfahren, die auf der Kodierung der EingabebĂ€ume als MatrixreprĂ€sentation basieren, sind am weitesten verbreitet. Die zum Auflösen der Konflikte verwendeten Zielfunktionen fĂŒhren in der Regel zu NP-schweren Optimierungsproblemen, sodass in der Praxis auch hier lokale Suchheuristiken zum Einsatz kommen. Da diese AnsĂ€tze nicht wesentlich besser mit der GrĂ¶ĂŸe der Eingabedaten skalieren als die direkte Rekonstruktion aus Sequenzdaten, werden fĂŒr die Superbaumrekonstruktion in Teile-undherrsche-AnsĂ€tzen akkurate Polynomialzeitmethoden benötigt. Diese Arbeit beschĂ€ftigt sich mit der akkuraten Rekonstruktion von SuperbĂ€umen in Polynomialzeit. Wir prĂ€sentieren Bad Clade Deletion (BCD), eine neue Polynomialzeitheuristik zur Superbaumrekonstruktion. BCD verwendet minimale Schnitte in Graphen, um eine minimale Anzahl von Spalten aus der MatrixreprĂ€sentation zu löschen, sodass diese konfliktfrei wird. Im Gegensatz zu lokalen Suchheuristiken garantiert BCD die Rekonstruktion einer perfekten Phylogenie, sofern eine solche fĂŒr die Eingabematrix existiert. BCD ermöglicht es, GĂŒtekriterien der EingabebĂ€ume zu berĂŒcksichtigen, ohne dass sich dadurch die KomplexitĂ€t erhöht. Weiterhin zeigen wir, wie zuverlĂ€ssige Kladen verwendet werden können, um den Suchraum fĂŒr BCD einzuschrĂ€nken und wie man diese mit Hilfe des Greedy Strict Consensus Mergers aus den Eingabedaten gewinnen kann. Schließlich stellen wir eine Strahlensuche fĂŒr BCD vor. Diese erlaubt es eine bestimmte Anzahl suboptimaler Teillösungen (anstatt nur der optimalen) zu berĂŒcksichtigen, um so das Gesamtergebnis zu verbessern. Die Worst-Case-Laufzeit der Strahlensuche ist immer noch polynomiell. Zur Berechnung suboptimaler Teillösungen stellen wir einen exakten und einen randomisierten Algorithmus vor. In einer ausfĂŒhrlichen Evaluation auf mehreren simulierten und biologischen DatensĂ€tzen vergleichen wir BCD mit einer reprĂ€sentativen Auswahl an Superbaummethoden. Wir haben herausgefunden, dass BCD bei Verwendung von GĂŒtekriterien und SuchraumbeschrĂ€nkung auf simulierten Daten genauer ist als die akkuratesten evaluierten Superbaummethoden. Gleichzeitig ist BCD deutlich schneller als alle evaluierten Methoden. Die Strahlensuche verbessert die QualitĂ€t der BCD-BĂ€ume auf allen DatensĂ€tzen, allerdings auf Kosten der Laufzeit. Weiterhin fanden wir heraus, dass ein BCD-Superbaum, der als Startbaum verwendet wird, die QualitĂ€t einer Maximum-Likelihood-Baumrekonstruktion verbessern kann. Außerdem kann BCD DatensĂ€tze verarbeiten, die so groß sind, dass lokale Suchheuristiken auf diesen nicht mehr in angemessener Zeit konvergieren. Aufgrund der Kombination aus Geschwindigkeit, Genauigkeit und der FĂ€higkeit, den Elternbaum zu rekonstruieren, sofern ein solcher existiert, ist BCD ein vielversprechender Ansatz um die Skalierbarkeit von Teile-und-herrsche-Methoden entscheidend zu verbessern

    Maximal Chordal Subgraphs

    Full text link
    A chordal graph is a graph with no induced cycles of length at least 44. Let f(n,m)f(n,m) be the maximal integer such that every graph with nn vertices and mm edges has a chordal subgraph with at least f(n,m)f(n,m) edges. In 1985 Erd\H{o}s and Laskar posed the problem of estimating f(n,m)f(n,m). In the late '80s, Erd\H{o}s, Gy\'arf\'as, Ordman and Zalcstein determined the value of f(n,n2/4+1)f(n,n^2/4+1) and made a conjecture on the value of f(n,n2/3+1)f(n,n^2/3+1). In this paper we prove this conjecture and answer the question of Erd\H{o}s and Laskar, determining f(n,m)f(n,m) asymptotically for all mm and exactly for m≀n2/3+1m \leq n^2/3+1

    Predicting Horizontal Gene Transfers with Perfect Transfer Networks

    Get PDF
    Horizontal gene transfer inference approaches are usually based on gene sequences: parametric methods search for patterns that deviate from a particular genomic signature, while phylogenetic methods use sequences to reconstruct the gene and species trees. However, it is well-known that sequences have difficulty identifying ancient transfers since mutations have enough time to erase all evidence of such events. In this work, we ask whether character-based methods can predict gene transfers. Their advantage over sequences is that homologous genes can have low DNA similarity, but still have retained enough important common motifs that allow them to have common character traits, for instance the same functional or expression profile. A phylogeny that has two separate clades that acquired the same character independently might indicate the presence of a transfer even in the absence of sequence similarity. We introduce perfect transfer networks, which are phylogenetic networks that can explain the character diversity of a set of taxa. This problem has been studied extensively in the form of ancestral recombination networks, but these only model hybridation events and do not differentiate between direct parents and lateral donors. We focus on tree-based networks, in which edges representing vertical descent are clearly distinguished from those that represent horizontal transmission. Our model is a direct generalization of perfect phylogeny models to such networks. Our goal is to initiate a study on the structural and algorithmic properties of perfect transfer networks. We then show that in polynomial time, one can decide whether a given network is a valid explanation for a set of taxa, and show how, for a given tree, one can add transfer edges to it so that it explains a set of taxa

    Evolution of protein domain architectures

    Get PDF
    This chapter reviews current research on how protein domain architectures evolve. We begin by summarizing work on the phylogenetic distribution of proteins, as this will directly impact which domain architectures can be formed in different species. Studies relating domain family size to occurrence have shown that they generally follow power law distributions, both within genomes and larger evolutionary groups. These findings were subsequently extended to multi-domain architectures. Genome evolution models that have been suggested to explain the shape of these distributions are reviewed, as well as evidence for selective pressure to expand certain domain families more than others. Each domain has an intrinsic combinatorial propensity, and the effects of this have been studied using measures of domain versatility or promiscuity. Next, we study the principles of protein domain architecture evolution and how these have been inferred from distributions of extant domain arrangements. Following this, we review inferences of ancestral domain architecture and the conclusions concerning domain architecture evolution mechanisms that can be drawn from these. Finally, we examine whether all known cases of a given domain architecture can be assumed to have a single common origin (monophyly) or have evolved convergently (polyphyly). We end by a discussion of some available tools for computational analysis or exploitation of protein domain architectures and their evolution
    corecore