156 research outputs found

    A Process Framework for Managing Quality of Service in Private Cloud

    Get PDF
    As information systems leaders tap into the global market of cloud computing-based services, they struggle to maintain consistent application performance due to lack of a process framework for managing quality of service (QoS) in the cloud. Guided by the disruptive innovation theory, the purpose of this case study was to identify a process framework for meeting the QoS requirements of private cloud service users. Private cloud implementation was explored by selecting an organization in California through purposeful sampling. Information was gathered by interviewing 23 information technology (IT) professionals, a mix of frontline engineers, managers, and leaders involved in the implementation of private cloud. Another source of data was documents such as standard operating procedures, policies, and guidelines related to private cloud implementation. Interview transcripts and documents were coded and sequentially analyzed. Three prominent themes emerged from the analysis of data: (a) end user expectations, (b) application architecture, and (c) trending analysis. The findings of this study may help IT leaders in effectively managing QoS in cloud infrastructure and deliver reliable application performance that may help in increasing customer population and profitability of organizations. This study may contribute to positive social change as information systems managers and workers can learn and apply the process framework for delivering stable and reliable cloud-hosted computer applications

    Development of a virtualization systems architecture course for the information sciences and technologies department at the Rochester Institute of Technology (RIT)

    Get PDF
    Virtualization is a revolutionary technology that has changed the way computing is performed in data centers. By converting traditionally siloed computing assets to shared pools of resources, virtualization provides a considerable number of advantages such as more efficient use of physical server resources, more efficient use of datacenter space, reduced energy consumption, simplified system administration, simplified backup and disaster recovery, and a host of other advantages. Due to the considerable number of advantages, companies and organizations of various sizes have either migrated their workloads to virtualized environments or are considering virtualization of their workloads. As per Gartner Magic Quadrant for x86 Server Virtualization Infrastructure 2013 , roughly two-third of x86 server workloads are virtualized [1]. The need for virtualization solutions by companies and organizations has increased the demand for qualified virtualization professionals for planning, designing, implementing, and maintaining virtualized infrastructure of different scales. Although universities are the main source for educating IT professionals, the field of information technology is so dynamic and changing so rapidly that not all universities can keep pace with the change. As a result, providing the latest technology that is being used in the information technology industry in the curriculums of universities is a big advantage for information technology universities. Taking into consideration the trend toward virtualization in computing environments and the great demand for virtualization professionals in the industry, the faculty of Information Sciences and Technologies department at RIT decided to prepare a graduate course in the master\u27s program in Networking and System Administration entitled Virtualization Systems Architecture , which better prepares students to a find a career in the field of enterprise computing. This research is composed of five chapters. It starts by briefly going through the history of computer virtualization and exploring when and why it came into existence and how it evolved. The second chapter of the research goes through the challenges in virtualization of the x86 platform architecture and the solutions used to overcome the challenges. In the third chapter, various types of hypervisors are discussed and the advantages and disadvantages of each one are discussed. In the fourth chapter, the architecture and features of the two leading virtualization solutions are explored. Then in the final chapter, the research goes through the contents of the Virtualization Systems Architecture course

    Live-Migration in Cloud Computing Environment

    Get PDF
    O tráfego global de IP aumentou cinco vezes nos últimos cinco anos, e prevê-se que crescerá três vezes nos próximos cinco. Já para o período de 2013 a 2018, anteviu-se que o total do tráfego de IP iria aumentar a sua taxa composta de crescimento anual (CAGR) em, aproximadamente, 3.9 vezes. Assim, os Prestadores de Serviços estão a sofrer com este acréscimo exponencial, que é proveniente do número abismal de dispositivos e utilizadores que estão ligados à Internet, bem como das suas exigências por vários recursos e serviços de rede (como por exemplo, distribuição de conteúdo multimédia, segurança, mobilidade, etc.). Mais especificamente, estes estão com dificuldades em: introduzir novos serviços geradores de receitas; e otimizar e adaptar as suas infraestruturas mais caras, centros de processamento de dados, e redes empresariais e de longa distância (COMpuTIN, 2015). Estas redes continuam a ter sérios problemas (no que toca a agilidade, gestão, mobilidade e no tempo despendido para se adaptarem), que não foram corrigidos até ao momento. Portanto, foram propostos novos modelos de Virtualização de Funções da Rede (NFV) e tecnologias de Redes de Software Definidos (SDN) para solucionar gastos operacionais e de capital não otimizado, e limitações das redes (Lopez, 2014, Hakiri and Berthou, 2015). Para se ultrapassar tais adversidades, o Instituto Europeu de Normas de Telecomunicações (ETSI) e outras organizações propuseram novas arquiteturas de rede. De acordo com o ETSI, a NFV é uma técnica emergente e poderosa, com grande aplicabilidade, e com o objetivo de transformar a maneira como os operadores desenham as redes. Isto é alcançado pela evolução da tecnologia padrão de virtualização TI, de forma a consolidar vários tipos de equipamentos de redes como: servidores de grande volume, routers, switches e armazenamento (Xilouris et al., 2014). Nesta dissertação, foram usadas as soluções mais atuais de SDN e NFV, de forma a produzir um caso de uso que possa solucionar o crescimento do tráfego de rede e a excedência da sua capacidade máxima. Para o desenvolvimento e avalização da solução, foi instalada a plataforma de computação na nuvem OpenStack, de modo a implementar, gerir e testar um caso de uso de Live Migration.Global IP traffic has increased fivefold over the past five years, and will continue increasing threefold over the next five years. The overall IP traffic will grow at a compound annual growth rate (CAGR) nearly 3.9-fold from 2013 to 2018. Service Providers are experiencing the exponential growth of IP traffic that comes from the incredible increased number of devices and users who are connected to the internet along with their demands for various resources and network services like multimedia content distribution, security, mobility and else. Therefore, Service Providers are finding difficult to introduce new revenue generating services, optimize and adapt their expensive infrastructures, data centers, wide-area networks and enterprise networks (COMpuTIN, 2015). The networks continue to have serious known problems, such as, agility, manageability, mobility and time-to-application that have not been successfully addressed so far. Thus, novel Network Function Virtualization (NFV) models and Software-defined Networking (SDN) technologies have been proposed to solve the non-optimal capital and operational expenditures and network’s limitations (Lopez, 2014, Hakiri and Berthou, 2015). In order to solve these issues, the European Telecommunications Standards Institute (ETSI) and other standard organizations are proposing new network architecture approaches. According to ETSI, The Network Functions Virtualization is a powerful emerging technique with widespread applicability, aiming to transform the way that network operators design networks by evolving standard IT virtualization technology to consolidate many network equipment types: high volume servers, routers, switches and storage (Xilouris et al., 2014). In this thesis, the current Software-Defined Networking (SDN) and Network Function Virtualization (NFV) solutions were used in order to make a use case that can address the increasing of network traffic and exceeding its maximum capacity. To develop and evaluate the solution, OpenStack cloud computing platform was installed in order to deploy, manage and test a Live-Migration use-case

    Building the Infrastructure for Cloud Security: A Solutions View

    Get PDF
    For cloud users and providers alike, security is an everyday concern, yet there are very few books covering cloud security as a main subject. This book will help address this information gap from an Information Technology solution and usage-centric view of cloud infrastructure security. The book highlights the fundamental technology components necessary to build and enable trusted clouds. Here also is an explanation of the security and compliance challenges organizations face as they migrate mission-critical applications to the cloud, and how trusted clouds, that have their integrity rooted in hardware, can address these challenges. This book provides: Use cases and solution reference architectures to enable infrastructure integrity and the creation of trusted pools leveraging Intel Trusted Execution Technology (TXT). Trusted geo-location management in the cloud, enabling workload and data location compliance and boundary control usages in the cloud. OpenStack-based reference architecture of tenant-controlled virtual machine and workload protection in the cloud. A reference design to enable secure hybrid clouds for a cloud bursting use case, providing infrastructure visibility and control to organizations

    Virtualization to build large scale networks

    Get PDF
    Abstract. There is not much research concerning network virtualization, even though virtualization has been a hot topic for some time and networks keep growing. Physical routers can be expensive and laborious to setup and manage, not to mention immobile. Network virtualization can be utilized in many ways, such as reducing costs, increasing agility and increasing deployment speed. Virtual routers are easy to create, copy and move. This study will research into the subjects of networks, virtualization solutions and network virtualization. Furthermore, it will show how to build a virtual network consisting of hundreds of nodes, all performing network routing. In addition, the virtual network can be connected to physical routers in the real world to provide benefits, such as performance testing or large-scale deployment. All this will be achieved using only commodity hardware

    A Comparison of Cloud Computing Platforms

    Get PDF
    Cloud computing concept has overhauled the entire structure representation, required for the implementation of IT Infrastructure. This cloud computing approach is gradually eliminating the existing client server system and grid computing. The capabilities associated with the innovation of cloud computing have given rise to users to develop and share different applications on the internet infrastructure. This has also led to the ability to access data at each computer node anytime and anywhere across computer network without limitation of resource requirement or hardware demands. This paper explores the underlying platform that is used by computer architects to design and module cloud computing in order to satisfy the usage requirement. Existing cloud computing module and services can influence and shape the future of IT infrastructure and their development. A comparison of four cloud computing platform namely: AbiCloud, Eucalyptus, Nimbus, and OpenNebula cloud will be presented

    A Novel 6G Conversational Orchestration Framework for Enhancing Performance and Resource Utilization in Autonomous Vehicle Networks

    Get PDF
    A vision of 6G aims to automate versatile services by eliminating the complexity of human effort for Industry 5.0 applications. This results in an intelligent environment with cognitive and collaborative capabilities of AI conversational orchestration that enable a variety of applications across smart Autonomous Vehicle (AV) networks. In this article, an innovative framework for AI conversational orchestration is proposed by enabling on-the-fly virtual infrastructure service orchestration for Anything-as-a-Service (XaaS) to automate a network service paradigm. The proposed framework will potentially contribute to the growth of 6G conversational orchestration by enabling on-the-fly automation of cloud and network services. The orchestration aspect of the 6G vision is not limited to cognitive collaborative communications, but also extends to context-aware personalized infrastructure for 6G automation. The experimental results of the implemented proof-of-concept framework are presented. These experiments not only affirm the technical capabilities of this framework, but also push into several Industry 5.0 applications

    Cooperative Trust Framework for Cloud Computing Based on Mobile Agents

    Get PDF
    Cloud computing opens doors to the multiple, unlimited venues from elastic computing to on demand provisioning to dynamic storage, reduce the potential costs through optimized and efficient computing. To provide secure and reliable services in cloud computing environment is an important issue. One of the security issues is how to reduce the impact of for any type of intrusion in this environment. To counter these kinds of attacks, a framework of cooperative Hybrid intrusion detection system (Hy-IDS) and Mobile Agents is proposed. This framework allows protection against the intrusion attacks. Our Hybrid IDS is based on two types of IDS, the first for the detection of attacks at the level of virtual machines (VMs), the second for the network attack detection and Mobile Agents. Then, this framework unfolds in three phases: the first, detection intrusion in a virtual environment using mobile agents for collected malicious data. The second, generating new signatures from malicious data, which were collected in the first phase. The third, dynamic deployment of updates between clusters in a cloud computing, using the newest signatures previously created. By this type of close-loop control, the collaborative network security management system can identify and address new distributed attacks more quickly and effectively. In this paper, we develop a collaborative approach based on Hy-IDS and Mobile Agents in Cloud Environment, to define a dynamic context which enables the detection of new attacks, with much detail as possible
    • …
    corecore