10 research outputs found

    Evolving robot sub-behaviour modules using Gene Expression Programming

    Get PDF
    Many approaches to AI in robotics use a multi-layered approach to determine levels of behaviour from basic operations to goal-directed behaviour, the most well-known of which is the subsumption architecture. In this paper, the performances of the unigenic gene expression programming (ugGEP) and multigenic GEP (mgGEP) in evolving robot controllers for a wall following robot is analysed. Additionally, the paper introduces Regulatory Multigenic Gene Expression Programming (RMGEP), a new evolutionary technique that can be utilised to automatically evolve modularity in robot behaviour. The proposed technique extends the mgGEP algorithm, by incorporating a regulatory gene as part of the GEP chromosome. The regulatory gene, just as in systems biology, determines which of the genes in the chromosome to express and therefore how the controller solves the problem. In the initial experiments, the proposed algorithm is implemented for a robot wall following problem and the results compared to that of ugGEP and mgGEP. In addition to the wall following behaviour, a robot foraging behaviour is implemented with the aim of investigating whether the position of a speci c module (sub-expression tree (ET)) in the overall ET is of importance when coding for a problem.http://link.springer.com/journal/107102016-05-30hb201

    A sensory system for robots using evolutionary artificial neural networks.

    Get PDF
    The thesis presents the research involved with developing an Intelligent Vision System for an animat that can analyse a visual scene in uncontrolled environments. Inspiration was drawn both from Biological Visual Systems and Artificial Image Recognition Systems. Several Biological Systems including the Insect, Toad and Human Visual Systems were studied alongside popular Pattern Recognition Systems such as fully connected Feedforward Networks, Modular Neural Networks and the Neocognitron. The developed system, called the Distributed Neural Network (DNN) was based on the sensory-motor connections in the common toad, Bufo Bufo. The sparsely connected network architecture has features of modularity enhanced by the presence of lateral inhibitory connections. It was implemented using Evolutionary Artificial Neural Networks (EANN). A novel method called FUSION was used to train the DNN, which is an amalgamation of several concepts of learning in Artificial Neural Networks such as Unsupervised Learning, Supervised Learning, Reinforcement Learning, Competitive Learning, Self-organisation and Fuzzy Logic. The DNN has unique feature detecting capabilities. When the DNN was tested using images that comprised of combination of features used in the training set, the DNN was successful in recognising individual features. The combinations of features were never used in the training set. This is a unique feature of the DNN trained using Fusion that cannot be matched by any other popular ANN architecture or training method. The system proved to be robust in dealing with New and Noisy Images. The unique features of the DNN make the network suitable for applications in robotics such as obstacle avoidance and terrain recognition, where the environment is unpredictable. The network can also be used in the field of Medical Imaging, Biometrics (Face and Finger Print Recognition) and Quality Inspection in the Food Processing Industry and applications in other uncontrolled environments

    Adaptive networks for robotics and the emergence of reward anticipatory circuits

    Get PDF
    Currently the central challenge facing evolutionary robotics is to determine how best to extend the range and complexity of behaviour supported by evolved neural systems. Implicit in the work described in this thesis is the idea that this might best be achieved through devising neural circuits (tractable to evolutionary exploration) that exhibit complementary functional characteristics. We concentrate on two problem domains; locomotion and sequence learning. For locomotion we compare the use of GasNets and other adaptive networks. For sequence learning we introduce a novel connectionist model inspired by the role of dopamine in the basal ganglia (commonly interpreted as a form of reinforcement learning). This connectionist approach relies upon a new neuron model inspired by notions of energy efficient signalling. Two reward adaptive circuit variants were investigated. These were applied respectively to two learning problems; where action sequences are required to take place in a strict order, and secondly, where action sequences are robust to intermediate arbitrary states. We conclude the thesis by proposing a formal model of functional integration, encompassing locomotion and sequence learning, extending ideas proposed by W. Ross Ashby. A general model of the adaptive replicator is presented, incoporating subsystems that are tuned to continuous variation and discrete or conditional events. Comparisons are made with Ross W. Ashby's model of ultrastability and his ideas on adaptive behaviour. This model is intended to support our assertion that, GasNets (and similar networks) and reward adaptive circuits of the type presented here, are intrinsically complementary. In conclusion we present some ideas on how the co-evolution of GasNet and reward adaptive circuits might lead us to significant improvements in the synthesis of agents capable of exhibiting complex adaptive behaviour

    Neural dynamics of social behavior : An evolutionary and mechanistic perspective on communication, cooperation, and competition among situated agents

    Get PDF
    Social behavior can be found on almost every level of life, ranging from microorganisms to human societies. However, explaining the evolutionary emergence of cooperation, communication, or competition still challenges modern biology. The most common approaches to this problem are based on game-theoretic models. The problem is that these models often assume fixed and limited rules and actions that individual agents can choose from, which excludes the dynamical nature of the mechanisms that underlie the behavior of living systems. So far, there exists a lack of convincing modeling approaches to investigate the emergence of social behavior from a mechanistic and evolutionary perspective. Instead of studying animals, the methodology employed in this thesis combines several aspects from alternative approaches to study behavior in a rather novel way. Robotic models are considered as individual agents which are controlled by recurrent neural networks representing non-linear dynamical system. The topology and parameters of these networks are evolved following an open-ended evolution approach, that is, individuals are not evaluated on high-level goals or optimized for specific functions. Instead, agents compete for limited resources to enhance their chance of survival. Further, there is no restriction with respect to how individuals interact with their environment or with each other. As its main objective, this thesis aims at a complementary approach for studying not only the evolution, but also the mechanisms of basic forms of communication. For this purpose it can be shown that a robot does not necessarily have to be as complex as a human, not even as complex as a bacterium. The strength of this approach is that it deals with rather simple, yet complete and situated systems, facing similar real world problems as animals do, such as sensory noise or dynamically changing environments. The experimental part of this thesis is substantiated in a five-part examination. First, self-organized aggregation patterns are discussed. Second, the advantages of evolving decentralized control with respect to behavioral robustness and flexibility is demonstrated. Third, it is shown that only minimalistic local acoustic communication is required to coordinate the behavior of large groups. This is followed by investigations of the evolutionary emergence of communication. Finally, it is shown how already evolved communicative behavior changes during further evolution when a population is confronted with competition about limited environmental resources. All presented experiments entail thorough analysis of the dynamical mechanisms that underlie evolved communication systems, which has not been done so far in the context of cooperative behavior. This framework leads to a better understanding of the relation between intrinsic neurodynamics and observable agent-environment interactions. The results discussed here provide a new perspective on the evolution of cooperation because they deal with aspects largely neglected in traditional approaches, aspects such as embodiment, situatedness, and the dynamical nature of the mechanisms that underlie behavior. For the first time, it can be demonstrated how noise influences specific signaling strategies and that versatile dynamics of very small-scale neural networks embedded in sensory-motor feedback loops give rise to sophisticated forms of communication such as signal coordination, cooperative intraspecific communication, and, most intriguingly, aggressive interspecific signaling. Further, the results demonstrate the development of counteractive niche construction based on a modification of communication strategies which generates an evolutionary feedback resulting in an active reduction of selection pressure, which has not been shown so far. Thus, the novel findings presented here strongly support the complementary nature of robotic experiments to study the evolution and mechanisms of communication and cooperation.</p

    Artificial ontogenesis: a connectionist model of development

    Get PDF
    This thesis suggests that ontogenetic adaptive processes are important for generating intelligent beha- viour. It is thus proposed that such processes, as they occur in nature, need to be modelled and that such a model could be used for generating artificial intelligence, and specifically robotic intelligence. Hence, this thesis focuses on how mechanisms of intelligence are specified.A major problem in robotics is the need to predefine the behaviour to be followed by the robot. This makes design intractable for all but the simplest tasks and results in controllers that are specific to that particular task and are brittle when faced with unforeseen circumstances. These problems can be resolved by providing the robot with the ability to adapt the rules it follows and to autonomously create new rules for controlling behaviour. This solution thus depends on the predefinition of how rules to control behaviour are to be learnt rather than the predefinition of rules for behaviour themselves.Learning new rules for behaviour occurs during the developmental process in biology. Changes in the structure of the cerebral 'cortex underly behavioural and cognitive development throughout infancy and beyond. The uniformity of the neocortex suggests that there is significant computational uniformity across the cortex resulting from uniform mechanisms of development, and holds out the possibility of a general model of development. Development is an interactive process between genetic predefinition and environmental influences. This interactive process is constructive: qualitatively new behaviours are learnt by using simple abilities as a basis for learning more complex ones. The progressive increase in competence, provided by development, may be essential to make tractable the process of acquiring higher -level abilities.While simple behaviours can be triggered by direct sensory cues, more complex behaviours require the use of more abstract representations. There is thus a need to find representations at the correct level of abstraction appropriate to controlling each ability. In addition, finding the correct level of abstrac- tion makes tractable the task of associating sensory representations with motor actions. Hence, finding appropriate representations is important both for learning behaviours and for controlling behaviours. Representations can be found by recording regularities in the world or by discovering re- occurring pat- terns through repeated sensory -motor interactions. By recording regularities within the representations thus formed, more abstract representations can be found. Simple, non -abstract, representations thus provide the basis for learning more complex, abstract, representations.A modular neural network architecture is presented as a basis for a model of development. The pat- tern of activity of the neurons in an individual network constitutes a representation of the input to that network. This representation is formed through a novel, unsupervised, learning algorithm which adjusts the synaptic weights to improve the representation of the input data. Representations are formed by neurons learning to respond to correlated sets of inputs. Neurons thus became feature detectors or pat- tern recognisers. Because the nodes respond to patterns of inputs they encode more abstract features of the input than are explicitly encoded in the input data itself. In this way simple representations provide the basis for learning more complex representations. The algorithm allows both more abstract represent- ations to be formed by associating correlated, coincident, features together, and invariant representations to be formed by associating correlated, sequential, features together.The algorithm robustly learns accurate and stable representations, in a format most appropriate to the structure of the input data received: it can represent both single and multiple input features in both the discrete and continuous domains, using either topologically or non -topologically organised nodes. The output of one neural network is used to provide inputs for other networks. The robustness of the algorithm enables each neural network to be implemented using an identical algorithm. This allows a modular `assembly' of neural networks to be used for learning more complex abilities: the output activations of a network can be used as the input to other networks which can then find representations of more abstract information within the same input data; and, by defining the output activations of neurons in certain networks to have behavioural consequences it is possible to learn sensory -motor associations, to enable sensory representations to be used to control behaviour

    Advances in Reinforcement Learning

    Get PDF
    Reinforcement Learning (RL) is a very dynamic area in terms of theory and application. This book brings together many different aspects of the current research on several fields associated to RL which has been growing rapidly, producing a wide variety of learning algorithms for different applications. Based on 24 Chapters, it covers a very broad variety of topics in RL and their application in autonomous systems. A set of chapters in this book provide a general overview of RL while other chapters focus mostly on the applications of RL paradigms: Game Theory, Multi-Agent Theory, Robotic, Networking Technologies, Vehicular Navigation, Medicine and Industrial Logistic

    A complex systems approach to education in Switzerland

    Get PDF
    The insights gained from the study of complex systems in biological, social, and engineered systems enables us not only to observe and understand, but also to actively design systems which will be capable of successfully coping with complex and dynamically changing situations. The methods and mindset required for this approach have been applied to educational systems with their diverse levels of scale and complexity. Based on the general case made by Yaneer Bar-Yam, this paper applies the complex systems approach to the educational system in Switzerland. It confirms that the complex systems approach is valid. Indeed, many recommendations made for the general case have already been implemented in the Swiss education system. To address existing problems and difficulties, further steps are recommended. This paper contributes to the further establishment complex systems approach by shedding light on an area which concerns us all, which is a frequent topic of discussion and dispute among politicians and the public, where billions of dollars have been spent without achieving the desired results, and where it is difficult to directly derive consequences from actions taken. The analysis of the education system's different levels, their complexity and scale will clarify how such a dynamic system should be approached, and how it can be guided towards the desired performance

    Aeronautical engineering: A continuing bibliography with indexes (supplement 321)

    Get PDF
    This bibliography lists 496 reports, articles, and other documents introduced into the NASA scientific and technical information system in Sep. 1995. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics
    corecore