36 research outputs found

    What makes a mitochondrion?

    Get PDF
    Experimental analyses of the proteins found in the mitochondria of yeast, humans and Arabidopsis have confirmed some expectations but given some surprises and some insights into the evolutionary origins of mitochondrial proteins

    Inferring Gene Regulatory Network from Bayesian Network Model Based on Re-Sampling

    Get PDF
    Nowadays, gene chip technology has rapidly produced a wealth of information about gene expression activities. But the time-series expression data present a phenomenon that the number of genes is in thousands and the number of experimental data is only a few dozen. For such cases, it is difficult to learn network structure from such data. And the result is not ideal. So it needs to take measures to expand the capacity of the sample. In this paper, the Block bootstrap re-sampling method is utilized to enlarge the small expression data. At the same time, we apply ā€œK2+Tā€ algorithm to Yeast cell cycle gene expression data. Seeing from the experimental results and comparing with the semi-fixed structure EM learning algorithm, our proposed method is successful in constructing gene networks that capture much more known relationships as well as several unknown relationships which are likely to be novel

    Widespread horizontal transfer of mitochondrial genes in flowering plants

    Full text link
    Horizontal gene transfer - the exchange of genes across mating barriers - is recognized as a major force in bacterial evolution(1,2). However, in eukaryotes it is prevalent only in certain phagotrophic protists and limited largely to the ancient acquisition of bacterial genes(3-5). Although the human genome was initially reported(6) to contain over 100 genes acquired during vertebrate evolution from bacteria, this claim was immediately and repeatedly rebutted(7,8). Moreover, horizontal transfer is unknown within the evolution of animals, plants and fungi except in the special context of mobile genetic elements(9-12). Here we show, however, that standard mitochondrial genes, encoding ribosomal and respiratory proteins, are subject to evolutionarily frequent horizontal transfer between distantly related flowering plants. These transfers have created a variety of genomic outcomes, including gene duplication, recapture of genes lost through transfer to the nucleus, and chimaeric, half-monocot, half-dicot genes. These results imply the existence of mechanisms for the delivery of DNA between unrelated plants, indicate that horizontal transfer is also a force in plant nuclear genomes, and are discussed in the contexts of plant molecular phylogeny and genetically modified plants.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62688/1/nature01743.pd

    MILANO ā€“ custom annotation of microarray results using automatic literature searches

    Get PDF
    BACKGROUND: High-throughput genomic research tools are becoming standard in the biologist's toolbox. After processing the genomic data with one of the many available statistical algorithms to identify statistically significant genes, these genes need to be further analyzed for biological significance in light of all the existing knowledge. Literature mining ā€“ the process of representing literature data in a fashion that is easy to relate to genomic data ā€“ is one solution to this problem. RESULTS: We present a web-based tool, MILANO (Microarray Literature-based Annotation), that allows annotation of lists of genes derived from microarray results by user defined terms. Our annotation strategy is based on counting the number of literature co-occurrences of each gene on the list with a user defined term. This strategy allows the customization of the annotation procedure and thus overcomes one of the major limitations of the functional annotations usually provided with microarray results. MILANO expands the gene names to include all their informative synonyms while filtering out gene symbols that are likely to be less informative as literature searching terms. MILANO supports searching two literature databases: GeneRIF and Medline (through PubMed), allowing retrieval of both quick and comprehensive results. We demonstrate MILANO's ability to improve microarray analysis by analyzing a list of 150 genes that were affected by p53 overproduction. This analysis reveals that MILANO enables immediate identification of known p53 target genes on this list and assists in sorting the list into genes known to be involved in p53 related pathways, apoptosis and cell cycle arrest. CONCLUSIONS: MILANO provides a useful tool for the automatic custom annotation of microarray results which is based on all the available literature. MILANO has two major advances over similar tools: the ability to expand gene names to include all their informative synonyms while removing synonyms that are not informative and access to the GeneRIF database which provides short summaries of curated articles relevant to known genes. MILANO is available at

    Gene Network Modeling through Semi-Fixed Bayesian Network

    Get PDF
    Abstract. Gene networks describe functional pathways in a given cell or tissue, representing processes such as metabolism, gene expression regulation, protein or RNA transport. Thus, learning gene network is a crucial problem in the post genome era. Most existing works learn gene networks by assuming one gene provokes the expression of another gene directly leading to an over-simplified model. In this paper, we show that the gene regulation is a complex problem with many hidden variables. We propose a semi-fixed model to represent the gene network as a Bayesian network with hidden variables. In addition, an effective algorithm to learn the model is presented. Experiments on artificial and real-life dataset confirm the effectiveness of our approach

    MONOD, a Collaborative Tool for Manipulating Biological Knowledge

    Get PDF
    Research article written in 2004 describing MONOD, an early biological knowledge management systemWe describe an open source software tool called MONOD, for Modelerā€™s Notebook and Datastore, designed to capture and communicate knowledge generated during the process of building models of many-component biological systems. We used MONOD to construct a model of the pheromone response signaling pathway of Saccharomyces cerevisiae. MONOD allowed the accumulation, documentation, and exchange of data, valuations, assumptions, and decisions generated during the model building process. MONOD thus helped preserve a record of the steps taken on the path between from the experimental data to the computable model. We believe that MONOD and its successors may streamline the processes of building models, communicating with other researchers, and managing and manipulating biological knowledge. "Collaborative annotation"-- fine-grained, structured, searchable communication enabled by software tools of this type-- could positively affect the practice of biological research

    The Importance of Bottlenecks in Protein Networks: Correlation with Gene Essentiality and Expression Dynamics

    Get PDF
    It has been a long-standing goal in systems biology to find relations between the topological properties and functional features of protein networks. However, most of the focus in network studies has been on highly connected proteins (ā€œhubsā€). As a complementary notion, it is possible to define bottlenecks as proteins with a high betweenness centrality (i.e., network nodes that have many ā€œshortest pathsā€ going through them, analogous to major bridges and tunnels on a highway map). Bottlenecks are, in fact, key connector proteins with surprising functional and dynamic properties. In particular, they are more likely to be essential proteins. In fact, in regulatory and other directed networks, betweenness (i.e., ā€œbottleneck-nessā€) is a much more significant indicator of essentiality than degree (i.e., ā€œhub-nessā€). Furthermore, bottlenecks correspond to the dynamic components of the interaction networkā€”they are significantly less well coexpressed with their neighbors than nonbottlenecks, implying that expression dynamics is wired into the network topology

    Which clustering algorithm is better for predicting protein complexes?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein-Protein interactions (PPI) play a key role in determining the outcome of most cellular processes. The correct identification and characterization of protein interactions and the networks, which they comprise, is critical for understanding the molecular mechanisms within the cell. Large-scale techniques such as pull down assays and tandem affinity purification are used in order to detect protein interactions in an organism. Today, relatively new high-throughput methods like yeast two hybrid, mass spectrometry, microarrays, and phage display are also used to reveal protein interaction networks.</p> <p>Results</p> <p>In this paper we evaluated four different clustering algorithms using six different interaction datasets. We parameterized the MCL, Spectral, RNSC and Affinity Propagation algorithms and applied them to six PPI datasets produced experimentally by Yeast 2 Hybrid (Y2H) and Tandem Affinity Purification (TAP) methods. The predicted clusters, so called protein complexes, were then compared and benchmarked with already known complexes stored in published databases.</p> <p>Conclusions</p> <p>While results may differ upon parameterization, the MCL and RNSC algorithms seem to be more promising and more accurate at predicting PPI complexes. Moreover, they predict more complexes than other reviewed algorithms in absolute numbers. On the other hand the spectral clustering algorithm achieves the highest valid prediction rate in our experiments. However, it is nearly always outperformed by both RNSC and MCL in terms of the geometrical accuracy while it generates the fewest valid clusters than any other reviewed algorithm. This article demonstrates various metrics to evaluate the accuracy of such predictions as they are presented in the text below. Supplementary material can be found at: <url>http://www.bioacademy.gr/bioinformatics/projects/ppireview.htm</url></p

    ReLiance: a machine learning and literature-based prioritization of receptorā€”ligand pairings.

    Get PDF
    Motivation: The prediction of receptorā€”ligand pairings is an important area of research as intercellular communications are mediated by the successful interaction of these key proteins. As the exhaustive assaying of receptorā€”ligand pairs is impractical, a computational approach to predict pairings is necessary. We propose a workflow to carry out this interaction prediction task, using a text mining approach in conjunction with a state of the art prediction method, as well as a widely accessible and comprehensive dataset. Among several modern classifiers, random forests have been found to be the best at this prediction task. The training of this classifier was carried out using an experimentally validated dataset of Database of Ligand-Receptor Partners (DLRP) receptorā€”ligand pairs. New examples, co-cited with the training receptors and ligands, are then classified using the trained classifier. After applying our method, we find that we are able to successfully predict receptorā€”ligand pairs within the GPCR family with a balanced accuracy of 0.96. Upon further inspection, we find several supported interactions that were not present in the Database of Interacting Proteins (DIPdatabase). We have measured the balanced accuracy of our method resulting in high quality predictions stored in the available database ReLiance. Availability: http://homes.esat.kuleuven.be/?bioiuser/ReLianceDB/ index.php Contact: [email protected]; ernesto.iacucci@gmail. com Supplementary information: Supplementary data are available at Bioinformatics onlin
    corecore