87,870 research outputs found

    An interactive web-based tool for breast reduction surgery simulation

    Get PDF
    In this work, we present a 3D web-based interactive tool for numerical modeling and simulation approach to breast reduction surgery simulation, to assist surgeons in planning all aspects related to breast reduction surgery before the actual procedure takes place, thereby avoiding unnecessary risks. In particular, it allows the modeling of the initial breast geometry, the definition of all aspects related to the surgery and the visualization of the post-surgery breast shape in a realistic environment.This work was supported by FCT – Fundação para a Ciência e a Tecnologia, through the project EXPL/MAT-NAN/0606/20132. The researchers also acknowledge LISP – Laboratory of Informatics, Systems and Parallelism and the Computer Science Department of Universidade de ´Evora for providing the conditions to accomplish the work described herein

    The LAB@FUTURE Project - Moving Towards the Future of E-Learning

    Get PDF
    This paper presents Lab@Future, an advanced e-learning platform that uses novel Information and Communication Technologies to support and expand laboratory teaching practices. For this purpose, Lab@Future uses real and computer-generated objects that are interfaced using mechatronic systems, augmented reality, mobile technologies and 3D multi user environments. The main aim is to develop and demonstrate technological support for practical experiments in the following focused subjects namely: Fluid Dynamics - Science subject in Germany, Geometry - Mathematics subject in Austria, History and Environmental Awareness – Arts and Humanities subjects in Greece and Slovenia. In order to pedagogically enhance the design and functional aspects of this e-learning technology, we are investigating the dialogical operationalisation of learning theories so as to leverage our understanding of teaching and learning practices in the targeted context of deployment

    Integrating DGSs and GATPs in an Adaptative and Collaborative Blended-Learning Web-Environment

    Full text link
    The area of geometry with its very strong and appealing visual contents and its also strong and appealing connection between the visual content and its formal specification, is an area where computational tools can enhance, in a significant way, the learning environments. The dynamic geometry software systems (DGSs) can be used to explore the visual contents of geometry. This already mature tools allows an easy construction of geometric figures build from free objects and elementary constructions. The geometric automated theorem provers (GATPs) allows formal deductive reasoning about geometric constructions, extending the reasoning via concrete instances in a given model to formal deductive reasoning in a geometric theory. An adaptative and collaborative blended-learning environment where the DGS and GATP features could be fully explored would be, in our opinion a very rich and challenging learning environment for teachers and students. In this text we will describe the Web Geometry Laboratory a Web environment incorporating a DGS and a repository of geometric problems, that can be used in a synchronous and asynchronous fashion and with some adaptative and collaborative features. As future work we want to enhance the adaptative and collaborative aspects of the environment and also to incorporate a GATP, constructing a dynamic and individualised learning environment for geometry.Comment: In Proceedings THedu'11, arXiv:1202.453

    The Geant4-DNA project

    Get PDF
    The Geant4-DNA project proposes to develop an open-source simulation software based and fully included in the general-purpose Geant4 Monte Carlo simulation toolkit. The main objective of this software is to simulate biological damages induced by ionising radiation at the cellular and sub-cellular scale. This project was originally initiated by the European Space Agency for the prediction of deleterious effects of radiation that may affect astronauts during future long duration space exploration missions. In this paper, the Geant4-DNA collaboration presents an overview of the whole ongoing project, including its most recent developments already available in the last Geant4 public release (9.3 BETA), as well as an illustration example simulating the direct irradiation of a chromatin fibre. Expected extensions involving several research domains, such as particle physics, chemistry and cellular and molecular biology, within a fully interdiciplinary activity of the Geant4 collaboration are also discussed.Comment: presented by S. Incerti at the ASIA SIMULATION CONFERENCE 2009, October 7-9, 2009, Ritsumeikan University, Shiga, Japa

    A RESTful API for exchanging Materials Data in the AFLOWLIB.org consortium

    Get PDF
    The continued advancement of science depends on shared and reproducible data. In the field of computational materials science and rational materials design this entails the construction of large open databases of materials properties. To this end, an Application Program Interface (API) following REST principles is introduced for the AFLOWLIB.org materials data repositories consortium. AUIDs (Aflowlib Unique IDentifier) and AURLs (Aflowlib Uniform Resource locator) are assigned to the database resources according to a well-defined protocol described herein, which enables the client to access, through appropriate queries, the desired data for post-processing. This introduces a new level of openness into the AFLOWLIB repository, allowing the community to construct high-level work-flows and tools exploiting its rich data set of calculated structural, thermodynamic, and electronic properties. Furthermore, federating these tools would open the door to collaborative investigation of the data by an unprecedented extended community of users to accelerate the advancement of computational materials design and development.Comment: 22 pages, 7 figure

    The small-scale structure of the fluctuating passive scalar field in a turbulent boundary layer

    Get PDF
    Issued as final reportNational Science Foundatio

    Toward a first-principles integrated simulation of tokamak edge plasmas

    Get PDF
    Performance of the ITER is anticipated to be highly sensitive to the edge plasma condition. The edge pedestal in ITER needs to be predicted from an integrated simulation of the necessary first-principles, multi-scale physics codes. The mission of the SciDAC Fusion Simulation Project (FSP) Prototype Center for Plasma Edge Simulation (CPES) is to deliver such a code integration framework by (1) building new kinetic codes XGC0 and XGC1, which can simulate the edge pedestal buildup; (2) using and improving the existing MHD codes ELITE, M3D-OMP, M3D-MPP and NIMROD, for study of large-scale edge instabilities called Edge Localized Modes (ELMs); and (3) integrating the codes into a framework using cutting-edge computer science technology. Collaborative effort among physics, computer science, and applied mathematics within CPES has created the first working version of the End-to-end Framework for Fusion Integrated Simulation (EFFIS), which can be used to study the pedestal-ELM cycles
    corecore