
Grid enabled application visualisation services for
oceanographic diagnostics studies

Lakshmi Sastry and Srikanth Nagella

Visualisation Group, CCLRC e-Science Centre
Rutherford Appleton Laboratory

Didcot OX11 0QX
{m.sastry|s.nagella}@rl.ac.uk

Abstract

GODIVA project aims to quantify the ocean overturning circulation that controls climate on long
timescales, both from observations and from models. The datasets are so large that static images are
inadequate for data analysis, nor can existing visualisation systems support the scalability required.
CCLRC e-Science Centre has built scalable application visualisation services using Grid/Web
services technologies for real-time data exploration for oceanographic diagnostics. These services
can be accessed even from commodity processors using a variety of desktop client front-ends,
including Matlab and Java based GUI. This services based architecture with a variety of clients to
run on commodity processors actively encourages community wide take up and knowledge
dissemination.

1. Introduction
Understanding the relationship between small
scale oceanic convection to large scale ocean
flows lies at the heart of studies on climatic
changes. The ability to carry out heat and fresh
water budget studies and thermohaline water
mass transformation analyses using assimilated
high resolution ocean model data, the dynamic
adaptation of this model to an unstructured
density mesh and developing the ability to
easily visualise such irregularly spaced data in
real-time are essential precursors to gain this
understanding. These applications are the
scientific drivers for the NERC funded
GODIVA (Grid for Oceanographic Diagnostics,
Interactive Visualisation and Data Analysis)
project [1].

This paper describes the progress on the

Grid/Web Services for application visualisation
that are developed to access oceanography data
from third-party data servers on behalf of
clients, compute derived quantities and generate
visualisation data on the server side dynamically
to be sent to the client for local visualisation and
interaction.

1.1 Motivation

Ocean models require very high resolution in
order to resolve the small, most energetic scales
and varying bathymetric depth, particularly near

continental shelf edges. Flows on these small
scales have an impact on climatically important
properties such as poleward heat transport and
the locations of sea fluxes, and on biologically
important quantities such as net upwelling of
nutrients and organic carbon. In addition, the
handling of very large quantitative
oceanography datasets provided by satellites is
required for assimilation methods to study the
state of the oceans. The science is
multidimensional with complex, nonlinear
correlations between the parameters and cannot
be understood with static images. Many aspects
of the data are also too large to be brought
together and analysed by a single research
group. Scalability adds an additional complexity
for productive data exploration of such very
large datasets, necessitating the development of
new computing methodologies to produce real-
time visualisation, data analysis and just-in-time
computing of derived quantities.

The emergence of the Grid/Web Services

based computing paradigm with its services for
automated co-scheduling, co-allocation and
management of resources together with the
emergence of local and national high-bandwidth
networking offer an opportunity to develop
novel problem solving environments (PSE) that
cater to the high performance computing, data
management and visualisation requirements
described above. One of the solutions currently
being developed by the authors to the GODIVA

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ePubs: the open archive for STFC research publications

https://core.ac.uk/display/100185?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:{m.sastry|s.nagella}@rl.ac.uk

data analysis requirements is to re-implement
visualisation algorithms as high performance
Grid applications in their own right and provide
a Web Services based interface which can be
published, discovered and invoked with
necessary input data. The resulting geometry
and/or image data is delivered to the client
desktop for local rendering and interaction. In
addition we have also implemented Web
services that will make third-party data transfer
of users data from remote data servers,
bypassing the client. Thirdly we are
implementing dynamic computation of derived
quantities as distributed parallel applications
with a Web Services interface so that all the
above three can be choreographed into an
analysis environment within a client portal
interface. A variety of client side user interfaces
have been created which make calls to these
services to carry out visualisation of
oceanographic data. For instance, these data
manipulation services are accessed as input by
one of the project partners who are developing
advanced rendering algorithms for commodity
processors [2].

1.2 Background

Computing and data storage on the Grid have
been well understood. As a result, large scale
computational and data Grids are being setup as
infrastructure to support complex and dynamic
collaboration between distributed research
groups. Grid middleware, the software
application programming interfaces to embed
secure communication, fault detection and error
handling within applications are also being
developed to enable the transparent exploitation
of the Grid fabric layer. The most prevalent
current Grid enabled application model is to
submit simulation jobs to a batch processing
system, collect data and carry out post
processing visualisation for data analysis.
Researchers have come to recognise that
productive use of time and resources depend on
the ability to control these applications
interactively while they are running on the Grid.
The ability to visualize intermediate results in
near real-time at successive time steps is a
necessary prerequisite for this control[3]. Also,
the quantity of data generated by the
simulations of physical phenomena with many
hundreds of parameters with complex inter
relationships between them demand interactive
and flexible visualisation of the parameters and
variables of the application to be visualised in
near real-time for effective data exploration.
This requirement has given rise to current
research and development interest focussing on

developing interactive visualisation
environments to cater to Grid based data
analysis.

A majority of current Grid based interactive

systems are developed as vertical software for
particular applications, with domain specific
turnkey visualisation built in as part of the
application interface via portal interfaces. The
visual images, movies and such are generated
on the Grid and delivered to the client-side
interface. The focus of such applications is to
provide the user with transparent means to
query and access Grid resources including data,
application and compute power, submit a job on
the Grid and retrieve results for post-processing
visualisation as shown in Figure 1 below. A
variety of client- side interfaces are used to
provide interactive control for these tasks [4-6].

Grid
compute
resources,
remote
databases,
applications,
metadata
catalogues,
MDS
service
registries

Grid Client

Another approach for providing advanced

interactive visualisation for Grid enabled
applications extends the portal idea to provide
more sophisticated interactivity. These include
systems that support computational steering for
Grid applications via a client-side user interface
which also provides the visualisation of
application parameters and output as the
application executes on the Grid. A range of
visualisation solutions are provided for such
applications based on the hardware environment
available. For instance, raw data from the
simulation/application is filtered and mapped on
to geometrical objects and high resolution
images are produced on the fly using a high-end
visualisation engine such as an SGI Infinite
Reality system located somewhere on the Grid.
The images are then piped through to the client-
side steering control user interface for
visualisation [7, 8]. High-end visualisation
systems such as SGI Visualizer, AVS and VTK
are used on the server side to generate the
geometry data and the images to be visualised
which is transported to client using a variety of

Visualisation

Grid job
submission
and control

Application
interface

Fig1 Portal based Grid visualisation architecture

data transport protocols. Fig2 below describes a
generic architecture of such systems. Where the
remote visualisation generator and the desktop
visualisation system are the same, proprietary
data structures are used to encode visualisation
and sent to the client. The above methodologies
provide efficient but closed solutions based on
proprietary solutions. A variety of complex
applications and simulations from a range of
scientific areas have been implemented and
demonstrated using these minor variations of
this architecture.

An important variation on the above strategy

is one where the components of a modular
visualisation system such as AVS and IRIS
Explorer where compute intensive modules are
Grid enabled to support real-time data
exploration. This is most useful as intermediate
filtering and mapping processes become
bottlenecks in the pipeline for certain
visualisation techniques or where the data to be
handled are too large to handle either for the
module or for the hardware system on which it
is running. State-of-the-art post-processor
visualisation toolkits that address this limitation
by distributing individual modules to be
executed on the Grid, establish proprietary
communication protocols to transfer data
between the remote module and the parent
running on the client desktop. On the remote
system(s), the distributed modules produce
visualisation data in proprietary data formats.
The toolkit needs to be available both on the
server and client sides, making this a closed
solution. Problem solving environments such as
SCIRun are adopted to exploit Grid computing
to support real time data exploration but
applications need to be ported to such systems.

Section2 we describe our architecture for

supporting Grid enabled visualisation and the
requirements that are addressed by the
architecture. Section3 describes the services that
have been built for GODIVA applications and

the clients. This is followed by Conclusions and
Future in Section4.

2. Grid application visualisation
toolkit architecture
Our approach is to adopt some of the strategies
described above but extend these to a generic,
open and extensible architecture. It is a bottom
up approach with a reimplementation of
visualisation algorithms on the Grid, to improve
their performance to support real-time
visualisation. These codes are then wrapped
with a Web/Grid Services based interface so
they can be published, discovered and invoked
using standard communication protocols and
embedded into applications. This allows for
applications to choreographed into a workflow,
dynamically linking to required services.

 Simulation Remote host(s)

Data Filter Map

The motivation behind our Web and Grid

based visualisation services is to provide a
generic toolkit that can be used to harness the
power of the Grid computing and the dynamic
flexibility of the Web/Grid services based
architecture and make it available to familiar
data analysis environments. Towards achieving
this goal, our Grid Application Visualisation
Portal toolkit (GAPtk) provides utilities,
services, protocols and flexible, configurable
high-level application programming interfaces.

 Desktop
RenderMap

Fig2. Schematic of Grid-enabled dataflow
pipeline model (Wood and Brodlie)

Our visualisation services return

visualisation data which is encoded in most
generic open data structures which can then be
mapped onto a variety of desktop visualisation
and problem solving environments for local
rendering and interaction. The encoded data
structures hold enough information on the
nature of the data to allow semantically
meaningful behaviour for rendering and for user
interaction such as selection, rotation, zoom and
inquiries the underlying information on the data
(e.g. annotation).

For the GODIVA project, we have built

application services that are Grid enabled
modules to compute derived quantities on the
fly and pipe such data to visualisation services
described above. Both application and
visualisation services can take URI description
to third-party data resources and transfer data to
the compute resource without having to create a
copy at the client. This allows the desktop users
to explore larger amounts of data than what can
be handled by local hardware.

2.1 Overvie of GAPtk architecture

Fig3 below provides a schematic diagram of the
architecture. At the core of the system is an
advanced application visualisation service
compatible with the emerging Open Grid
Services Architecture, as a mediator between
distributed high performance computing and
data resources and a range of domain specific
application portals using Grid and Web
protocols and services.

The software modules in boxes with darker

shade of grey are developed by the authors. The
customised thin client interface to any generic
or domain specific problem solving
environments and portals is developed using
the GODIVA client backend API by any
application programmer. The architecture is
designed for portability and extensibility.

2.2 Client-side modules

The services and utilities of GAPtk can be
accessed via customised self-contained
application portals built using domain specific
tools such as Live Access Server and MATLAB
using GAPtk clientside API.

The client backend (Fig.4) is a thin interface
designed to translate the client requests into
SOAP[9] messages to the server. We currently
have three implementations of this part, one
using the Java-based Axis toolkit[10], another
using a custom C library and the third using
gSOAP.

2.3 Serverside details

The server frontend (Fig5) is currently based on
the Axis library running as a servelet in the
Apache Tomcat container. It's purpose is to map
the requests on to the implementation backend.

User’s problem solving environment (e.g. Matlab)

Finally, the server-side implementation
backend (Figure 3) is responsible for actually
carrying out the request. It may do this in
various ways, locally on the server for minor
queries (e.g. "List the data sets the server has
access to"), delegated to specific external data
holdings/computational resources, invoke other
external Grid or Web services, etc.

The server needs to communicate directly to

external resources, for example metadata
catalogues. For instance, with the GADS data
server [11, 12] for querying the data holding,
requesting a sub-sample of data. The server
makes use of appropriate data transfer protocols
to access the data using the URL from the
GADS server. Other services within the server
then map the raw/numerical data onto geometry
and sends the geometry data to the client that
requested the data.

2.4 Application user requirements

The NERC funded GODIVA (Grid for
Oceanographic Diagnostics and Interactive
Visualisation and data Analysis) project

Customised thin client interface

GODIVA client visualisation and communication backend

CCLRC Application
Visualisation Server

Grid resources Other resources

Fig5. Server details

Fig3 Grid enabled data analysis toolkit architecture

Fig4. Client backend detail

leverages on the above architecture to build a
commodity processors based oceanographic
data analysis and visualisation application portal
for that community.

The use of existing tools for data analysis

has automatically lead to the realisation that
most of the visualisation techniques required are
well established. These are the traditional 2D
and 2D vector plots, 2D contours, isosurfaces
and volume visualisation for a couple of
scenarios. Nevertheless, it also emerged that the
physics of the problem is often 4 or more
dimensional and complex visualisation
scenarios needed to effectively and productively
explore the data. As a result what emerged as a
key “will be most productive and useful to
have” requirement was that far from needing a
single step generation of a high quality
geometric representation of a huge amount of
data, the scientists need the ability to
dynamically choreograph complex visualisation
scenarios using modular services. This is
directly mapped within the GAPtk server,
including the flexibility to determine the
resolution of the display as well as how they
wish to overlay different geometric data to
representing different parameters of the problem
domain, compare and contrast the effective
scales within which each parameter shows
variation. Such flexibility for data analysis
requires reliable and robust ability from the
Grid enabled application visualisation services
to respond in near real-time. The data resolution
demands adoption of appropriate transfer
protocols, formats and strategic just-in-time
compute decisions. These requirements are
being built in as intelligent services within
GAPtk server.

3. Visualisation services

3.1 Isosurface Service

This service generates an isosurface from
scalar value file. The isosurface is generated
using parallel marching tetrahedron on a
Beowulf cluster and the resulting geometry
information is stored in a file. Currently the
geometry information is written in our specific
geometry file format in hdf5. There is a client
interface library for reading and writing our
geometry file.

3.2 Slice service

This service generates slices from a scalar
value field . The slice information is written in
our specific geometry file format. There is a

client interface library for reading and writing
this geometry file format.

Fig.6 Isosurface of potential temperature
generated on the fly

The image above is produced from 600MB
of data, where the complete data loop of making
initial query and request to the GAD server to
getting the data, computing the potential using a
Beowulf cluster situated in another building to
the visualisation server (but within the same
LAN), generating the isosurface and writing this
image and sending it back to the client took 2.6
seconds [The computing operates a batch queue
system and no special allocation was given].

3.3 Animation service

This service generates an mpeg movie from
a time series data. The mpeg is generated in
parallel. It takes the geometry information from
the time series and generates images in parallel
and stitch them to form a mpeg animation.

Performance measurements and

improvements are being made to this service at
the time of writing this document.

3.4 HardCopy service

This service generates a rendered image in a
PDF/EPS/PS format which can be printed
without loss of quality. This service takes
geometry information and write them into
lossless image quality file.

3.5 Data manipulation service

Density calculation service calculates sea
water density. The input to this service is a file
containing sea water potential temperature and
sea water salinity variable data. The calculation
is done in parallel Beowulf cluster and an url
pointing to the density file is sent back to the
user. Similar descriptions apply to the
computation of heat flux and surface flux.

In addition, we have also built a spectral
transformation service which extracts
subsamples of irregular grid data stored in
Grib file format and filters and transforms that
data to any other required format and coordinate
system. The service can take a user provided
transform function.

There are several other services, especially

those for session management and
housekeeping and annotation are currently
under development.

4. Conclusions
The most valuable experience we have

gained is negotiating firewall policies within
and between organisations, the fluidity of the
various Grid/Web Services technologies that we
are currently using and the need to build simple
APIs, define generic data models so that client-
side developments can be easier. Also a client-
side intelligent module is being developed to
determine when the remote Services based data
manipulation modules need to be invoked and
when these operations can be carried out at the
client side itself.

Our aim is to complete the toolkit

development with clearly defined APIs so that
these can be downloaded and installed at other
facilities as part of GODIVA project
deliverables.

1. http://www.e-

science.clrc.ac.uk/web/projects/godiva
2. J.M. Brooke, J. Marsh, S.Pettifer, and

L.Sastry. (2004) The importance of locality
in the visual analysis of large datasets,
AHM2004.

3. D.Gavaghan, S.Lloyd, D.R.S.Boyd,
P.W.Jeffreys, A.Simpson, D.F.MacRandal,
L.Sastry, K.Kleese van Dam (2004)
Integrative Biology - exploiting e-Science
to combat fatal disease. AHM2004.

4. Xu, F, Eres, M.H., Baker, D.J, and Cox,
S.J. (2004) Tools and Support for
Deploying Applications on the Grid. IEEE
SCC 2004 Grid and Utility Computing
Track, Shanghai, China, 15 - 18 September
2004.

5. Gabrielle Allen, Kelly Davis, Konstantinos
N. Dolkas, Nikolaos D. Doulamis, Tom
Goodale, Thilo Kielmann1, André Merzky,
Jarek Nabrzyski, Juliusz Pukacki, Thomas
Radke, Michael Russell, Ed Seidel, John
Shalf and Ian Taylor. (2003) Enabling
Applications on the Grid: A GridLab

Overview. International Journal of High
Performance Computing Applications:
Special issue on Grid Computing:
Infrastructure and Applications, to be
published in August 2003.

6. S. Parker, M. Miller, C. Hansen and C.
Johnson. (1998) An integrated problem
solving environment: the SCIRun
computational steering system. In Hawaii
International Conference of System
Sciences, pp:147-156.

7. J. Wood, K.W. Brodlie and J. Walton
(2003). GViz – Visualisation and Steering
for the Grid. AHM2003.

8. J.M.Brooke, P.V.Coveney, J. Harting, S.
Jha, S.M. Pickles, R.L. Pinning and
A.R.Porter (2003). Computational Steering
in Reality Grid. AHM 2003

9. http://www.w3.org/TR/2003/REC-soap12-
part1-20030624/

10. http://ws.apache.org/axis/
11. A. Woolf, K. Haines, C. Liu. (2003), A

Web Service Model for Climate Data
Access on the Grid, Int. J. HPC
Applications, 17, pp: 281-295

12. J.D.Blower, K. Haines, C. Liu and A.
Woolf, GADS: Using Web Services to
access large data sets. All Hands 2003.

http://www.e-science.clrc.ac.uk/web/projects/godiva
http://www.e-science.clrc.ac.uk/web/projects/godiva
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
http://ws.apache.org/axis/

	Abstract
	Introduction
	Motivation
	Background

	Grid application visualisation toolkit architecture
	Overview of GAPtk architecture
	Client-side modules
	Serverside details
	Application user requirements

	Visualisation services
	Isosurface Service
	Slice service
	Animation service
	HardCopy service
	Data manipulation service

	Conclusions

