155 research outputs found

    A PC Chase

    Get PDF
    PC stands for path-conjunctive, the name of a class of queries and dependencies that we define over complex values with dictionaries. This class includes the relational conjunctive queries and embedded dependencies, as well as many interesting examples of complex value and oodb queries and integrity constraints. We show that some important classical results on containment, dependency implication, and chasing extend and generalize to this class

    High Level Efficiency in Database Languages

    Get PDF
    The subject of this Ph.D. thesis is the design and implementation of database languages. The thesis consists of five articles:  [1] Joan F. Boyar and Kim S. Larsen. Efficient Rebalancing of Chromatic Search Trees. In O. Nurmi and E. Ukkonen, eds., LNCS 621: Algorithm Theory -- SWAT'92 , pp. 151-164. Springer-Verlag, 1992. [2] Kim S. Larsen. On Aggregation and Computation on Domain Values. PB-414, Computer Science Department, Aarhus University, 1992. [3] Kim S. Larsen. Strategies for Expression Evaluation Using Sort-Merge Algorithms. PB-415, Computer Science Department, Aarhus University, 1992. [4] Kim S. Larsen and Michael I. Schwartzbach. Injectivity of Unary Queries With Computation on Domain Values. Computer Science Department, Aarhus University, 1992. Revised version of PB-311. [5] Kim S. Larsen, Michael I. Schwartzbach and Erik M. Schmidt. A New Formalism for Relational Algebra. IPL , 41(3):163-168, 1992. and this survey paper. In [5], a new query language design is proposed. The expressive power of the language is determined in [2] and all reasonable extensions are considered. In [3, 4], we focus on the optimization issue of avoiding unnecessary sorting of relations. The results in these papers are directly applicable to any algebra-based query language. In addition to the query language part, a database system also has to offer update facilities. The theory of standard tuple based updates is quite well developed in the sequential case. In [1], we discuss a new concurrent implementation of balanced search trees for that purpose.This survey paper describes the results of the papers which form the thesis, and relates these results to each other and to the area in a broader sense than is customary in the introductions of individual papers. The paper is intended to be read in combination with the papers on which it is based

    Query translation and optimisation for complex value databases

    No full text
    This thesis considers the theory of database queries on the complex value data model extended with external functions. In modern intelligent database systems, we expect that query systems be able to handle a wide range of calculus formulas correctly and efficiently. Accordingly, they will require general query translators and efficient optimisers. Motivated by these concerns, this thesis undertakes a· comprehensive study of query evaluation in the complex value model and investigates the following issues: • identifying recursive sets of complex value formulas which define domain independent queries; • implementing complex value calculus queries with the incorporation of functions; • solving the problem of how to process join operation in complex value databases; and • investigating some algebraic properties concerning nested relational operators. The first part of this thesis extends some classical properties of the relational theory - particularly those related to query safety - to the context of complex value databases with fixed external functions and investigates the problem of how to implement calculus queries. Two notions of syntactic criteria for queries which guarantee domain independence, namely, embedded evaluable and embedded allowed, are generalised for this data model. This thesis shows that all embedded-allowed calculus (or fix-point) queries are external-function domain independent and continuous. This thesis discusses the topic of "embedded allowed database programs" and proves that embedded allowed stratified programs satisfying certain constraints are embedded domain independent. It also develops an algorithm for translating embedded allowed queries into equivalent algebraic expressions as a basis for evaluating safe queries in all calculus-based query classes. The second part of this thesis considers the issue of query optimisation for nested relational databases. Within a restricted set of nested schema trees, a join operator, called P-join, is proposed. The P-join operator does not require as many restructuring operators and combines the advantages of the extended natural join and recursive join for efficient data access. A P-join algorithm which takes advantage of a decomposed storage model and various join techniques available in the standard relational model to reduce the cost of join operation in nested relational databases is also proposed. Finally, this thesis investigates some algebraic properties of nested relational operators which are useful for query optimisation in the nested relational model and outlines a heuristic optimisation algorithm for nested relational expressions by adopting algebraic transformation rules developed in this thesis and previous related work

    Equivalence of Queries with Nested Aggregation

    Get PDF
    Query equivalence is a fundamental problem within database theory. The correctness of all forms of logical query rewriting—join minimization, view flattening, rewriting over materialized views, various semantic optimizations that exploit schema dependencies, federated query processing and other forms of data integration—requires proving that the final executed query is equivalent to the original user query. Hence, advances in the theory of query equivalence enable advances in query processing and optimization. In this thesis we address the problem of deciding query equivalence between conjunctive SQL queries containing aggregation operators that may be nested. Our focus is on understanding the interaction between nested aggregation operators and the other parts of the query body, and so we model aggregation functions simply as abstract collection constructors. Hence, the precise language that we study is a conjunctive algebraic language that constructs complex objects from databases of flat relations. Using an encoding of complex objects as flat relations, we reduce the query equivalence problem for this algebraic language to deciding equivalence between relational encodings output by traditional conjunctive queries (not containing aggregation). This encoding-equivalence cleanly unifies and generalizes previous results for deciding equivalence of conjunctive queries evaluated under various processing semantics. As part of our study of aggregation operators that can construct empty sub-collections—so-called “scalar” aggregation—we consider query equivalence for conjunctive queries extended with a left outer join operator, a very practical class of queries for which the general equivalence problem has never before been analyzed. Although we do not completely solve the equivalence problem for queries with outer joins or with scalar aggregation, we do propose useful sufficient conditions that generalize previously known results for restricted classes of queries. Overall, this thesis offers new insight into the fundamental principles governing the behaviour of nested aggregation

    Workshop on Database Programming Languages

    Get PDF
    These are the revised proceedings of the Workshop on Database Programming Languages held at Roscoff, Finistère, France in September of 1987. The last few years have seen an enormous activity in the development of new programming languages and new programming environments for databases. The purpose of the workshop was to bring together researchers from both databases and programming languages to discuss recent developments in the two areas in the hope of overcoming some of the obstacles that appear to prevent the construction of a uniform database programming environment. The workshop, which follows a previous workshop held in Appin, Scotland in 1985, was extremely successful. The organizers were delighted with both the quality and volume of the submissions for this meeting, and it was regrettable that more papers could not be accepted. Both the stimulating discussions and the excellent food and scenery of the Brittany coast made the meeting thoroughly enjoyable. There were three main foci for this workshop: the type systems suitable for databases (especially object-oriented and complex-object databases,) the representation and manipulation of persistent structures, and extensions to deductive databases that allow for more general and flexible programming. Many of the papers describe recent results, or work in progress, and are indicative of the latest research trends in database programming languages. The organizers are extremely grateful for the financial support given by CRAI (Italy), Altaïr (France) and AT&T (USA). We would also like to acknowledge the organizational help provided by Florence Deshors, Hélène Gans and Pauline Turcaud of Altaïr, and by Karen Carter of the University of Pennsylvania

    Complex adaptive systems based data integration : theory and applications

    Get PDF
    Data Definition Languages (DDLs) have been created and used to represent data in programming languages and in database dictionaries. This representation includes descriptions in the form of data fields and relations in the form of a hierarchy, with the common exception of relational databases where relations are flat. Network computing created an environment that enables relatively easy and inexpensive exchange of data. What followed was the creation of new DDLs claiming better support for automatic data integration. It is uncertain from the literature if any real progress has been made toward achieving an ideal state or limit condition of automatic data integration. This research asserts that difficulties in accomplishing integration are indicative of socio-cultural systems in general and are caused by some measurable attributes common in DDLs. This research’s main contributions are: (1) a theory of data integration requirements to fully support automatic data integration from autonomous heterogeneous data sources; (2) the identification of measurable related abstract attributes (Variety, Tension, and Entropy); (3) the development of tools to measure them. The research uses a multi-theoretic lens to define and articulate these attributes and their measurements. The proposed theory is founded on the Law of Requisite Variety, Information Theory, Complex Adaptive Systems (CAS) theory, Sowa’s Meaning Preservation framework and Zipf distributions of words and meanings. Using the theory, the attributes, and their measures, this research proposes a framework for objectively evaluating the suitability of any data definition language with respect to degrees of automatic data integration. This research uses thirteen data structures constructed with various DDLs from the 1960\u27s to date. No DDL examined (and therefore no DDL similar to those examined) is designed to satisfy the law of requisite variety. No DDL examined is designed to support CAS evolutionary processes that could result in fully automated integration of heterogeneous data sources. There is no significant difference in measures of Variety, Tension, and Entropy among DDLs investigated in this research. A direction to overcome the common limitations discovered in this research is suggested and tested by proposing GlossoMote, a theoretical mathematically sound description language that satisfies the data integration theory requirements. The DDL, named GlossoMote, is not merely a new syntax, it is a drastic departure from existing DDL constructs. The feasibility of the approach is demonstrated with a small scale experiment and evaluated using the proposed assessment framework and other means. The promising results require additional research to evaluate GlossoMote’s approach commercial use potential
    • …
    corecore