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Abstract

Query equivalence is a fundamental problem within database theory. The cor-
rectness of all forms of logical query rewriting—join minimization, view flatten-
ing, rewriting over materialized views, various semantic optimizations that ex-
ploit schema dependencies, federated query processing and other forms of data
integration—requires proving that the final executed query is equivalent to the
original user query. Hence, advances in the theory of query equivalence enable
advances in query processing and optimization.

In this thesis we address the problem of deciding query equivalence between con-
junctive SQL queries containing aggregation operators that may be nested. Our
focus is on understanding the interaction between nested aggregation operators
and the other parts of the query body, and so we model aggregation functions
simply as abstract collection constructors. Hence, the precise language that we
study is a conjunctive algebraic language that constructs complex objects from
databases of flat relations. Using an encoding of complex objects as flat relations,
we reduce the query equivalence problem for this algebraic language to deciding
equivalence between relational encodings output by traditional conjunctive queries
(not containing aggregation). This encoding-equivalence cleanly unifies and general-
izes previous results for deciding equivalence of conjunctive queries evaluated under
various processing semantics. As part of our study of aggregation operators that
can construct empty sub-collections—so-called “scalar” aggregation—we consider
query equivalence for conjunctive queries extended with a left outer join operator,
a very practical class of queries for which the general equivalence problem has never
before been analyzed. Although we do not completely solve the equivalence prob-
lem for queries with outer joins or with scalar aggregation, we do propose useful
sufficient conditions that generalize previously known results for restricted classes
of queries. Overall, this thesis offers new insight into the fundamental principles
governing the behaviour of nested aggregation.
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Chapter 1

Introduction

In this thesis we consider the problem of deciding when a pair of queries posed to a
database system are equivalent—that is, guaranteed to return identical results. The
query equivalence problem (and the closely related query containment problem) is
a fundamental problem that appears within a variety of contexts in the design of
database management systems.

The most obvious application of query equivalence is to the “global” query
optimization problem: given a query and a cost model, find within the space of
equivalent query formulations the query with minimal cost [6, Ch. 6]. For the class
of simple conjunctive queries, query equivalence is well understood and global op-
timization techniques are widely implemented [16, 19]; however, query equivalence
(and hence global optimization) is in general undecidable for arbitrary relational
algebra expressions [6, Ch. 6]. For this reason, most database systems rely upon
“local” optimization strategies for complex queries—i.e., the generation of alterna-
tive query formulations via localized (often algebraic) transformation rules, often
called “query rewriting” or “logical rewriting” [17]. Within this thesis we study
equivalence for queries defined by conjunctive relational algebra expressions ex-
tended with an aggregation operator that may be arbitrarily nested within the alge-
bra expression. Our work thus contrasts with much of the literature on aggregation
queries which assumes a single top-level aggregation operation. Our results are
applicable to both forms of query optimization: by characterizing equivalence over
more powerful classes of queries, we both enable global optimization techniques for
those classes and enable development of more powerful rewriting rules for complex
queries.

Beyond its application to query optimization, the query equivalence problem
is directly applicable to various problems within information integration. The
view rewriting problem—rewriting a query to use a set of materialized views—
may arise either in the context of cost-based query optimization or in the context
of information integration where the views model the underlying data sources [57].
The data exchange problem—transforming a database instance conforming to a
source schema into an instance conforming to a target schema—is also based upon
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query equivalence [33]. Finally, the recent advent of object-relational mappings
promises convenient integration of relational data into object-oriented program-
ming languages, but translating operations over objects into operations over rela-
tions requires reasoning over declarative mappings that makes heavy use of query
equivalence tests (in the guise of materialized-view answering and maintenance
problems) [83].

1.1 Motivating Examples

Our interest in query equivalence for conjunctive queries with nested aggregation
stems from the problem of optimizing complex SQL queries. In particular, we are
interested in how existing query optimizers might be extended with robust al-
gorithms for cost-based view rewriting in a context where complex materialized
view definitions are formed by “stacking” (i.e., joining and re-aggregating) simpler
views. This class of so-called “stacked” materialized views is interesting in practice
both because it allows efficient incremental maintenance algorithms, and because
stacked views are useful for answering the complex aggregation queries that ap-
pear within decision-support workloads [29]. Unfortunately, as illustrated in the
following examples, view rewriting algorithms implemented within contemporary
relational database management systems (RDBMSs) are not robust when rewriting
queries over complex view definitions.

Example 1 Consider the database schema shown in Figure 1.1, which stores infor-
mation about customer orders solicited by a company’s agents. The database schema
contains six base tables with primary and foreign key constraints (primary keys denoted
by underlined attributes), along with six views defined by SQL queries,1 four of which
are materialized.

The attribute Customer.ctype is code that classifies customers as either Residential
or Corporate, and sales from the two sectors are often reported separately. Suppose
that an end user desires a report that lists for each agent the quarterly average order
value, with the Residential and Corporate metrics shown in separate columns. Equipped
with a reporting tool capable of generating single-block conjunctive SQL queries (with
top-level aggregation) only, the user could accomplish the desired report by using the
logical view AgentSales, generating the query Q1 shown in Figure 1.2.

1For conciseness, we have abbreviated the SQL syntax by shortening relation names to their
capital letters (using subscripts to distinguish repeated relations), and by using an equi-join
operator to denote the join predicates. For example, the following query Q (in proper SQL syntax)
is abbreviated as query Q�.

Q: select *
from Customer, Order o1, Order o2
where Customer.cid = o1.cid

and Customer.cid = o2.cid

Q�: select *
from C 1cid O1 1cid O2
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Abbr Table Schema Foreign Keys

C Customer(cid, cname, ctype)

O Order(oid, cid, date) date:Date(date)

LI LineItem(oid, lineno, price, qty) oid:Order(oid)

A Agent(aid, aname)

OA OrderAgent(oid, aid) oid:Order(oid), aid:Agent(aid)

D Date(date, qtr)

Logical (non-Materialized) Views:

AS AgentSales(aid, aname, date, ctype, oid, oval)

select aid, aname, date, ctype, oid, sum(price * qty)

from C 1cid O 1oid LI 1oid OA 1aid A

group by aid, aname, date, ctype, oid

QC QuarterlyCustomer(qtr, cid, cname, ctype)

select qtr, cid, cname, ctype

from C 1cid QCO

Materialized Views:

OV OrderValues(oid, oval)

select oid, sum(price * qty)

from LI

group by oid

QAS QuarterlyAgentSales(aid, qtr, ctype, avgOval)

select aid, qtr, ctype, avg(oval)

from C 1cid O 1oid OV 1oid OA 1date D

group by aid, qtr, ctype

QCO QuarterlyCustomerOrders(qtr, cid, ordCount)

select qtr, cid, count(*)

from O 1date D

group by qtr, cid

QMCO QuarterlyMaxCustomerOrders(qtr, ctype, maxOrdCount)

select qtr, ctype, max(ordCount)

from C 1cid QCO

group by qtr, ctype

Figure 1.1: A simple relational database schema for tracking company sales

3



Q1: select AS1.aname, qtr,

avg(AS1.oval) as avgRsale,

avg(AS2.oval) as avgCsale

from (AS1 1date D1) 1{aid, qtr} (AS2 1date D2)

where AS1.ctype = ‘R’

and AS2.ctype = ‘C’

group by aid, AS1.aname, qtr

Q2: select A1.aname, qtr,

avg(OV1.oval) as avgRsale,

avg(OV2.oval) as avgCsale

from (C1 1cid O1 1oid OV1 1oid OA1 1aid A1 1date D1) 1{aid, qtr}
(C2 1cid O2 1oid OV2 1oid OA2 1aid A2 1date D2)

where C1.ctype = ‘R’

and C2.ctype = ‘C’

group by aid, A1.aname, qtr

Q3: select aname, qtr,

QAS1.avgOval as avgRsale,

QAS2.avgOval as avgCsale

from A 1aid QAS1 1{aid, qtr} QAS2

where QAS1.ctype = ‘R’

and QAS2.ctype = ‘C’

Figure 1.2: Quarterly average order value, per agent
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We implemented query Q1 on the latest versions of several commercial RDBMSs.
The best rewriting of Q1 found by any system that we tested uses schema informa-
tion to push down the sum aggregate within AgentSales in order to rewrite over two
occurrences of the materialized view OrderValues—resulting in query Q2 (cf. Fig-
ure 1.2). Observe that both Q1 and Q2 perform a Cartesian product between each
agent’s quarterly Residential and Corporate orders prior to the aggregation.2

In contrast, within query Q3 (cf. Figure 1.2) the Residential and Corporate orders
are aggregated independently. This allows the query to be rewritten over two instances
of the materialized view QuarterlyAgentSales, yielding a drastically more efficient
execution plan. (Even if view QuarterlyAgentSales were not materialized, Q3 would
still allow much more efficient execution than either Q1 or Q2 because it avoids comput-
ing the Cartesian product as an intermediate result.) In Examples 62 and 63 (Chapter 6)
we will show that Q3 is equivalent to Q1 over all database instances that conform to
the primary and foreign key constraints in the database schema, but not equivalent over
arbitrary instances.

Complex SQL queries containing aggregation are not restricted to decision-
support workloads. The popularity of object-relational mapping tools means that
the SQL queries within contemporary database workloads are increasingly program-
generated, rather than hand-crafted. The trade-off in providing this layer of ab-
straction to the application programmers is that queries generated via compositions
of mappings or logical views can be highly nested, with significant redundancy that
is challenging for the optimizer to simplify. We illustrate this with an example.

Example 2 Consider again the database schema in Figure 1.1. The sales division
of the company commonly refers to its “Quarterly Customers,” meaning the set of
customers who have placed an order during a given quarter. To support this concept,
the database administrator created the materialized view QuarterlyCustomerOrders

which totals the number of orders by quarter and customer id. She then created the
logical view QuarterlyCustomer for the convenience of users who only need to know
the identity of the quarterly customers, not the count of their orders.

Application programmers at the company use an object-oriented query framework
(on top of an object-relational mapping) to interface with the database. Defined
within the entity schema of this framework are entities corresponding to each table
and view within the database schema, along with entities QuarterlyResidentialCustomer

2Some of the RDBMSs were restricted to query optimization over “single-block” materialized-
view definitions. In this case, we tested their hypothetical rewriting ability over the “stacked”
materialized views in Figure 1.1 by first testing their ability to rewrite over the leaf level views,
and then—if successful—we converted the leaf level views to base tables and manually rewrote
the queries over them in order to test rewriting at the next level. Some of the RDBMSs did not
support the max or avg aggregation functions within materialized-view definitions. Because an
average can be computed as a sum divided by a count, for systems that did not support avg in
materialized views we added the appropriate sum and count expressions to the view and then
tested the query both with the original avg expressions and with manual decompositions into
sum and count.
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Q4: select qtr, max(countOrders)

from (select qtr, cid, cname,

(select count(*)

from D 1date O

where D.qtr = QC.qtr

and O.cid = QC.cid

) as countOrders

from (select qtr, cid, cname

from QC

where ctype = ‘R’

) as QuarterlyResidentialCustomer

) as QuarterlyResCustWithOrderCounts

group by qtr

Q5: select qtr, max(countOrders)

from (select qtr, cid, cname,

(select count(*)

from QCO2

where QCO2.qtr = QCO1.qtr

and QCO2.cid = QCO1.cid

) as countOrders

from C 1cid QCO1

where ctype = ‘R’

) as QuarterlyResCustWithOrderCounts

group by qtr

Q6: select qtr, maxOrdCount

from QMCO

where ctype = ‘R’

Figure 1.3: Maximal residential customer order counts, per quarter
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and QuarterlyCorporateCustomer that inherit from entity QuarterlyCustomer. Assume
that an application programmer (who does not know SQL) requires a list of the maxi-
mum number of orders placed by quarterly residential customers, grouped by quarter.
The programmer is not familiar with either the QuarterlyCustomerOrders or Quarter-
lyMaxCustomerOrders entities. Instead, within his object-oriented query framework
he first creates an entity QuarterlyResCustWithOrderCounts, formed by supplementing
QuarterlyResidentialCustomer with a computed attribute countOrders containing the
count of the corresponding order values. Next, he selects the maximum value of coun-
tOrders across all instances of QuarterlyResCustWithOrderCounts, grouped by quarter.
Query Q4 in Figure 1.3 shows the SQL query generated by the programming framework.
Observe that derived attribute countOrders is rendered as a select-clause sub-query.
From the perspective of entity-to-SQL translation this is the correct translation of a com-
puted attribute, because QuarterlyResidentialCustomer entities without corresponding
orders should yield instances of QuarterlyResCustWithOrderCounts entities with coun-
tOrders=0, and these zeros could potentially affect the calculation of the maximum.
The SQL generator within the entity framework does not know that each instance of
QuarterlyResidentialCustomer is guaranteed to have at least one corresponding order,
because that information is encapsulated in the logical view QuarterlyCustomer inside
the RDBMS.

Consider queries Q5 and Q6 in Figure 1.3. Query Q5 is the best rewriting of Q4

found by any RDBMS that we tested. None of the RDBMSs were able to rewrite Q4

over the materialized view QuarterlyMaxCustomerOrders; however, in Example 64
(Chapter 6) we will show that queries Q4 and Q6 are equivalent.

1.2 Related Problems and Technologies

Materialized Views and Data Warehousing Halevy has written a thorough
survey of research on the use of materialized views to answer queries [57]. He draws
an important distinction separating works whose purpose is query optimization (in-
cluding maintenance of physical data independence) from works whose purpose is
data integration. Data integration typically utilizes rewritings that are contained
within the original query, whereas query optimization requires rewritings to be
equivalent to the original query. Because our motivation stems from query opti-
mization, we restrict our attention to query equivalence and do not consider query
containment in this thesis. Within the context of query optimization, Halevy dis-
tinguishes works treating view rewriting as a logical optimization (i.e., as a query
language-level transformation) from works treating view rewriting as a physical
optimization (i.e., during generation of query execution plans). Although this dis-
tinction is pertinent to how our results might be integrated into existing RDBMSs
(see Section 6.3), it is orthogonal to the issue of guaranteeing equivalence between
the original query and the rewritten query. Hence, for the purposes of motivating
our study of query equivalence it suffices to treat view rewriting as a purely logical
optimization (which is why in Examples 1 and 2 we show the rewritings performed
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by RDBMS optimizers as SQL queries, even though the output we obtained from
the optimizers were actually physical execution plans).

For the restricted case of conjunctive rewritings of conjunctive queries over con-
junctive views, the query equivalence problem is solved [16, 19], as is the view
rewriting problem both as a logical optimization [74] and as a physical optimiza-
tion integrated into contemporary optimizer architectures [18, 44, 45]. From the
perspective of query optimization, pre-materialization of views offers the great-
est potential savings when the size of the query output is vastly smaller than the
size of the raw data that must be examined in order to evaluate the query over
a database instance. For this reason, materialized views are especially important
within data warehouse environments, due to the heavy use of aggregation within
decision-support queries (e.g., see the queries within the TPC-H [105] or TPC-
DS [104] benchmark workloads). One restricted form of data warehousing depends
upon a star schema (i.e., a (very large) central fact table connected by foreign key
joins to (small) dimension tables), and both queries and materialized views are lim-
ited to defining portions of a multidimensional data cube [48]. Within this context,
testing query equivalence is trivial, and view rewriting can be efficiently effected by
analyzing the data cube lattice [59, 90]. A less restricted form of data warehous-
ing assumes that queries and materialized views are limited to expressions with
a single top-level aggregation operator. Within this context, the study of query
equivalence has focused on numeric or algebraic properties of specific aggregation
functions [25, 51], while the study of view rewriting ranges from formal aspects of
modelling properties of aggregation functions [24] and determining the complexity
of the rewriting language needed to fully utilize the views [53] to more pragmatic
approaches that utilize various algebraic transformations for re-shaping the query
to obtain sound (but incomplete) rewriting algorithms [54, 101].

There is only limited previous research that considers view rewriting in contexts
where the query and view definitions contain nested aggregation. In one work, a
bottom-up matching algorithm is proposed that applies templates based upon (pre-
viously known) algebraic transformations [115]. Another work focuses on increasing
the robustness and efficiency with which transformational optimizers apply sets of
(previously known) transformations to enact view rewriting [29]. All of this work
presumes a set of algebraic transformations for re-shaping queries, and there is no
consideration of whether the set of transformations is complete for traversing the
space of equivalent queries.

Query Simplification and Logical Rewriting Work on simplifying complex
SQL queries composed of arbitrarily nested queries was pioneered by Kim, who
characterizes different forms of nested sub-queries and focuses on heuristics for
flattening or de-correlating them to increase the search space of the query opti-
mizer [69]. (Traditional query optimizer architectures only optimize join orders
within the individual blocks of a complex query; hence, flattening nested blocks
increases the space of possible join orders, while de-correlating nested blocks allows
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the use of physical join operators other than nested loops.) Many of Kim’s heuris-
tics are implemented as logical rewriting rules within modern query optimizers,
along with various other algebraic transformations that re-shape the nesting blocks
of a query by commuting join and aggregation operators [54, 113, 114]. Query
simplification via logical rewriting can vastly reduce the execution cost of certain
queries; however, the pattern-based rule languages of contemporary optimizers are
quite restrictive [46, 56]. Performing the degree of query simplification we illus-
trate in Example 2 requires a formal analysis of the input expression that cannot
be conveniently specified as an algebraic template.

Complex Objects and Object-Relational Mappings Extensions to the re-
lational model for handling complex objects (a.k.a. complex values or nested rela-
tions) were studied extensively during the 1980s; the reader is referred to Abiteboul
et al.’s textbook for an introduction to the topic [6, Ch. 20–21], and to Section 2.4
of this thesis where we include a brief survey of some of the pertinent literature
in this area. Database systems based upon native nested-relational and/or object-
oriented data models remain niche products, however. Instead, the current main-
stream approach to integrating object-oriented programming languages with per-
sistent database storage is to utilize object-relational mapping (ORM) tools that
present the programmer with an abstraction of the relational schema in terms of
abstract entities. A fixed language of query operations over these entities is then
translated by the ORM framework into SQL queries over the underlying relations.
Popular examples include Hibernate, which provides the object-oriented query lan-
guage HQL [1]; ActiveRecord, the ORM component of the Ruby on Rails program-
ming framework [3]; and the ADO.NET Entity Framework, the ORM component of
Microsoft’s .NET framework which supports its Language Integrated Query (LINQ)
facilities [2, 82].

The results in this thesis pertain to ORM technologies in two different ways.
First, as mentioned in the previous section, ORM tools are quickly emerging as a
source of very complex SQL queries, which motivates the study of query equivalence
as a means towards deriving more powerful query simplification techniques for
relational query optimizers. Second, the data models that ORM tools expose to
the programmer are based upon nested collections, and many of the SQL queries
issued by the ORM tools are used to construct in-memory complex objects out of
data stored in flat relations. Within our study of nested aggregation we abstract
aggregation functions as collection constructors, and so the query language we study
constructs complex objects out of databases of flat relations. Hence, it is foreseeable
that our results could be applied not only to optimization of SQL queries at the
RDBMS level, but also to improve the quality of SQL translations generated by
ORM packages.
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1.3 Road Map

The query language for which we propose to study equivalence is a conjunctive
algebra extended with aggregation functions that construct abstract collections
which—when nested—form complex objects. We consider objects constructed by
arbitrary nesting of three different types of unordered collections—sets, bags, and
a collection type we call normalized bags—which abstract common aggregation
functions by modelling their sensitivity to the tuple cardinalities within their inputs.
We have chosen this abstraction to highlight the impact of nested aggregation on the
query equivalence problem, without getting bogged down in complexities specific
to particular aggregation functions.

In Chapter 2 we lay the necessary groundwork for considering the query equiv-
alence problem for queries with nested aggregation. We start by formally defining
the data model, algebraic query language, and a procedure for encoding arbitrary
complex objects within a single flat relation (i.e., containing no aggregated val-
ues). The main contribution of this chapter is a reduction of the query equivalence
problem to deciding a relationship we call encoding equivalence between conjunctive
queries that do not contain any aggregation operators, but may contain an operator
that introduces null values (a restricted form of the left outer-join operator).

Chapters 3–5 address the problem raised in Chapter 2 of deciding encoding
equivalence between conjunctive queries containing null-introducing operators. In
Chapter 3 we focus on understanding encoding equivalence (which is a generaliza-
tion of standard query equivalence) in the restricted case where the null-introducing
operator is not present. In Chapter 4 we focus on standard query equivalence in the
case where null-introducing operators are present. We combine these orthogonal
results in Chapter 5, where we consider encoding equivalence in the presence of
null-introducing operators.

In Chapter 6 we summarize our results. We also revisit the motivating examples
from Section 1.1 and use them to illustrate both how our theoretical results can be
applied in practice and where shortcomings in our theory exist that require further
attention.

10



Chapter 2

Equivalence of Conjunctive
Queries that Construct Objects

Our primary purpose in this chapter is to lay a theoretic foundation for discussing
queries—over relational databases—which return complex objects as their result. In
future chapters we will build upon this foundation to reason about the equivalence
of such queries. In Section 2.1 we define complex objects and related notation,
including an algebraic language for constructing complex objects. In Section 2.2
we define a representation of complex objects as relations of flat tuples, and show
how our complex object algebra queries can be mapped to queries in a (slightly
extended) relational query language. Finally, relevant literature is discussed in
Section 2.4.

2.1 Complex Objects

Informally, a complex object is a recursive structure built up from atomic values,
tuples of complex objects, and collections of complex objects. In Section 2.1.1
we give a more formal definition of complex objects. In Section 2.1.2 we describe
a transformation that we call linearization which converts objects to a canonical
form. Finally, we introduce a query language for generating complex objects from
a database of flat relations in Section 2.1.3.

2.1.1 Objects and Sorts

Our investigation of complex objects is motivated by asking about equivalence of
SQL queries containing aggregation functions, and so our choice of which collection
types to consider is determined by the semantics of commonly-supported aggrega-
tion functions. All SQL aggregation functions ignore the order of elements within
their input, and so we restrict our attention to unordered collections. Aggregation
functions such as MIN, MAX, and any function using the DISTINCT keyword (e.g.
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COUNT(DISTINCT column-name)) also ignore the element cardinalities within their
input; thus, we model their input as a set. Aggregate functions such as COUNT and
SUM are sensitive to the element cardinalities and so we model their input as a bag
(a.k.a. multi-set). Finally, many statistical functions such as AVERAGE, MEDIAN, or
STDEV are sensitive only to relative element cardinalities (e.g., doubling the cardi-
nality of each value does not change the aggregated result), and so we model their
input using a collection type we call a normalized bag.

Sets and bags are well-known collection types and we denote them using the
delimiters � �� and �S � S�, respectively. Given an arbitrary finite collection c, the
bag projection of c—denoted Bag�c�—is the bag of elements that occur in c, while
the set projection of c—Set�c�—is the set of elements in c. A normalized bag is a
special case of a bag in which the greatest common divisor of the element frequencies
is one; we denote a normalized bag with the delimiters �S�� � S���. Given an arbitrary
collection c, the normalized bag projection of c—NormBag�c�—is the normalized bag
formed by dividing each element frequency by the GCD of all element frequencies.

Example 3 The following four bags are all distinct.

B1 �� �Sx,x, y, y, y S� B3 �� �Sx,x, y S�
B2 �� �Sx,x, x, x, y, y, y, y, y, y S� B4 �� �Sx,x, x, x, y, y S�

The first and second have the same normalized bag projection

N1 �� �S�� x,x, y, y, y S��� � NormBag�B1� � NormBag�B2�
as do the third and fourth.

N2 �� �S�� x,x, y S��� � NormBag�B3� � NormBag�B4�
Finally, the four bags and two normalized bags all have the same set projection.

Set�B1� � Set�B2� � Set�B3� � Set�B4� � Set�N1� � Set�N1� � �x, y �
We now formalize our definition of complex objects. Definitions 2.1.1 and 2.1.4

below borrow heavily from Abiteboul et al.’s definition of complex value databases [6,
Ch. 20], the primary difference being our extension to multiple collection types.
Another minor difference is that we do not assign attribute names to elements of
tuples; the reason for this will be explained when we present our query algebra.

Sorts

We start by fixing a countably infinite set of atomic values dom, called the underlying
domain. We desire complex objects to be typed, and so we next define a set
of complex sorts, which are meta-entities that each define a class of objects of a
restricted structure.
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Definition 2.1.1 (Sort) A sort (or type) τ is syntactically defined by the follow-
ing recursive grammar:

τ := dom | � τ � | �S τ S� | �S�� τ S��� | ` τ, . . . , τ e
We call sort dom an atomic sort; sorts � τ �, �S τ S�, and �S�� τ S��� collection sorts; and
sort ` τ, . . . , τ e a tuple sort (which may have any finite arity k C 0). We call a tuple
sort flat if it is composed of only atomic sorts. We use T to denote the set of all
sorts.

Definition 2.1.2 (Sort Depth) The depth of a sort τ is defined recursively as
follows.

depth�dom� � 0

depth�� τ �� � 1 � depth�τ�
depth��S τ S�� � 1 � depth�τ�
depth��S�� τ S���� � 1 � depth�τ�

depth�` τ1, . . . , τk e� � max�0,depth�τ1�, . . . ,depth�τk��
Intuitively, the depth of τ is the maximum number of collection sorts occurring
along any root-to-leaf path in the hierarchical definition of τ .

Although not enforced by the grammar in Definition 2.1.1, without loss of gen-
erality we adopt a convention that tuple sorts are always structured with the child
sorts of zero depth occurring to the left of child sorts with non-zero depth.

Example 4 Consider the following sorts.

τ1 �� `dom,dom,dom e τ2 �� � `dom,dom e �
τ3 �� � ` `dom e, `dom,dom e e � τ4 �� �S�� � `dom e � S���
τ5 �� ��S `dom e S� � τ6 �� � `dom,�Sdom S� e �
τ7 �� �S `dom,� `dom e � e S� τ8 �� � ` �S ` � `dom e � e S�,� `dom e � e �
τ9 �� � ` �S ` �S�� `dom e S��� e S�,� ` �S `dom e S� e �,�S�� `dom e S��� e �

An equivalent tree representation is shown in Figure 2.1. Sort τ1 has depth zero, τ2 and
τ3 have depth one, τ4–τ7 have depth two, and τ8 and τ9 have depth three.

For each integer i C 0, we use T i ` T to denote the (infinite) set of all sorts with
depth at most i.

T i �� �τ S depth�τ� B i� (2.1)

Branching, Non-Branching and Chain Sorts We classify sorts as either
branching or non-branching as follows.

� Atomic sort dom is non-branching.
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Figure 2.1: Graphical representation of sorts
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� Collection sorts � τ �, �S τ S�, and �S�� τ S��� are branching if τ is a branching sort;
otherwise they are non-branching.

� Tuple sort ` τ1, . . . , τk e is branching if either
1. one of its child sorts τi is branching; or
2. at least two of its child sorts τi and τj have depth greater than zero.

In other words, branching sorts include at least two collection types where neither
type is nested within the other. For example, τ8 and τ9 in Figure 2.1 are branching
sorts, while τ1–τ7 are non-branching sorts. By our convention on the structuring of
tuple sorts, within a non-branching tuple sort ` τ1, . . . , τk e only τk can have depth
greater than zero. Hence, non-branching sorts contain only “right deep” nesting of
collections, as illustrated by sorts τ6 and τ7 in Figure 2.1.

We say that a sort is a chain sort if it contains precisely one descendant tuple
sort, and that tuple sort is flat. Hence, a chain sort is a special case of a non-
branching sort. For example, sorts τ1, τ2, τ4, and τ5 in Figure 2.1 are chain sorts.
The object encoding method that we propose later in this chapter is based upon
chain sorts. Corresponding to each chain sort we define a sequence § called its
signature.

Definition 2.1.3 (Signature) A semantic indicator § is one of the characters
s, b, or n and denotes that a collection is of type set, bag, or normalized bag,
respectively. A signature § of length d is a finite sequence of semantic indicators
§1§2�§d.

Any chain sort of depth d can be represented by a pair (§, k), where § is a
signature of length d that indicates from left-to-right the semantics of the successive
descendant collection sorts, and k is the arity of the tuple at the leaf of the sort.
For example, chain sorts τ1, τ2, τ4, and τ5 from Figure 2.1 can be represented as
(g, 3), (s, 2), (ns, 1), and (sb, 1), respectively.

Complex Objects

Corresponding to each sort τ > T is a space of possible values that conform to it,
called its interpretation.

Definition 2.1.4 (Sort Interpretation) The interpretation of sort τ , denoted�� τ ��, is defined recursively as follows.��dom �� � dom�� � τ � �� � �� v1, . . . , vj � S j C 0, vi > �� τ ��, i > �1, j���� �S τ S� �� � ��S v1, . . . , vj S� S j C 0, vi > �� τ ��, i > �1, j���� �S�� τ S��� �� � ��S�� v1, . . . , vj S��� S j C 0, vi > �� τ ��, i > �1, j���� ` τ1, . . . , τk e �� � �` v1, . . . , vk e S vj > �� τj ��, j > �1, k��
15



For each integer i C 0, we use domi to denote the (infinite) set of all finite
elements belonging to interpretations of sorts with depth at most i.

domi �� �
τ>T i

�� τ �� (2.2)

We use domª to denote the (infinite) set of all finite elements that conform to any
sort.

domª �� �
τ>T

�� τ �� (2.3)

Definition 2.1.5 (Complex Object) A complex object is a member of domª.

Any complex object o necessarily belongs to some sort interpretation �� τ ��, in
which case we say that o conforms to τ . (If o contains one or more empty collections,
it is possible that o conforms to infinitely many sorts.) Object o is a tuple if τ is a
tuple sort, and a collection if τ is a collection sort.

Example 5 Consider the following objects. Our convention throughout this thesis
will be to use both integers and lowercase letters near the beginning of the alphabet to
denote atomic elements (i.e., constants).

o1 ��`a, b,0 e
o2 ��� `a,1 e, `a,2 e, ` b,2 e, ` b,3 e �
o3 ��� ` `a e, `2,5 e e, ` `a e, `3,4 e e, ` ` b e, `3,4 e e �
o4 ���S�� � `1 e, `2 e �,� `1 e, `2 e �,� `1 e, `3 e � S���
o5 ����S `1 e, `1 e, `2 e S�,�S `1 e, `2 e S�,�S `1 e, `3 e, `3 e S� �
o6 ��� `1,�Sa, a, c S� e, `2,�Sa, c S� e �
o7 ���S `a,� `1 e, `2 e � e, ` b,� `1 e, `3 e � e, ` c,� � e S�
o8 ��� ` �S S�,� � e �
o9 ��� ` �S ` �S�� `a e, ` c e, ` c e S��� e,` �S�� `a e, ` c e, ` c e S��� e,` �S�� S��� e S�,� �,�S�� `5 e S��� e �

o10 ��� �
o11 ���a,�Sa, a, c S�, c,�Sa, c S� �

Objects o1–o9 are complex objects because they conform to sorts τ1–τ9, respectively,
from Example 4. Object o10 conforms to any sort rooted by a set, including τ2, τ3,
τ5, τ6, τ8, and τ9; therefore it is also a complex object. Finally, although o11 satisfies
our informal characterization from the start of Section 2.1, it is not formally a complex
object (as per Definition 2.1.5) because the elements of the set are not uniformly typed
and so o11 does not conform to a sort.
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We will not consider further untyped objects such as o11 in the above example.
Henceforth, when we refer to an “object” the reader should interpret this to mean
a “complex object” as defined above. We also represent objects as trees, analogous
to the representation of sorts in Figure 2.1. At times we may refer to the “nodes”
or “leaves” of an object or a sort, by which we mean the nodes or leaves of the tree
representation.

Branching, Non-Branching and Chain Objects We classify complex objects
as either branching or non-branching. An object is non-branching if it belongs to
the interpretation of a non-branching sort; otherwise it is branching. For example,
consider the objects o1–o10 from Example 5 and the sorts τ1–τ9 from Example 4.
Objects o1–o7 are all non-branching because they conform to τ1–τ7, respectively,
which are all non-branching sorts. Object o8 is a branching object because any
sort to which it conforms is necessarily branching, including τ8. Similarly, o9 is a
branching object because any sort to which it conforms is necessarily branching,
including τ9. Object o10 is a non-branching object even though it conforms to the
branching sort τ9—it also conforms to the non-branching sort τ2 (among others).

We say that a complex object is a chain if there exists a chain sort to which it
conforms. Objects o1, o2, o4, o5, and o10 are chain objects because they conform to
the chain sorts τ1, τ2, τ4, τ5, and τ2, respectively.

Complete, Incomplete, and Trivial Objects We say that a complex object
o is complete if it does not contain an empty collection. We say that a complex
object o is trivial if it is either an empty collection or a tuple of trivial objects. For
example, consider complex objects o1–o10 from Example 5 (recall that o11 is not a
complex object). Objects o1–o6 are complete because they do not contain empty
collections, while objects o7–o10 are incomplete. Object o10 is trivial.

2.1.2 Object Linearization

In this section we describe a transformation from an object of arbitrary sort to a
chain object that is either trivial or complete.1 This transformation—which we call
linearization—takes place in two steps:

1. If the object is non-trivial, complete it to remove empty collections.
2. Remove branching via a Cartesian product of siblings.

In the case where the original object was a collection object that does not contain
any 0-ary tuples, this transformation is injective (i.e., one-to-one). We will use
object linearization at the end of this chapter to reduce the problem of testing
equivalence of queries returning arbitrary complex objects to the equivalence of
queries returning trivial or complete chain objects.

1Our reason for handling trivial objects as a special case will become clear in Section 2.2 when
we encode objects as flat relations. Trivial objects correspond to an empty encoding relation.
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Figure 2.2: Completion of objects o7, o8, and o9

Object Completion

The first step in linearizing an object is to make it complete (cf. Section 2.1.1) by
padding with placeholder nodes. Object completion is necessary to ensure that the
second step remains lossless.

Given an object o that conforms to sort τ , we define the completion of o with
respect to τ , denoted Completeτ�o�, as the new object created from o by the
following process. If o is either trivial or already complete, then Completeτ�o� � o.
Otherwise, let o� be any descendant empty collection within o, and let τ � be the
descendant sort within τ corresponding to o�. We know that τ � is a collection sort,
and so let τ �� be the child sort of τ � (i.e. τ � is a collection of τ ��s). Then, we insert
into the empty collection o� a “shaded copy” of τ ��. Repeating this process until o
does not contain any more empty collections, we obtain Completeτ�o�.
Example 6 Consider the (non-trivial) incomplete objects o7, o8, and o9 from Exam-
ple 5 that conform to sorts τ7, τ8, and τ9, respectively, from Example 4. Figure 2.2
illustrates the completion of each object with respect to its associated sort.

Object Completeτ�o� may contain “shaded” delimiter pairs �S S� , � � , �S�� S��� ,
or ` e ; it also may contain the symbol dom which is used as an atomic value.
If Completeτ�o� contains any of these symbols, it is technically not a complex
object (as per Definition 2.1.5). Hence, we want to extend our definition of complex
objects slightly to allow them to contain both shaded delimiter pairs and the atomic
value dom . Our intention is that shaded delimiter pairs retain the same semantics
as their unshaded counterparts, but affect object equality (that is, two objects with
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identical structure but different shading of nodes are not considered equal). To
accomplish this, we modify our interpretation of sorts (Definition 2.1.4) as follows.��dom �� � dom 8 �dom��� � τ � �� � �� v1, . . . , vj � S j C 0, vi > �� τ ��, i > �1, j��

8 �� v1, . . . , vj � S j C 0, vi > �� τ ��, i > �1, j���� ` τ1, . . . , τk e �� � �` v1, . . . , vk e S vj > �� τj ��, j > �1, k��
8 �` v1, . . . , vk e S vj > �� τj ��, j > �1, k��

The interpretations �� �S τ S� �� and �� �S�� τ S��� �� are modified analogously to �� � τ � ��.
Under this modified interpretation of sorts, completion with respect to sort τ is a
function

Completeτ � �� τ ��� �� τ ��
and so, by Definition (2.1.5), Completeτ�o� is a complex object.

Observation 2.1.6 Given an initial object o that does not contain any shaded
nodes and a sort τ to which o conforms, object Completeτ�o� obeys the following
properties:

1. The root node is always unshaded.
2. The only shaded atomic value is dom.
3. No unshaded node occurs beneath a shaded node.
4. Any unshaded node that has a shaded child must be a collection type.
5. Any collection node

(a) has at least one child node;
(b) has at most one shaded child node; and
(c) cannot have both shaded and unshaded child nodes.

Finally, we note that completion with respect to a sort τ is both idempotent
and invertible (by deleting shaded nodes).

Removing Branching

Once an object o is completed, the next step in linearizing it is to transform it
into a chain object. A recursive procedure for performing this transformation is
shown in Algorithm 1. The critical step in calculating Chain�o� is the invocation
of Distribute on line 10 to remove tuple sorts with arity of two or more. The
Distribute function combines two chain objects oa and ob into a single chain
object by distributing ob across each leaf tuple t in oa and then distributing the
atomic values from t across the leaves of its copy of ob.

Algorithm 1 can be applied to any complete complex object. By temporar-
ily treating the symbol dom as an atomic value, any sort τ can be viewed as a
complete complex object (τ conforms to itself, and Completeτ�τ� � τ), allowing
Algorithm 1 to be applied to sorts. This leads us to the following observation.
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Algorithm 1 Transforming objects into chains

Chain�o�
¤ Input: complete or trivial object o
¤ Output: chain object formed from o

1 if o is atomic
2 then return ` o e
3 elseif o � � o1, . . . , on � ¤ Where � � � is any (possibly shaded) collection type
4 then return �Chain�o1�, . . . ,Chain�on� � ¤ preserving collection type � � �
5 elseif o � ` e or o � ` e
6 then return ` e
7 elseif o � ` o1 e or o � ` o1 e
8 then return Chain�o1�
9 elseif (o � ` o1, . . . , on e or o � ` o1, . . . , on e) and n A 1

10 then return Distribute�Chain�o1�,Chain�` o2, . . . , on e��
Distribute�oa, ob�

¤ Input: chain object oa of sort �§a
, k�

Assume that oa is a tree whose m leaves are
the k-ary tuples `a1

1, . . . a
1
k e, . . ., `am

1 , . . . am
k e

¤ Input: chain object ob of sort �§b
, l�

Assume that ob is a tree whose n leaves are
the l-ary tuples ` b1

1, . . . b
1
l e, . . ., ` bn

1 , . . . b
n
l e

¤ Output: chain object of sort �§a � §b
, k � l�

formed by distributing ob over each leaf of oa

and pushing down atomic values
1 o� copy of oa

2 foreach i > �1,m�
3 do oi � copy of ob

4 foreach j > �1, n�
5 do substitute tuple `ai

1, . . . , a
i
k, b

j
1, . . . , b

j
l e

for tuple ` bj
1, . . . , b

j
l e within oi

6 substitute oi for tuple `ai
1, . . . , a

i
k e within o

7 return o
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Figure 2.3: Linearization of sorts τ7, τ8, and τ9

Observation 2.1.7 If o is a complete object conforming to sort τ , then Chain�o�
is a complete chain object conforming to sort Chain�τ�.
Definition 2.1.8 (Object Linearization) Given an object o conforming to sort
τ , the linearization of o with respect to τ is the complete chain object given by the
following function Linearizeτ � τ � Chain�τ�.

Linearizeτ�o� �� Chain XCompleteτ�o� (2.4)

Given an arbitrary sort τ , we may at times refer to the chain sort Chain�τ� as
the linearization of τ . This is consistent with Definition 2.1.8, because if we treat
τ as an object of sort τ to be linearized, we deduce the following.

Linearizeτ�τ� � Chain XCompleteτ�τ� � Chain�τ�
Example 7 Sorts τ7, τ8, and τ9 are shown in Figure 2.3 along with their linearizations
Chain�τ7�, Chain�τ8�, and Chain�τ9�. Collection types have been numbered to
help illustrate the effect of Algorithm 1. Observe that in each case the ordering of
collections in the chain corresponds to a pre-order traversal of the original sort.

Example 8 Figure 2.4 shows the linearization of objects o7, o8, and o9 with respect
to sorts τ7, τ8, and τ9. The reader is encouraged to step through the application of
Algorithm 1 to the completed objects in Figure 2.2 to yield the objects shown here.
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Figure 2.4: Linearization of objects o7, o8, and o9

22



With certain restrictions (to be explained shortly), Algorithm 1 has a retraction
(i.e., it is reversible). The retraction operation depends upon the sort of the original
object; we don’t go into detail because we never have need to perform the retraction
operation. It suffices to point out that from the result of Distribute�oa, ob� we
can reconstruct both oa and ob because either both are trivial chain objects (in
which case Distribute�oa, ob� is also a trivial chain object), or neither contains an
empty collection and so the output has redundancy akin to a relational multi-value
dependency. There is a minor difficulty when dealing with shaded tuples because
lines 6, 8, and 10 of procedure Chain discard the delimiters of the original tuples
(and hence the bit of information denoting whether a tuple is shaded). For example,
in the transformation of Completeτ9�o9� (cf. Figure 2.2) to Linearizeτ9�o9� (cf.
Figure 2.4) thirteen pairs of tuple delimiters were discarded, three of which were
shaded. If the original object contained arbitrarily-shaded tuples, then information
has been lost. However, if we assume that all shaded nodes in Completeτ�o� were
inserted by the completion of o with respect to some sort τ , and τ does not contain
any zero-ary tuple sorts, then the properties in Observation 2.1.6 are sufficient for
deducing which tuple delimiters require shading.

Theorem 2.1.9 Given sort τ not containing any zero-ary tuple sorts, Linearizeτ

has a retraction.

Corollary 2.1.10 Given sort τ not containing any zero-ary tuple sorts, any two
objects o, o� > �� τ �� satisfy the following.

o � o� 
� Linearizeτ�o� � Linearizeτ�o��
Finally, we note that the properties in Observation 2.1.6 may be violated by

application of Algorithm 1. For example, linearized objects Linearizeτ8�o8� and
Linearizeτ9�o9� in Figure 2.4 both violate the first property by having unshaded
nodes occurring beneath shaded nodes.

Observation 2.1.11 Given an initial object o that does not contain any shaded
nodes and a sort τ to which it conforms, linearized object Linearizeτ�o� obeys the
following properties:

1. The root node is always unshaded.
2. The only shaded atomic value is dom.
3. Any collection node

(a) has at least one child node;
(b) has at most one shaded child node; and
(c) cannot have both shaded and unshaded child nodes.

4. Tuple nodes are never shaded.

The first three properties in Observation 2.1.11 hold because they hold in the
input object Completeτ�o� (by Observation 2.1.6) and are preserved by Algo-
rithm 1 (although preservation of the third property is not obvious and relies upon

23



Completeτ�o� satisfying all of the properties in Observation 2.1.6). The fourth
property holds because procedure Chain deletes all tuple nodes from its input and
inserts unshaded tuples of atomic values at the leaves.

2.1.3 Object-Constructing Queries

In this subsection we propose the “Conjunctive Object-Constructing Query Lan-
guage” (COCQLF)2 which is intended to model a specific subclass of SQL-92 [63]
queries containing aggregation. As such, COCQLF uses a data model based on “ta-
bles,” which differ from traditional relations both by allowing duplicate tuples and
by allowing attribute values to range over complex objects. After first defining the
data model we then describe COCQLF , which is an algebraic language for specifying
functions (queries) that map a database of flat tables to a complex object. We also
define a subclass of COCQLFthat is incapable of constructing non-trivial incomplete
objects (i.e., objects containing empty nested collections), which we will denote as
COCQLF�.

Data Model

Let aname and tname denote countably infinite sets of attribute names and table
names, respectively, disjoint from each other and from the underlying domain dom.
(Our convention will be to use uppercase letters to denote elements of aname and
tname.) Our data model is defined as follows.

Definition 2.1.12 (Table Schema) A table schema of arity k has the form

T �A1 � τ1, . . . ,Ak � τk� (2.5)

for some k C 0, where T is a table name from tname, A1, . . . ,Ak are distinct attribute
names from aname, and τ1, . . . , τk are sorts. If τ1, . . . , τk are all dom, then we say
that the table schema is flat.

Definition 2.1.13 (Relation Schema) A relation schema is a flat table schema.

Definition 2.1.14 (Table) A table T is a pair �S�T �,T�T �� where S�T � is a
table schema T �A1 � τ1, . . . ,Ak � τk� and T�T � is a finite bag-instance of S�T �.

T�T � > �� �S ` τ1, . . . , τk e S� ��
We call T flat if S�T � is a flat schema.

Definition 2.1.15 (Relation) A relation R is a table with a flat schema and
whose instance S�R� does not contain duplicate tuples. In other words, if S�R� has
arity k, then

T�R� > �� � ` k³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
dom, . . . ,dom e � ��

2Pronounced “cockle”.
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We often omit the sorts and write a table schema as T �A1, . . . ,Ak�. If necessary,
we use sort�Ai� to denote sort τi corresponding to attribute Ai (within the schema
of table T , which will be obvious from the context). We use dom�Ai� to denote the
domain of values for attribute Ai,

dom�Ai� �� ��sort�Ai� �� � �� τi �� (2.6)

and we use adom�Ai, T � to denote the active domain of attribute Ai within T , which
is the finite subset of dom�Ai� that appears within the projection of attribute Ai

from table instance T�T � (when table instance T�T � is obvious from the context,
we simply write adom�Ai�). Similarly, given a sequence A � Ai1�Aij of j (not

necessarily distinct) attributes of T , we use sort�A� to denote the sort of arity-
j tuples that can be projected from T , with dom�A� denoting the corresponding
domain of tuple values,

sort�A� ��` τi1 , . . . , τij e (2.7)

dom�A� ���` vi1 , . . . , vij e S ` vi1 , . . . , vij e > ��sort�A� ��
, ¦l,m > �1, j��Ail � Aim Ô� vil � vim�� (2.8)

and we use adom�A,T � (or adom�A�) to denote the active domain of A within table
instance T�T �. Finally, we use sort�S�T �� to denote the sort of tuples within T

sort�S�T �� �� sort�A1�Ak� � ` τ1, . . . , τk e (2.9)

with dom�S�T �� denoting the domain of possible tuples.

dom�S�T �� �� dom�A1�Ak� � �� ` τ1, . . . , τk e �� � ��sort�S�T �� �� (2.10)

Equations 2.8 and 2.10 are consistent because A1, . . . ,Ak are distinct names.

Observe from Definition 2.1.14 that each table instance T�T � is a bag of tuples,
which is a complex object. However, our data model does not define “nested ta-
bles” per se, because table schemas are not recursive and so attribute names are
only assigned to the elements of the outermost tuple—a distinction that becomes
important for the design of our query language.

Definition 2.1.16 (Relational Database) A relational database D is a finite
set of table names �T1, . . . , Tm� ` tname

that have associated with each table name Ti a relation �S�Ti�,T�Ti��. We call
the tables in D base tables (or base relations); the set of base table schemas are
collectively called the database schema, denoted S�D�.

We define adom�D� ` dom to be the active domain of database D, which is the
set of values that occur within any attribute of any tuple within D.
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COCQLF and COCQLF� Specification

Traditional conjunctive queries can be specified by relational algebra expressions
combining base relations with the operators selection, projection, Cartesian prod-
uct (or join), and attribute renaming (sometimes merged into the projection oper-
ator) [6, Ch. 4]. Standard approaches for extending relational algebra to bags of
tuples include introducing two variations of projection (namely, duplicate-preserving
and duplicate-eliminating), or defining projection as duplicate-preserving and in-
troducing a new duplicate-elimination operator [42]. Well-formed algebra queries
do not contain variable names; atomic values are only referenced either explicitly
(as constants) or via attribute names occurring within the schema of the opera-
tor’s input. As its name implies, COCQLF is intended as an extension of conjunctive
queries that allows for the construction of complex objects.

Definition 2.1.17 (COCQLF Query) A COCQLF query Q is an expression of the
form

Eval�T, f,E�T ��
where

� T is an algebraic expression composed of the operators in Figure 2.5;
� f > F is an aggregation function that takes a table as input and returns a

complex object as output;
� E�T � is a query evaluation environment; and
� Eval�� is the query evaluation function which evaluates algebra expression

T within the context of E�T � to yield the table to which f is applied.

Given a relational database D, the result of evaluating Q over D—denoted �Q�D—is
a complex object of sort sort�Q� �� sort�f�T ��.

If for every database instance D the object �Q�D is trivial, then Q is called
unsatisfiable; otherwise Q is called satisfiable. If the environment E�T � is empty,
then Q is called unparameterized; otherwise Q is called parameterized.

Although a COCQLF query contains an algebraic expression, it also contains
some additional non-algebraic syntax. These non-algebraic constructs lead to sev-
eral features that distinguish COCQLF from the usual language of relational algebra
expressions over bags.

1. Environment Variables: Associated with the evaluation of table-generating
expression T is an environment E�T �, which is a set of assignments of the
form

E�T � � �V1 � v1, . . . , Vn � vn�
for some n C 0, where for each i > �1, n�, Vi is a distinct name from aname with
which a sort sort�Vi� is implicitly associated, and vi > dom�Vi� � ��sort�Vi� ��.
Environment E�T � is inherited down the algebraic operator tree so that any
reference to Vi anywhere within expression T is interpreted as a reference to
the value vi.
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2. Aggregation Functions: We assume a set F of functions that each aggre-
gate a table into a complex object. Given function f > F and a table (or
table-generating expression) T , we use sort�f�T �� to denote the sort of ob-
ject f�T �. For this thesis we will restrict our attention to the case where F
only contains three functions

F � �fb, fn, fs� (2.11)

that return the bag, normalized bag, and set projections, respectively, of the
collection of tuples in the instance of table T . That is:

fb�T � �� Bag�T�T �� sort�fb�T �� � �Ssort�S�T �� S�
fn�T � �� NormBag�T�T �� sort�fn�T �� � �S�� sort�S�T �� S���
fs�T � �� Set�T�T �� sort�fs�T �� � �sort�S�T �� �

3. Query Composability: A COCQLF query Q � Eval�T, f,E�T �� takes as in-
puts a set of tables and outputs a complex object of sort sort�Q� � sort�f�T ��.
Hence, COCQLF is not a fully-composable query language, per se. However,
the sub-language of algebraic expressions is fully-composable, and arbitrary
nesting of queries is made possible by the λ algebraic operator described be-
low.

The algebra operators for specifying expression T are defined in Figure 2.5,
using the following notational conventions:

1. We use T1 and T2 to denote algebra expressions yielding tables with schema
T1�A1, . . . ,Ak1� and T2�B1, . . . ,Bk2�, respectively.

2. We use �S t1 S t1 > T1 S� to denote a bag constructed by letting tuple variable t1
range over tuple occurrences inT�T1�.3 This requires an inherently procedural
(i.e. variable-binding) interpretation of t1 > T1 that differs from the usual
interpretation of t1 > T1 as a predicate.

3. Given some A > aname 8 dom and a binding of tuple variable t1 > T1 to value
t1 � `a1, . . . , ak1 e, we use t1�A� to denote the following complex object:3

� If A � Ai for some i > �1, k1�, then t1�A� �� ai.
� If A > aname but is not an attribute in S�T1�, then E�T � must contain

some assignment A� v and t1�A� �� v.
� If A > dom, then t1�A� �� A and dom�A� �� dom.

The definitions in Figure 2.5 for the core algebraic operators base relation,
Cartesian product, selection, and projection (duplicate-preserving and duplicate-
eliminating) are all fairly standard, as are the syntactic extensions conjunctive
selection and join. In a minor break from tradition, we completely ignore the at-
tribute names in the database schema and instead embed attribute renaming into
the base relation operator—this avoids the need for attribute renaming at inter-
mediate stages of the query. With one caveat, all of these algebraic operators are

3Analogous for t2 > T2.
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blind to the sort of their attributes and so treat domª as an abstract atomic domain.
The exception is a syntactic restriction on the selection, duplicate-eliminating pro-
jection, and generalized projection operators to prevent the (explicit or implicit)
comparison of higher-order objects.

Example 9 Consider the following simple student enrolment database D1.

Prof pid

a
b
c

Course cid pid

c1 a
c2 a
c3 b
c4 b
c5 b

Student sid

1
2
3
4

Enrol cid sid

c1 1
c1 2
c2 2
c3 1
c4 3

The following COCQL�fb,fs,fn� query Q7 returns the set of pairs (p,s) such that professor
p teaches a course in which student s is enrolled.

Q7: Eval�Πdup
B,D�Course�A,B� 1A�C Enrol�C,D��, fs,g�

The reader can verify that Q7 returns the following sort

sort�Q7� � � `dom�B�,dom�D� e � � � `dom,dom e � � τ2 from Example 4

and that QD1
7 —the result of evaluating Q7 over database D1—yields the following

complex object.

QD1
7 � � `a,1 e, `a,2 e, ` b,2 e, ` b,3 e � � o2 from Example 5

The most common method for extending relational algebra to handle aggre-
gation is to explicitly define a generalized projection operator [42, 54], which is a
unary operator that first partitions the input table and then applies an aggregation
function to each partition. (If grouped tables are explicitly supported by the data
model, generalized projection can be split into separate partition and aggregation
steps [63, 92].) In our algebra, aggregation is instead handled by the scalar sub-
query operator, which is a pseudo-binary operator. A true binary relational algebra
operator specifies a logical operation that can be performed on two independent
inputs. In contrast, our scalar subquery operator requires a nested loops semantics
in which algebra expression T2—the “(correlated) subquery”—is re-evaluated for
each tuple in T1 to yield a new complex object f�T2�; we use the symbol λ to em-
phasize the obvious similarity to a lambda-calculus expression. Our λ operator is
similar to the Apply operator that Galindo-Legaria and Joshi introduce to handle
correlated subqueries [38, 39], but whereas Apply returns a table for the subquery
which is then crossed with T1, λ always returns a single complex object from the
subquery. We define the generalized projection operator in Figure 2.5 as a syntac-
tic extension that is specified in terms of λ. The following example illustrates the
scalar subquery operator; the reader is referred to Example 13 for an example of
generalized projection.
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Example 10 Assuming the same database D1 as in Example 9, consider the following
COCQL�fb,fs,fn� query Q8 which returns the sets of students who have been taught by
each professor.

Q8: Eval�λF�fs�Πdup
D �σB�E�Course�A,B�1A�CEnrol�C,D�����Prof�E��, fb,g�

The reader can verify that Q8 returns the following sort

sort�Q8� � �S `dom�E�,dom�F � e S� � �S `dom,� `dom e � e S� � τ7 from Example 4

and that QD1
8 yields the following complex object.

QD1
8 � �S `a,� `1 e, `2 e � e, ` b,� `1 e, `3 e � e, ` c,� � e S� � o7 from Example 5

Query Q8 is able to generate non-trivial incomplete object o7 because it is explicitly
written using a scalar subquery. If the query were written to use generalized projection
instead of a scalar subquery, professor c would not appear in the output.

As mentioned in the above example, the scalar subquery operator is required
in order to construct non-trivial incomplete objects. A very practical subclass of
COCQLF queries is those that are known to always output complete objects.

Definition 2.1.18 (COCQLF� Query) The language COCQLF� is the subclass of COCQLF

queries that do not contain an explicit scalar subquery operator λ. Queries in
COCQLF� may contain generalized projection.

We emphasize that none of the algebraic operators have the ability to look inside
a complex object. All knowledge of the internal structure of objects is encapsulated
within the aggregation functions in F , while the query algebra simply treats domª

as an abstract domain. This is why we christen COCQLF as an “object-constructing”
query language, rather than an “object query language.”

Relating COCQLF and SQL

There are three main differences between the data model of the SQL standard [63]
and the data model we have defined for the query language COCQLF . First, the
SQL data model allows the base tables stored by the RDBMS to contain duplicates,
whereas COCQLF queries are expressed over databases containing relations. Second,
the SQL data model designates a particular atomic value—null—to represent “un-
known” data, and requires comparisons between atomic elements to be evaluated
using three-valued logic. In contrast, we have assumed a standard boolean inter-
pretation of the equality operator over elements of dom (the underlying domain for
the COCQLF data model). Third, SQL tables only allow atomic-valued attributes,
whereas COCQLF queries can construct arbitrary complex-valued attributes. As
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previously mentioned, this third difference is relatively minor since the COCQLF al-
gebraic operators cannot look inside a complex-valued attribute, and so COCQLF

essentially treats domª as an atomic domain.

SQL and COCQLF also differ in the aggregation functions that they support. For
comparison purposes, let SQLF denote an “SQL-like” query language operating over
the data model we have defined for COCQLF (i.e. complex-valued table attributes;
no null values; and databases containing relations) and in which the usual SQL
aggregation functions (SUM, COUNT, AVG, etc.) have been replaced with the set of
functions F . Furthermore, let COCQLF ,fb denote the slight extension of the language
COCQLF in which the aggregate function fb may be used in the root-level invocation
of Eval, even if fb ¶ F (clearly COCQLF ,fb � COCQLF if fb > F).

Proposition 2.1.19 COCQLF ,fb corresponds to a restricted class of queries that can
be expressed in SQLF using only the following constructs:

1. SELECT clauses composed of attribute names, constants, scalar subqueries, and
aggregation expressions of the form f�A1, . . . ,Ak�, f > F ;

2. FROM clauses composed of a list of base relation names and nested SQLF table
expressions;

3. WHERE clauses composed of conjunctions of equality comparisons, with each
comparison containing only constants and/or references to attributes origi-
nating from base relations; and

4. GROUP BY clauses composed only of constants and attributes originating from
base relations.

We denote this subset of SQLF expressions as CSQLF (for “Conjunctive SQLF”).

Proposition 2.1.20 COCQLF ,fb� corresponds to the restricted class of CSQLF queries
in which

� every nested SELECT-FROM-WHERE-GROUPBY block that contains an aggrega-
tion function in the SELECT clause also has as GROUPBY clause, and

� the SELECT clause does not contain scalar subqueries

(i.e., the subset of CSQLF that permits scalar aggregation only at the root block).
We denote this subset of CSQLF expressions as CSQLF�.

A COCQLF ,fb query always returns a single complex object (treated as a scalar
value from abstract domain domª). In contrast, a CSQLF query always returns a
table which—per Definition 2.1.14—is a table schema paired with a bag-object.
Corresponding to any CSQLF query is a COCQLF ,fb query whose root invocation of
Eval applies the function fb to construct the same bag-object as the table instance
returned by the CSQLF query.

Example 11 Assume that a database schema contains relation Person(id, fname,

lname, phone). CSQLF query Q9 returns a table of (fname, phone) pairs for persons
with the last name DeHaan.
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Q9: SELECT fname, phone FROM Person WHERE lname = ‘DeHaan’

Query Q10 shows a corresponding COCQLF ,fb query which returns a bag of binary tuples.

Q10: Eval�Πdup
B,D�σC�‘DeHaan’�Person�A,B,C,D���, fb,g�

Given an arbitrary COCQLF (or COCQLF ,fb) query whose root invocation of Eval
applies the function f , the translation of the query into CSQLF depends upon f .
If f � fb, then the corresponding CSQLF query returns a table whose instance
is the same bag-object as the output of the COCQLF query. If f x fb, then the
corresponding CSQLF query uses scalar aggregation in the root block to apply the
function f and the resulting object is wrapped within a single-row, single-column
table.

Example 12 Assuming the same Person relation as the previous example, COCQLF

query Q11 returns the result of applying an arbitrary function f > F to a collection of
(fname, phone) pairs for persons with the last name DeHaan.

Q11: Eval�Πdup
B,D�σC�‘DeHaan’�Person�A,B,C,D���, f,g�

If f � fb, then the corresponding CSQLF query is Q9 from Example 11. Otherwise, the
corresponding CSQLF query is the scalar aggregation query Q12 below.

Q12: SELECT f(fname, phone) FROM Person WHERE lname = ‘DeHaan’

We have defined the COCQLF generalized projection operator as a syntactic ex-
tension for a correlated scalar subquery. In contrast, the semantics of the GROUP BY

construct in SQL are usually described in terms of partitioning—and for good rea-
son, because physical implementations of grouping/partitioning are typically much
more efficient than nested-loop-based evaluation of correlated subqueries. Never-
theless, a logical rewriting of GROUP BY in terms of correlated subqueries is also
possible within CSQLF as illustrated in the next example.

Example 13 Using the same Person(id, fname, lname, phone) relation as the
previous example, consider CSQLF query Q13, which returns the result of applying ar-
bitrary aggregation function f > F to the collection of first names for each group of
persons with the same last name. This corresponds to COCQLF ,fb query Q14.

Q13: SELECT f(fname) FROM Person GROUP BY lname

Q14: Eval�Πdup
E �ΠE�f�B�

C �Person�A,B,C,D���, fb,g�
Expanding the generalized projection in Q14 yields COCQLF ,fb query Q15, which corre-
sponds to CSQLF query Q16.
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Q15: Eval� Πdup
E �λE�f�Πdup

B� �σC��C�Person�A�,B�,C�,D������ΠC�Person�A,B,C,D����,
fb,g�

Q16: SELECT ( SELECT f(fname)
FROM Person

WHERE lname = t.lname )

FROM ( SELECT lname FROM Person GROUP BY lname) AS t

CSQLF queries Q13 and Q16 are equivalent; however, this equivalence relies upon the fact
that attribute lname does not contain null values (as per our definition of language
SQLF). If the data model were extended with null values, the WHERE clause of the
subquery in Q16 would need minor adjustment to account for SQL’s three-valued logic.

Although we do not prove it formally here, the correspondence between COCQLF ,fb

and CSQLF posited in Proposition 2.1.19 can be verified by

1. defining a canonical form for COCQLF ,fb algebra expressions,
2. demonstrating the correspondence between CSQLF expressions and COCQLF ,fb

expressions in canonical form, and
3. showing that every COCQLF ,fb can be converted to the canonical form by a

sequence of equivalence-preserving algebraic transformations.

The correspondence between COCQLF ,fb� and CSQLF� posited in Proposition 2.1.20
can be verified in a similar fashion.

Deciding Equivalence of COCQLF Queries

In the introduction to this thesis we purport to study the equivalence of SQL queries
containing nested aggregation functions. Having just introduced the algebraic query
language COCQLF and shown its relationship to a specific class of SQL queries, we
briefly define formally what it means for two COCQLF queries to be equivalent.

Definition 2.1.21 (COCQLF Query Equivalence) Two COCQLF queries Q, Q� over
database schema S�D� with the same output sort τ are equivalent—denoted Q �
Q�—if for each relational database D with schema S�D� and finite instance T�D�
the complex objects �Q�D and �Q��D are equal.

Proposition 2.1.22 The query equivalence problems for COCQLF ,fb and CSQLF are
polynomial-time reducible to each other.

Proposition 2.1.23 The query equivalence problems for COCQLF ,fb� and CSQLF�

are polynomial-time reducible to each other.

Much of the remainder of this thesis concerns how to test COCQLF query equiva-
lence. The main goal of the next two sections is to reduce COCQLF query equivalence
to testing a special form of equivalence between queries that return flat relations.
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1̀
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ey1 y2

� �
1̀

e
3̀

ey1 y2

� �x1 x2 x3

�S�� S��� R1 X Y Z

x1 y1 1
x1 y2 2
x2 y1 1
x2 y2 2
x3 y1 1
x3 y2 3

R2 X Y1 Y2 Z

x1 y a 1
x1 y b 2
x2 y a 1
x2 y b 2
x3 y a 1
x3 y b 3

Figure 2.6: Encoding of complete chain object o4

2.2 Encoding Objects as Relations

Section 2.1.2 presented a process, called linearization, for transforming an arbi-
trary complex object into a complete chain object that possibly contains “shaded”
nodes. In this section we describe a method for converting between a complete
chain object and its representation as a set of flat tuples. In Section 2.2.1 we only
consider complete chain objects that do not have shaded nodes—a restriction that
is lifted in Section 2.2.2. Combined with Section 2.1.2, this provides a method for
encoding arbitrary objects as a single relation. (This encoding technique is similar
to one used previously by Suciu [102]; see Section 2.4.2 for a brief comparison.)
Although each object has a unique linearization, the same cannot be said for rela-
tional encodings—there are an infinite number of different encodings of the same
object. Therefore, Section 2.2.3 defines a binary relationship between encoding
relations that characterizes when two different relations encode the same object.

2.2.1 Encoding and Decoding Chain Objects

Figure 2.6 illustrates the basic technique for encoding a complete chain object as
a set of tuples, showing both the complete chain object o4 from Example 5 and its
encoding as relation R1. Starting with the tree representation of the object, we label
each outgoing edge from a collection node with a locally-unique value (shown) and
then create a tuple for each root-to-leaf path down the tree, incorporating the edge
labels as attribute values. Note that edge labels could be drawn from a composite
domain that corresponds to multiple relational attributes. For example, relation
R2 shows an alternative encoding that could be formed by replacing labels y1 and
y2 with y �a and y �b, respectively. We now give a more formal definition of encoding
relations.

Definition 2.2.1 (Encoding Schema) An encoding schema of depth d C 0 is a
relation schema R�A1, . . . ,Ak� annotated with the following additional information:

� For each i > �1, d�, the “tuple of index attributes at level i” I i is a sequence

I i �� Ii.1�Ii.ki
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where ki C 0 and for j > �1, ki� each Ii.j > �A1, . . .Ak�. Because sequences
allow repeated elements, we use Ii to denote the set of attributes occurring in
I i. For convenience, we use I�i,j� to denote the sequence I iI i�1�Ij, and I�i,j�
to denote the corresponding set �l>�i,j� Il.

� The “tuple of output attributes” V is a sequence

V �� V1�Vkv

where kv C 0 and for j > �1, kv� each Vj > �A1, . . . ,Ak�. We use V to denote
the set of output attributes occurring in V.

Furthermore, the sets of index and output attributes must together cover all the
attributes of relation R.

I1 8 . . . 8 Id 8 V � �A1, . . . ,Ak� (2.12)

Definition 2.2.2 (Encoding Relation) An encoding relation R of depth d is a
relation whose schema is an encoding schema of depth d and whose instance satisfies
the following constraints.

1. T�R� satisfies the functional dependency I�1,d� � V.
2. If d � 0, then T�R� contains precisely one tuple.

For convenience, we use the notation

R�I1; . . . ;Id;V�
to represent the schema of encoding relation R. When depicting an encoding re-
lation graphically, we separate index levels with a single vertical line and separate
output variables from index variables with a double vertical line. For example,
Figure 2.6 depicts encoding relation R1 with schema R1�X;Y ;Z�, while Figure 2.7
depicts an encoding relation R3 with schema4 R3�A,B;C,D;C�.

Given an encoding relation R � �S�R�,T�R�� and a value a > adom�I�1,l�1�,R�
we use R�a� to denote the sub-relation indexed by a, which is an encoding relation�S�R�a��,T�R�a��� defined as

S�R�a�� �� R�I l; . . . ;Id;V� (2.13)

T�R�a�� �� ΠI�l,d�V�σI�1,l�1��a�R�� (2.14)

where Π and σ are relational projection and selection, respectively. Intuitively, if R
encodes an object of depth d, then R�a� encodes a sub-object of depth d� l�1 that

4At times we may refer to encoding relation R as having “relation schema R�I�1,d�V�” or
containing “tuples over dom�I�1,d�V�.” This is technically incorrect because tables (and hence
relations) are required to have distinct attribute names, while the sequence I�1,d�V allows repeti-
tions. For example, R3 in Figure 2.7 appears to be a quinary relation with schema R3�ABCDC�,
but it is properly a quaternary relation over the attributes �A,B,C,D�. This distinction is moot,
however, because we can treat R3 as a set of quinary tuples over dom�I�1,d�V� � dom�ABCDC�
since agreement of values for repeated attributes is guaranteed by equation 2.8.
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R3 A B C D C

a1 b1 1 d1 1
a1 b1 2 d1 2
a1 b2 1 d1 1
a1 b2 2 d1 2
a2 b1 1 d3 1
a2 b1 1 d4 1
a2 b1 2 d3 2
a2 b2 1 d3 1
a2 b2 2 d3 2
a3 b1 1 d5 1
a3 b1 3 d5 3
a3 b1 3 d6 3
a3 b2 1 d5 1
a3 b2 3 d5 3
a3 b2 3 d6 3

R3�a2b1� C D C

1 d3 1
1 d4 1
2 d3 2

R3�a2b11d3� C

1

Figure 2.7: Encoding relation R3 and select sub-relations

occurs as a descendant within the object encoded by R. For example, Figure 2.7
also shows the encoding relations R3�a2b1� and R3�a2b11d3� derived from R3.

We say that an encoding relation and a signature are compatible if the length
of the signature matches the depth of the encoding schema. Each combination
of an encoding relation and a compatible signature decodes to a unique complete
chain object. Given an encoding relation R of depth d and a signature § of length
d, the function DecodeSimple�R, §� shown in Algorithm 2 computes a complete
chain object of sort �§, SV S�. If R is non-empty, then DecodeSimple�R, §� returns
a hierarchy of d (possibly zero) levels of nested collections with tuples of aritySV S at the leaves. If R is empty, then Definition 2.2.2 requires that d A 0, and so
DecodeSimple�R, §� returns a single empty collection of type §1. The structuring
of Algorithm 2 into two procedures DecodeSimple and InnerDecodeSimple is
not necessary, but it facilitates our extending of the algorithm to handle shading
in the next subsection.

Example 14 Decoding relation R1 (cf. Figure 2.6) with signature ns yields object
o4.

DecodeSimple�R1,ns� � InnerDecodeSimple�R1,ns�� �S�� InnerDecodeSimple�R1�x1�,s�,
InnerDecodeSimple�R1�x2�,s�,
InnerDecodeSimple�R1�x3�,s� S���� �S�� � InnerDecodeSimple�R1�x1y1�,g�, InnerDecodeSimple�R1�x1y2�,g� �,� InnerDecodeSimple�R1�x2y1�,g�, InnerDecodeSimple�R1�x2y2�,g� �,� InnerDecodeSimple�R1�x3y1�,g�, InnerDecodeSimple�R1�x3y2�,g� � S���
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Algorithm 2 Reconstructing an encoded chain object

DecodeSimple�R, §�
¤ Input: encoding relation R�I1; . . . ;Id;V�
¤ Input: compatible signature §
¤ Output: complete or trivial chain object of sort (§, SV S)

1 if R is non-empty

2 then return InnerDecodeSimple�R, §�
3 else ¤ d A 0 and R encodes a trivial empty collection

4 if § � sY
5 then return � �
6 elseif § � bY
7 then return �S S�
8 else ¤ § � nY
9 return �S�� S���
InnerDecodeSimple�R, §�

¤ Input: non-empty encoding relation R�I1; . . . ;Id;V�
¤ Input: compatible signature §
¤ Output: complete or trivial chain object of sort (§, SV S)

1 if d � 0 ¤ R contains singleton tuple `a1, . . . , aSV S e
2 then return `a1, . . . , aSV S e
3 elseif § � sY

4 then return � InnerDecodeSimple(R�a�, Y ) S a > ΠI1
�R� �

5 elseif § � bY

6 then return �S InnerDecodeSimple(R�a�, Y ) S a > ΠI1
�R� S�

7 else ¤ § � nY
8 return �S�� InnerDecodeSimple(R�a�, Y ) S a > ΠI1

�R� S���
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� �S�� � `1 e, `2 e �,� `1 e, `2 e �,� `1 e, `3 e � S���� o4

We started this subsection by informally describing how to generate an encoding
relation from a complete chain object (not containing shaded nodes), using o4

and R1 as an example. Clearly, our method could generate an infinite number of
unique encoding relations for o4 simply by choosing different edge labels; however
all of these relations would be isomorphic to R1 modulo renaming of index values.
Because there is a one-to-one mapping between tuples in R1 and the leaves of o4,
there cannot exist another relation that contains fewer tuples than R1 and still
decodes to o4; hence, R1 could be considered a “minimal encoding” of o4. There
are also infinitely many encodings of o4 that are not isomorphic to R1 and hence
contain varying amounts of redundancy with respect to sort τ4.

Example 15 Relation R3 in Figure 2.7 also yields object o4 when decoded with sig-
nature ns.

DecodeSimple�R3,ns� � �S�� � `1 e, `2 e �,� `1 e, `2 e �,� `1 e, `1 e, `2 e �,� `1 e, `2 e �,� `1 e, `3 e, `3 e �,� `1 e, `3 e, `3 e � S���
� �S�� � `1 e, `2 e �,� `1 e, `2 e �,� `1 e, `2 e �,� `1 e, `2 e �,� `1 e, `3 e �,� `1 e, `3 e � S���
� �S�� � `1 e, `2 e �,� `1 e, `2 e �,� `1 e, `3 e � S���
� o4

The reader can verify that when relation R3 is instead decoded with signature sb it
yields object o5.

2.2.2 Encoding and Decoding Linearized Objects

The linearization process of Section 2.1.2 outputs complete chain objects that may
contain special “shaded” nodes (cf. Figure 2.4). The encoding and decoding pro-
cedures described in the previous subsection must be extended if we want to re-
construct linearized objects. From Observation 2.1.11 we know that the root node
of a linearized object is never shaded; therefore, we can store information about a
node’s shading within the label we assign to its incoming edge.

One approach would be to use an extra boolean attribute for each index level
of an encoding schema to indicate shading. An alternative would be to assume the
existence of a new domain of “shaded labels” distinguishable from unshaded labels.
Because labels are only required to be locally-unique (i.e. unique among siblings),
we can improve upon this second approach—from Observation 2.1.11 we know that
a node can have at most one shaded child node, and so we need only one shaded
label.

We extend the definition of an encoding relation as follows. Let the symbol
- denote a designated atomic element not occurring in the atomic domain dom.
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R4 A B C D

a1 b1 a 1
a1 b2 a 2
a2 b1 b 1
a2 b2 b 3
a3 b1 c -

R5 A B C D E F

a1 - c1 d1 - -

R6 A B C D E F G H I

a1 b1 c1 - e1 f1 a - 5
a1 b1 c2 - e1 f1 c - 5
a1 b1 c3 - e1 f1 c - 5
a1 b2 c1 - e1 f1 a - 5
a1 b2 c2 - e1 f1 c - 5
a1 b2 c3 - e1 f1 c - 5
a1 b3 - - e1 f1 - - 5

Figure 2.8: Encoding relations R4, R5, and R6

Similar to how we extended the underlying domain of complex objects to allow for
shaded nodes, we slightly extend the underlying domain of encoding relations5 to
include the atomic value -. The encoding process described in Section 2.2.1 now
requires two minor adjustments:

1. The label for any given edge should be composed solely of (one or more
occurrences of) the - symbol if and only if the edge leads into a shaded node.

2. Each occurrence of the atomic value dom should be replaced by - within the
output attributes of the encoding relation.

Example 16 Applying the modified encoding algorithm to objects Linearizeτ7�o7�,
Linearizeτ8�o8�, and Linearizeτ9�o9� from Figure 2.4 yields the encoding relations
R4, R5, and R6, respectively, shown in Figure 2.8.

Algorithm 3 shows the modified decoding algorithm Decode. The key mod-
ification is that in the recursive invocation to decode sub-relation R�a�, we test
the predicate a � - SaS which returns true when a is a tuple composed entirely of
the - symbol. The result of this test is passed to the decoding of R�a� to indicate
whether shading needs to be performed on the constructed sub-object. At the leaf
level (d � 0) this boolean parameter is ignored because tuple nodes of linearized
objects are never shaded (see Observation 2.1.11); however, at this level the - sym-
bols within the output are translated into the atomic value dom that occurs within
the leaves of linearized objects.

5Technically, an encoding relation is defined as a special case of a flat table, and so we actually
need to extend the underlying domain of tables. The important point is that - may not occur
within the base relations of a database, or as an explicit constant within an object-constructing
COCQLF query.
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Algorithm 3 Reconstructing an encoded linearized object

Decode�R, §�
¤ Input: encoding relation R�I1; . . . ;Id;V�
¤ Input: compatible signature §
¤ Output: complete or trivial chain object of sort (§, SV S),

possibly containing shaded nodes
1 if R is non-empty

2 then return InnerDecode�R, §,false�
3 else ¤ d A 0 and R encodes a trivial empty collection

4 if § � sY
5 then return � �
6 elseif § � bY
7 then return �S S�
8 else ¤ § � nY
9 return �S�� S���
InnerDecode�R, §, shade�

¤ Input: non-empty encoding relation R�I1; . . . ;Id;V�
¤ Input: compatible signature §
¤ Input: boolean shade indicating if shading is required

¤ Output: complete or trivial chain object of sort (§, SV S),
possibly containing shaded nodes

1 if d � 0 ¤ R contains singleton tuple `a1, . . . , aSV S e
2 then t� `a1, . . . , aSV S e
3 Replace each occurrence of - within t with dom

4 return t

5 elseif § � sY
6 then if shade � true

7 then return � InnerDecode(R�a�, Y , �a � - SaS�) S a > ΠI1
�R� �

8 else return � InnerDecode(R�a�, Y , �a � - SaS�) S a > ΠI1
�R� �

9 elseif § � bY
10 then if shade � true

11 then return �S InnerDecode(R�a�, Y , �a � - SaS�) S a > ΠI1
�R� S�

12 else return �S InnerDecode(R�a�, Y , �a � - SaS�) S a > ΠI1
�R� S�

13 else ¤ § � nY
14 if shade � true

15 then return �S�� InnerDecode(R�a�, Y , �a � - SaS�) S a > ΠI1
�R� S���

16 else return �S�� InnerDecode(R�a�, Y , �a � - SaS�) S a > ΠI1
�R� S���
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R7 S T U V W X Y Z

s1 - - - w1 x1 - -
s2 - - v1 w1 x1 - -
s2 - - v1 - x1 - -
s2 - - v1 - - - -

Figure 2.9: Encoding relation R7

Example 17 The reader can verify the following for the relations shown in Figure 2.8.

Decode�R4,bs� � Linearizeτ7�o7�
Decode�R5,sbss� � Linearizeτ8�o8�

Decode�R6,sbnsbn� � Linearizeτ8�o8�
Decoding relation R7 in Figure 2.9 with signature sbss also yields object Linearizeτ8�o8�.

Decode�R7,sbss� � InnerDecode�R7,sbss,false�
� � InnerDecode�R7�s1�,bss,false�,

InnerDecode�R7�s2�,bss,false� �
� ��S InnerDecode�R7�s1 - -�,ss,true� S�,�S InnerDecode�R7�s2 - -�,ss,true� S� �
� ��S � InnerDecode�R7�s1 - - -w1�,s,false� � S�,�S � InnerDecode�R7�s2 - -v1w1�,s,false�,

InnerDecode�R7�s2 - -v1 -�,s,false� � S� �
� ��S � � InnerDecode�R7�s1 - - -w1x1�,g,false� � � S�,�S � � InnerDecode�R7�s2 - -v1w1x1�,g,false� �,� InnerDecode�R7�s2 - -v1 -x1�,g,false�,

InnerDecode�R7�s2 - -v1 - -�,g,true� � � S� �
� ��S � � ` dom , dom e � � S�,�S � � ` dom , dom e �,� ` dom , dom e, ` dom , dom e � � S� �
� ��S � � ` dom , dom e � � S� �
� Linearizeτ8�o8�

Algorithm 3 is clearly backwards-compatible with Algorithm 2. That is, for any
encoding relation R and compatible signature § such that R does not contain the
symbol -, Decode�R, §� � DecodeSimple�R, §�. Therefore, we will not discuss
Algorithm 2 and any future mention of a decoding algorithm is implicitly a reference
to Algorithm 3.

2.2.3 Encoding-Equality

In the previous section we defined a decoding algorithm that takes an encoding
relation and a compatible signature as inputs and returns a complete chain object.
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Examples 14 and 15 illustrate two encoding relations R1 and R3 that, when decoded
with signature ns, each yield object o4. We would like to recognize that R1 and R3

are in a sense “equal” because they encode the same object; however, this notion of
equality is dependent upon the signature ns used in the decoding. When decoded
with signature sb, R3 yields o5 but R1 does not.

Definition 2.2.3 (Encoding-Equality) Given two encoding relations R, R� and
a compatible signature §, if

Decode�R, §� � Decode�R�, §�
then we say that R and R� are encoding-equal w.r.t. signature § (abbreviated §-equal,
and denoted R �§ R�).

We use R �§ R� to denote §-equality, as distinct from R � R� which—as an exten-
sion of traditional relational equality—implies that S�R� and S�R�� have identical
arities of index attributes at each index level and of output attributes, and that
T�R� � T�R��. Observe that R �§ R� implies that the encoding schemas S�R� and

S�R�� both have depth S§S and the same arity of output variables; however, it does
not require attribute names to be the same, nor does it require the arity of corre-
sponding index levels to be the same. For example, s-equality of encoding relations

R�I1;V� and R��I �1,V� corresponds to relational equality of projections onto the
output attributes—that is, ΠV�R� � ΠV�R��, but it does not imply T�R� � T�R��
because index values could differ.

While Definition 2.2.3 captures the desired semantics of §-equality, reasoning
with it is awkward due to the reliance on the Decode procedure. We next introduce
a mechanism called a §-certificate that allows us to characterize §-equality in a more
declarative fashion. A §-certificate is essentially a proof that the decoding of two
relations with signature § yields the same object.

Definition 2.2.4 (§-Certificate) Given encoding relations R and R� and signa-
ture §, a §-certificate is a tree rooted by a node n�R,R�� that proves R �§ R�. When
§1 � s then n�R,R�� is a set node; when §1 � b then n�R,R�� is a bag node; when §1 � n

then n�R,R�� is a normalized bag node; and when § � g then n�R,R�� is a tuple node.

Definition 2.2.5 (Set Node) A set node ns�R,R�� proves R �sY R� for some R, R�,

and Y . It contains a function f � adom�I �1,R��� adom�I1,R� satisfying

¦x� > adom�I �1� � �R�f�x��� �Y R��x���,�x� � - Sx�S 
� f�x�� � - Sf�x��S� 	 (2.15)

and a function f � � adom�I1�� adom�I �1� satisfying

¦x > adom�I1� � �R�x� �Y R��f ��x���,�x � - SxS 
� f ��x� � - Sf ��x�S� 	 (2.16)
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For each pair (x, x�) such that either x� � f ��x� or x � f�x��, node ns�R,R�� has a

child Y -certificate that proves R�x� �Y R��x��.
A set node needs to guarantee that each child object in one of the decodings

matches a child object in the other decoding; it does this as follows. For each
(non-empty) sub-relation R��x�� of R�, the first conjunct in formula 2.15 enforces
that

Decode�R��x��, Y � � InnerDecode�R��x��, Y ,false�
� InnerDecode�R�f�x���, Y ,false�
� Decode�R�f�x���, Y �

for some (non-empty) sub-relation R�f�x��� of R. Observe that in the decoding
of R and R� by Algorithm 3, function Decode is never invoked on either R��x��
or R�f�x���; the actual invocations would be InnerDecode�R��x��, Y , �x� � - Sx�S��
and InnerDecode�R�f�x���, Y , �f�x�� � - Sf�x��S��, respectively. Therefore, the sec-
ond conjunct in formula 2.15 is needed to ensure that the predicates x� � - Sx�S and
f�x�� � - Sf�x��S agree, so that the roots of the decoded sub-objects are either both or
neither shaded. Formula 2.15 thus guarantees Decode�R�,sY � b Decode�R,sY �.
Formula 2.16 likewise guarantees Decode�R,sY � b Decode�R�,sY �.
Definition 2.2.6 (Bag Node) A bag node nb�R,R�� proves R �bY R� for some R,

R�, and Y . It contains a bijective function f � adom�I �1,R��� adom�I1,R� satisfy-
ing

¦x� > adom�I �1� � �R�f�x��� �Y R��x���,�x� � - Sx�S 
� f�x�� � - Sf�x��S� 	 (2.17)

For each pair (x, x�) such that x � f�x��, node nb�R,R�� has a child Y -certificate that

proves R�x� �Y R��x��.
A bag node needs to guarantee that equal sub-objects occur with the same

absolute frequency in both decodings. The bag node functions similarly to a
set node; the main difference is that by requiring f to be a bijection between

adom�I �1,R� and adom�I1,R�, we enforce that equal sub-objects of Decode�R,sY �
and Decode�R�,sY � can be paired up, guaranteeing identical absolute frequencies.

Definition 2.2.7 (Normalized Bag Node) A normalized bag node nn�R,R�� proves

R �nY R� for some R, R�, and Y . It contains two finite domains D1 and D2, and

two surjective functions ρ � adom�I1,R��D1 and % � adom�I �1,R���D2 that satisfy

¦p > D1.¦q > D2 ��R�p �bY �R��q�
where �R�p is the (non-empty) encoding relation defined by S��R�p� �� S�R� and
T��R�p� �� σρ�I1��p�R�, and �R��q is defined analogously using %. For each pair (p,

q) such that p > D1 and q > D2, node nn�R,R�� has a child bY -certificate that proves�R�p �bY �R��q.
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A normalized bag node needs to guarantee that equal sub-objects occur with
the same relative frequency in both decodings. To understand how this is enforced,
let BR and BR� denote the bags (of sub-objects) obtained by decoding relations R
and R�, respectively, with signature bY . Let B a n denote the n-expansion of bag
B, which is the bag obtained from B by multiplying the cardinality of each element
by n [23]. Definition 2.2.7 ensures that

BR a SD2S � BR� a SD1S (2.18)

which implies that BR and BR� have the same normalized bag projection.

Definition 2.2.8 (Tuple Node) A tuple node nt�R,R�� proves R �g R� for some
R and R� with depth zero. By Definition 2.2.2, an encoding relation of depth zero
contains precisely one tuple (of only output values). Therefore, node nt�R,R�� contains
a single comparison showing that R and R� contain the same tuple.

The main result of this subsection is summarized by the next theorem, which is a
result of how Definitions 2.2.3–2.2.8 have been constructed to mirror the semantics
of Algorithm 3.

Theorem 2.2.9 Given two encoding relations R and R� and a compatible signature
§, R �§ R� if and only if there exists a §-certificate between R and R�.

Example 18 Consider encoding relations R1 (cf. Figure 2.6) and R3 (cf. Figure 2.7).
Figure 2.10 depicts a (partial) ns-certificate proving that R1 �ns R3.

Observe that the nodes within a §-certificate are organized into levels of identical
node type. For any index level i, if §i � b then “the nodes in (bag) level i” are the
equi-depth bag nodes that each prove b§�i�1,d�-equality of some pair of sub-relations.

Similarly, if §i � s then “the nodes in (set) level i” are the equi-depth set nodes that
prove s§�i�1,d�-equality. If §i � n then “the nodes in (normalized bag) level i” are

the equi-depth normalized bag nodes that prove n§�i�1,d�-equality—note, however,
that immediately underneath a normalized bag level is an extra layer of bag nodes
proving b§�i�1,d�-equality, and so when we refer to “nodes at level i” it is not the
same as tree depth i. For example, in Figure 2.10 the “nodes at level 1” refers to
the normalized bag node at the root (tree depth 0), while the “nodes at level 2”
refers to the set nodes at tree depth 2. Finally, the leaves of a certificate are all
equi-depth and guaranteed to be tuple nodes.

2.3 Encoding Queries

An “encoding query” is a query that outputs a (flat) encoding relation. The goal of
this section is to reduce the problem of deciding COCQL�fb,fs,fn� query equivalence (see
Definition 2.1.21) to deciding “encoding-equivalence” between encoding queries. In
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Section 2.3.1 we define a language for specifying encoding queries. In Section 2.3.2
we define a mapping from each COCQL�fb,fs,fn� query Q to an encoding query Q�

such that over any relational database D, the output of Q� is an encoding of the
linearization of the object output by Q.

2.3.1 Hierarchical Conjunctive Encoding Queries

Our language for specifying encoding queries is based on the traditional rule-based
syntax of conjunctive queries. Our primary extension is to allow the right-hand
side of the rule to be a hierarchy of conjunctive query bodies. Although there is
a connection between our hierarchical syntax and the well-known left outer join
algebra operator, we defer that discussion until Chapter 4 and restrict this section
to defining our language for encoding queries. In the following definitions, let D be
a relational database with schema S�D�.
Definition 2.3.1 (Conjunctive Query with Equality (CQ�)) A conjunctive query
with equality Q is a rule of the form:

Q�W� �� R1�X1�, . . . ,Rm�Xm�, Y1 � Z1, . . . , Yn � Zn (2.19)

where W is a tuple composed of constants and variables, each Ri is a relation name
in S�D�, each X i is a tuple composed of constants and variables, and each Yi and Zi

is either a constant or a variable. When n � 0 query Q is simply called a conjunctive
query (CQ).

Expression Q�W� is termed the query head, each expression Ri�X i� is called an
atom, and each expression Yj � Zj is called a predicate. The body of Q—denoted
bodyQ—is the set of atoms atomsQ and predicates predQ in Q. We define the
following sets of constants and variables:

� B denotes the set of variables occurring anywhere in Q.
� W denotes the set of variables and constants occurring within head tuple W .
� C denotes an infinite set of constants, and CQ ` C is the set of constants

occurring anywhere in Q.
� P b B is a distinguished set of variables called the parameters.
� L �� B�P denotes the local variables. To ensure query safety, we require that

each local variable must occur within at least one atom.

Query Q is called parameterized when SPS A 0. Query Q is called boolean if SW S � 0.
Query Q is called unsatisfiable if predQ transitively imply a predicate of the form
ci � cj, where ci and cj are distinct constants in C, can be derived from predQ using
transitivity. It is well-known that any parameter-free, satisfiable CQ with equality
can be converted to an equivalent CQ (without equality) by a process of variable
substitution. We therefore assume without loss of generality that that predicates
within predQ only reference constants and parameter variables.
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An embedding of bodyQ into D—denoted γ � bodyQ � D, but for conciseness we
often write γ � Q� D—is a mapping γ � B � dom (extended with identity on the
constants in C) such that γ satisfies every atom in atomsQ and every predicate in
predQ. Atom Ri�X i� is satisfied by γ if relation Ri > D and tuple γ�X i� > T�Ri�.
Predicate Yj � Zj is satisfied by γ if γ maps Yj and Zj to the same element of dom.

The result of evaluating unparameterized conjunctive query Q over database
D—denoted QD—is a flat relation �S�QD�,T�QD��. Schema S�QD� is deduced
from the query head by associating with each element6 of W a unique attribute
name from aname. Instance T�QD� is the set of tuples for which there exists a
supporting embedding of bodyQ into D.

T�QD� �� �γ�W� S γ � Q� D� (2.20)

If Q is parameterized, then it can only be evaluated within the context of a specific
assignment of values to the parameter variables. Let υ � P � dom be any such
assignment; then, the parameterized evaluation of Q over D relative to υ restricts
the supporting embeddings to those that are extensions of υ.

T�QDSυ� �� �γ�W� S γ � Q� D , γ�P� � υ�P�� (2.21)

(Within equation 2.21, P denotes an arbitrary sequencing of set P into a tuple.)

Definition 2.3.2 (Hierarchical Conjunctive Query (HCQ)) A hierarchical con-
junctive query Q is a generalization of a parameter-free CQ, defined as follows.

1. bodyQ is a rooted (unordered) tree in which each vertex has a unique label, the
root vertex contains an unparameterized CQ body, and the non-root vertices
each contain a parameterized CQ� body. For each vertex v > bodyQ, we use
bodyv to denote the CQ� body occurring within vertex v, bodyancv to denote
the CQ� body formed by conjoining the CQ� bodies of all of the ancestors of v,
and body�v to denote the CQ� body formed by conjoining bodyv with bodyancv ;
the sets atomsv, atomsancv , atoms�v , predv, predancv , and pred�v , are defined
analogously.

2. Sets B, CQ ` C, P, and L are defined the same as for CQ�s. Because the
overall query Q is parameter-free, set P � g and therefore L � B.

3. We use Bv to denote the set of variables occurring anywhere in bodyv, with
Banc

v and B�v likewise corresponding to bodyancv and body�v . We use Pv to
denote the set of designated parameter variables in bodyv, and we require that
Pv �� Bv 9 Banc

v . Similarly, we use Lv �� Bv � Banc
v to denote the set of local

variables of bodyv, and for any two distinct vertices u, v in bodyQ, we require
that local variables Lu and Lv be disjoint. As a consequence, for each variable

6Technically, the attribute names in a relation schema must be unique (per Definitions 2.1.12
and 2.1.13) and so if W contains repeated variables or constants, then each occurrence must be
assigned a different attribute name. When discussing containment or equivalence of queries we
will generally ignore attribute names, relying instead upon positional alignment of columns in the
depiction of the schema or instance.
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Q17�A 1 , b 2 ,D 4 ,A 4 , - ,A 3 � �� 1 R�A,B�
²² ((QQQQQQQQ

2 S�B,C�
²²

3 R�B,E�
4 S�C,D�

Figure 2.11: Hierarchical conjunctive query Q17

X > B there exists precisely one node u such that X > Lu, and X only occurs
within the subtree rooted at u. We use Panc

v and P�
v to denote the sets of

“inter-query parameters” along the path from the root to v, with P�
Q denoting

the set of all inter-query parameters within bodyQ.

Panc
v �� �

u>ancestors�v�Pu P�
v �� Panc

v 8Pv P�
Q �� �

u>bodyQ

Pu

(The analogous sets Lanc
v , L�v , and L�Q would be redundant, because the above

definitions imply Lanc
v � Banc

v , L�v � B�v , and L�Q � B.)

4. The head tuple W is composed from elements of B8C8�-� (that is, variables,
constants, and the special - constant). We use W to denote the set of elements
occurring within W.

5. Each component of head tuple W that is not the - constant is labelled with

a vertex v > bodyQ. We write Wi
v to denote that the ith component of W is

labelled with vertex v. If Wi > C, then v is allowed to be any vertex in bodyQ.
If Wi > B, then v must satisfy Wi > B�v .

6. We define the head label tuple L as the tuple with the same arity as head
tuple W in which each position Li contains the label of the corresponding
head component Wi (or is empty if Wi � -). We define the head label set L
as the set of labels occurring in sequence L.

We again adopt the (non-restrictive) syntactic convention that for each vertex
v in bodyQ the equality predicates in bodyv only reference C8Pv (that is, constants
and variables that are parameters within v).

Example 19 Hierarchical conjunctive query Q17 is shown in Figure 2.11. Q17 has
head label tuple L � ` 1 , 2 , 4 , 4 , , 3 e and head label set L � � 1 , 2 , 3 , 4 �.

The result of evaluating hierarchical conjunctive query Q over database D is a
relation QD � �S�QD�,T�QD�� whose instance may contain the special atomic value
- not occurring in the domain of D (see Section 2.2.2). Schema S�QD� is defined
the same as for conjunctive queries. Similar to conjunctive queries, instance T�QD�
is defined in terms of terminal embeddings of bodyQ into D which generalize the
definition of CQ� embeddings given above.

Let trees�T � denote the set of all non-empty trees that can be formed from
some non-empty tree T by deleting zero or more of its strict subtrees; note that
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every tree in trees�T � contains at least the root of T . We now restrict our attention
to trees in the set trees�bodyQ�. For each such tree T , define BT �� 8v>TBv and
define LT , atomsT , and predT analogously; it follows from Definition 2.3.2 that T
is a parameter-free query body (i.e., LT � BT ).

Given any T > trees�bodyQ�, let body�T denote the CQ� body formed by con-
joining the CQ� bodies of all vertices within T . An embedding of T > trees�bodyQ�
into D—denoted γ � T � D—is a mapping γ � BT � dom (extended with identity on
the constants in C) that is an embedding of body�T into D. Observe that in the
degenerate case where bodyQ is a single vertex, this definition of an embedding
corresponds to the definition given earlier for CQ�s. We use body�Q to denote the
single CQ� formed by conjoining the CQ�s from all of the vertices in bodyQ, which
corresponds to the maximal case where T contains all of the vertices within bodyQ.

A terminal embedding of T > trees�bodyQ� into D—denoted γ � T ; D—is an
embedding γ � T � D for which there does not exist some other tree T � > trees�bodyQ�
and some other embedding γ� � T � � D such that γ� is an extension of γ. Note that
for γ� to be an extension of γ, tree T � must be an extension of tree T .

Given any embedding γ � T � D of some T > trees�bodyQ� and any component

Wi of the head tuple W, the partial application of γ to Wi—denoted γ̂�Wi�—is
defined as follows.

γ̂�Wi� �� ¢̈̈¦̈̈¤γ�Wi� if §v > T such that Wi is labelled with v

- otherwise (includes case Wi � -)
(2.22)

Instance T�QD� is then defined as the set of tuples for which there exists a sup-
porting partial application of some terminal embedding.

T�QD� �� �γ̂�W� S §T > trees�bodyQ�, γ � T ; D� (2.23)

As a shorthand notation, we use γ � Q ; D to denote that γ is a terminal embed-
dings of bodyQ, and so Equation 2.23 can be rewritten as follows.

T�QD� �� �γ̂�W� S γ � Q ; D� (2.24)

Example 20 Consider evaluating HCQ Q17 from Figure 2.11 over a database instance
D2 containing the following two relations R and S.

R col1 col2

1 2
2 3
2 4
3 4
3 5
5 7
6 8

S col1 col2

2 4
4 5
5 6
7 8
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T1 � 1 R�A,B�
²² ((QQQQQQQQ

2 S�B,C�
²²

3 R�B,E�
4 S�C,D�

T4 � 1 R�A,B�
²²

2 S�B,C�
T2 � 1 R�A,B�

²²
2 S�B,C�

²²
4 S�C,D�

T5 � 1 R�A,B�
((QQQQQQQQ

3 R�B,E�
T3 � 1 R�A,B�

²² ((QQQQQQQQ

2 S�B,C� 3 R�B,E� T6 � 1 R�A,B�
Figure 2.12: The six trees in trees�Q17�

The set trees�Q17� contains the six trees T1, . . . , T6 shown in Figure 2.12. For each
i > �1,6�, let Γi denote the set of embeddings of Ti into D2. In Figure 2.13 we tabularly
depict each Γi and we have shaded rows corresponding to terminal embeddings. Finally,
let Γ denote the set of terminal embeddings of members of trees�bodyQ� into D2.

Relation �Q17�D2 is obtained by duplicate-eliminating projection of columns A 1 , b 2 ,
D 4 , A 4 , - , and A 3 from “relation” Γ shown in Figure 2.14.

Definition 2.3.3 (Encoding Query (CEQ or HCEQ)) A hierarchical conjunc-
tive encoding query Q of depth d C 1 is an HCQ in which the head tuple W is
partitioned into d � 1 sub-tuples as follows:

Q�I1; . . . ;Id;V�
In the degenerate case where bodyQ is a single CQ body and W does not contain
the special constant -, we call Q a conjunctive encoding query.

The result of evaluating encoding query Q over database D is a relation QD ��S�QD�,T�QD�� whose schema S�QD� is an encoding schema (see Definition 2.2.1)
deduced by associating a unique attribute name from aname with each occurrence
of a variable or constant in the query head. Instance T�QD� is defined the same as
for HCQs.

We call V the “output tuple” because it corresponds to the output attributes in
encoding schema S�QD�; we use V̂ to denote the set of labelled constants/variables
composing V, and we use V to denote the set of unlabelled constants/variables
composing V (i.e., for each X > V there exists some v such that X v occurs in both
V̂ and V). Likewise, for each i > �1, d� we call I i the “tuple of indexes at level i”
because it corresponds to the tuple of index attributes at level i in S�QD�; we use
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Γ1 A B C D E

γ1
1 1 2 4 5 3

γ1
2 1 2 4 5 4

Γ2 A B C D

γ2
1 1 2 4 5

γ2
2 2 4 5 6

γ2
3 3 4 5 6

Γ3 A B C E

γ3
1 1 2 4 3

γ3
2 1 2 4 4

γ3
3 3 5 6 7

Γ4 A B C

γ4
1 1 2 4

γ4
2 2 4 5

γ4
3 3 4 5

γ4
4 3 5 6

γ4
5 5 7 8

Γ5 A B E

γ5
1 1 2 3

γ5
2 1 2 4

γ5
3 2 3 4

γ5
4 2 3 5

γ5
5 3 5 7

Γ6 A B

γ6
1 1 2

γ6
2 2 3

γ6
3 2 4

γ6
4 3 4

γ6
5 3 5

γ6
6 5 7

γ6
7 6 8

Figure 2.13: Embeddings of trees�Q17� into database D2

Γ A B C D E b A 1 b 2 D 4 A 4 - A 3

γ1
1 1 2 4 5 3 b 1 b 5 1 - 1

γ1
2 1 2 4 5 4 b 1 b 5 1 - 1

γ5
3 2 3 4 b 2 - - - - 2

γ5
4 2 3 5 b 2 - - - - 2

γ2
2 2 4 5 6 b 2 b 6 2 - -

γ2
3 3 4 5 6 b 3 b 6 3 - -

γ3
3 3 5 6 7 b 3 b - - - 3

γ4
5 5 7 8 b 5 b - - - -

γ6
7 6 8 b 6 - - - - -

Figure 2.14: Terminal embeddings and their partial applications to W
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Îi to denote the set of labelled constants/variables composing I i, and we use Ii to
denote the set of unlabelled constants/variables composing I i. We further define
tuple I�i,j� and sets Î�i,j� and I�i,j� as in Definition 2.2.1.

Definition 2.3.4 (Validity) We call encoding query Q valid if for any database
D the relation QD is a valid encoding relation (i.e., satisfies Definition 2.2.2).

We are only interested in valid encoding queries because our definition of “encoding-
equivalence” in the next sub-section presupposes that encoding queries always out-
put encoding relations. The following lemma yields a sufficient condition for query
validity that meets our needs for this chapter; we re-visit query validity in Chap-
ters 3 and 5 when we address the problem of encoding-equivalence.

Lemma 2.3.5 Encoding query Q is valid if it satisfies the following conditions.

1. For every component Vi
v of V where Vi > B (i.e., Vi is a variable), index set

Î�1,d� contains Vi
v .

2. For every component Vi
v of V where Vi > C (i.e., Vi is a constant) and v is

a non-root vertex of bodyQ, index set Î�1,d� contains an index labelled with

vertex v (i.e., §X.�X v > Î�1,d��).
Proof. Suppose that Q satisfies the two conditions above. Since Definition 2.3.3

requires that d C 1, by Definition 2.2.2 we must show that for any database D
the relation QD satisfies the functional dependency I�1,d� � V.

Consider any two terminal embeddings γ1, γ2 � Q ; D that satisfy γ̂1�I�1,d�� �
γ̂2�I�1,d��. Consider in turn each element Vi

v of tuple V . If Vi is a variable

then γ̂1�Vi
v � � γ̂2�Vi

v � follows trivially from Vi
v > Î�1,d�. Otherwise, Vi must

be a constant. If v is the root vertex of bodyQ, it follows from the definition of

partial application that γ̂1�Vi
v � � γ̂2�Vi

v � � Vi. Otherwise v is a non-root vertex
of bodyQ, and so Î�1,d� must contain some index X v . It again follows from the

definition of partial application that if γ̂�X v � > dom then γ̂1�Vi
v � � γ̂2�Vi

v � � Vi,

whereas if γ̂�X v � � - then γ̂1�Vi
v � � γ̂2�Vi

v � � -.

2.3.2 Reducing Equivalence to Encoding-Equivalence

In this section we reduce the problem of deciding equivalence of satisfiable unpa-
rameterized COCQL�fb,fs,fn� queries to deciding “encoding-equivalence” of HCEQs.
We will illustrate this process with a running example using the following queries
and database instance.

Example 21 Consider the two COCQL�fb,fs,fn� queries shown in Figure 2.15. Following
our convention, uppercase letters denote variables while integers and lowercase letters
denote atomic constants; for reasons that will become clear shortly, we have also num-
bered the query nodes in which an aggregation function is applied. Over any database,
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R�A,B�

R�E,F �σE�B

ΠB,F

S�G,H� S�I, J�1H�I

σG�F

Πdup
c

4 λX�fb

Πdup
F,X

2 λW�fs

R�C,D�

S�K,L�σK�D

ΠL

S�M,N� R�O,P ��

1L�M

σO�B

Πdup
L

3 λY �fn

1B�C

Q18 �� 1 Eval�Πdup
a,C,Y,W , fs,g�

R�A�,B�� R�C �,D��1B��C� R�E�, F ��1B��E�

S�G�,H �� S�I �, J ��1H��I�

σG��F �

ΠH�,J �

Πdup
c

9 λX��fb

8 Π
W ��fs�F �,X��
C�,D�

S�K �, L�� S�M �,N ��1L��M �

σK��D�

Πdup
L�

7 λY ��fn

R�U �, V ��σV ��c,U ��D�

ΠU �,b

6 λZ��fb

Q19 �� 5 Eval�Πdup
a,C�,Y �,W � , fs,g�

Figure 2.15: COCQL�fb,fs,fn� queries Q18 and Q19
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τ Chain�τ�
a

dom
a

C
dom
C�

L
dom
L�

3 �S�� S��� 7

F
dom
F �

c
dom

c

4 �S S� 9

` e2 � � 8

` e1 � � 5

a
dom

a

C
dom
C�

L
dom
L�

F
dom
F �

c
dom

c

` e4 �S S� 9

2 � � 8

3 �S�� S��� 7

1 � � 5

Figure 2.16: Output sort τ and its linearization Chain�τ� � �snsb,5�
both Q18 and Q19 output objects conforming to the sort τ shown in Figure 2.16. We
have labelled the atomic sorts in τ with the corresponding output variables/constants
from Q18 (above) and Q19 (below). We have labelled the collection sorts in τ with the
corresponding node numbers from Q18 (left) and Q19 (right). Now consider evaluating
Q18 and Q19 over database D3 containing the relations R and S below. To aid in
visualizing the database instance, we also provide a graphical depiction of D3.

R col1 col2

a 2
1 2
2 3
2 7

S col1 col2

3 4
4 5
4 6

D3 ��
a R // 2

R //

R

ÁÁ=
==

==
==

3
S // 4

S //

S

ÁÁ=
==

==
==

5

1

R
@@¢¢¢¢¢¢¢

7 6

Both Q18 and Q19 return the object o12 depicted in Figure 2.17. The figure also shows
the linearization of o12 with respect to τ ; observe that it conforms to the chain sort
Chain�τ� � �snsb,5� shown in Figure 2.16.

We will now describe a function Encode that maps satisfiable unparameter-
ized COCQL�fb,fs,fn� queries to hierarchical conjunctive encoding queries. Given an
arbitrary satisfiable COCQL�fb,fs,fn� query Q, the encoding query Encode�Q� is con-
structed by the following steps. For now, assume that Q does not contain the
generalized projection operator (this assumption is not restrictive since generalized
projection can always be rewritten using scalar aggregation as per Figure 2.5).

1. Number each of the nodes in Q that applies an aggregation function (i.e., the
root Eval as well as each λ), as we have done to query Q18 in Figure 2.15.

2. For each node numbered i , create an algebraic expression Ei as follows:
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o12

a 2

4

�S�� S���
3

c c

�S S�` e
7 �S S�` e� �` e

a 2 �S�� S���
3

c c

�S S�` e
7 �S S�` e� �` e� �

Linearizeτ�o12�

a 2 4 3 c

` e
a 2 4 3 c

` e�S S�
a 2 4 7 dom

` e�S S�� ��S�� S���

a 2 dom 3 c

` e
a 2 dom 3 c

` e�S S�
a 2 dom 7 dom

` e�S S�� ��S�� S���� �

Figure 2.17: Query result o12 � �Q18�D3 � �Q19�D3 and its linearization w.r.t. τ
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(a) Initialize Ei with the algebraic expression whose result is the input to
the aggregation function at node i (i.e., the right input if node i is an
λ operator).

(b) Traverse Ei depth-first starting from its root.
� Whenever a scalar subquery operator (λ) is encountered, delete that

operator and its entire right input expression, and continue travers-
ing the left input expression.

� Whenever a duplicate-preserving projection operator (Πdup) is en-
countered
– delete from its projection list all attributes of non-atomic sort,
– add to its projection list any constants or attributes of atomic

sort that are currently projected away,
– change it to duplicate-eliminating projection, and
– continue traversing its input expression.

(c) Ei now contains only base relations, selection, Cartesian product, join,
and duplicate-eliminating projection. Convert Ei to a canonical form
having a single duplicate-eliminating projection operator above a con-
junctive selection operator above the Cartesian product of all of the
relations.

For example, query Q18 yields the following expressions.

E1 � Πa,A,B,C,D�σB�C�R�A,B� �R�C,D���
E2 � ΠB,F �σE�B�R�E,F ���
E3 � ΠL,M,N,O,P �σK�D,O�B,L�M�S�K,L� � S�M,N� �R�O,P ���
E4 � Πc,G,H,I,J�σG�F,H�I�S�G,H� � S�I, J���

3. To construct the body of Encode�Q�:
(a) From each expression Ei above, create a vertex labelled i containing a

CQ� body constructed from the set of relations and predicates occurring
in Ei.

(b) For each pair of expressions Ei and Ej, if the traversal of Ei visited
(and deleted) the λ node labelled j , then draw an edge from vertex i

to vertex j .

4. To construct the head of Encode�Q�:
(a) Let τ be the output sort of Q. Label the atomic sorts in τ with the

corresponding output variables/constants and the collection types with
the corresponding node numbers (see Example 21).

(b) The depth d of the encoding query head is the depth of the chain sort
Chain�τ� (e.g., d � 4 for Q18). We calculate the index variables at each
level i > �1, d� as follows.

i. Enumerate the collection types in Chain�sort� starting at the root.
ii. If the ith collection type enumerated has label j , form I i from the

output list of Ej by labelling each constant/variable with j .
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Q20� a 1 ,A 1 ,B 1 ,D 1 ; �I1

L 3 ,N 3 ,B 3 , P 3 ; �I2

B 2 , F 2 ; �I3

c 4 , F 4 ,H 4 , J 4 ; �I4

a 1 ,B 1 , L 3 , F 2 , c 4 � �� �V
1 R�A,B�,R�B,D�

²² ,,XXXXXXXXXXXXXX

2 R�B,F �
²²

3 S�D,L�, S�L,N�,R�B,P �
4 S�F,H�, S�H,J�
Figure 2.18: Encoding query Q20 � Encode�Q18�

For example, the collection types in Chain�τ� from query Q18 are enu-
merated in the order 1 , 3 , 2 , 4 , yielding the following indexes.

I1 � a 1 ,A 1 ,B 1 ,C 1 ,D 1 I2 � L 3 ,M 3 ,N 3 ,O 3 , P 3

I3 � B 2 , F 2 I4 � c 4 ,G 4 ,H 4 , I 4 , J 4

(c) The output list is constructed from τ by a pre-order traversal that emits
at each atomic domain the associated variable/constant, labelled with
the label of the closest containing collection type. For example, for query
Q18 we obtain V � a 1 ,C 1 , L 3 F 2 , c 4 .

5. Finally, we merge variables to simplify the query representation and to con-
form to our syntactic convention for HCQs.

(a) For every vertex v in the HCQ body and every variable Xi > Lv, if
predv àXi � Y then replace all occurrences of Xi in Q with Y .
This causes the following substitutions for our running example: C~B,
E~B, G~F , I~H, K~D, O~B, and M~L.

(b) Delete any predicates that are trivial.

(c) For every component Xi
v > Î�1,d�, delete all but the left-most occurrence

of Xi
v from the index sequence I�1,d�.

Figure 2.18 shows the encoding query Q20 which is the final result of our running
example Encode�Q18�.

We now extend the definition of Encode�Q� to allow Q to contain generalized
projection operators. Handling generalized projection operators directly is desir-
able because it simplifies both queries Q and Encode�Q�. Generalized projection
occurs much more frequently than scalar aggregation in real workloads, and so
restricting our attention to COCQLF� expressions will allow for a simpler decision
procedure to test equivalence for this common class of queries. (Specifically, rea-
soning tools presented in Chapter 3 for CEQs will suffice, rather than the more
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general methods for HCEQs required by arbitrary COCQLF queries.) We make the
following modifications to Encode�Q�:

1. When numbering nodes that apply aggregation functions, generalized pro-
jection nodes also need to be numbered. For example, see query Q19 in
Figure 2.15.

2. During the traversal of each expression Ei, whenever a generalized projection
operator is encountered, delete from the attribute list the aggregation expres-
sion X � f�Aj1 , . . . ,Ajl

� (effectively converting the operator into duplicate-
eliminating projection) and continue traversing its input expression. For ex-
ample, query Q19 yields the following expressions.

E5 � Πa,C�,D��σB��C�,B��E��R�A�,B�� �R�C �,D�� �R�E�, F ����
E6 � ΠU �,b�σV ��c,U ��D��R�U �, V ����
E7 � ΠK�,L�,M �,N ��σK��D�,L��M ��S�K �, L�� � S�M �,N ����
E8 � ΠA�,B�,C�,D�,E�,F ��σB��C�,B��E��R�A�,B�� �R�C �,D�� �R�E�, F ����
E9 � Πc,H�,J ��σG��F �,H��I��S�G�,H �� � S�I �, J ����

3. When creating the body of Encode�Q�, we ignore the expressions corre-
sponding to generalized projection nodes (i.e, don’t create CQ� bodies for
them and don’t consider them when constructing edges); the rest of the algo-
rithm remains unchanged. For example, the traversal yielding expression E8

above was a sub-traversal of the one yielding expression E5. Because of this,
all of the base relations (with their local variables) and predicates occurring
in E8 already occur in E5.

4. The head of Encode�Q� is calculated from τ and each expression Ej almost
as before, except that when constructing index tuple I i for collection type
j , we label the components of I i with the label of the nearest enclosing
collection type within τ that is constructed by an λ operator. For example,
the collection types in query Q19 are enumerated in the order 5 , 7 , 8 , 9 ,
but type 8 is constructed by a generalized projection operator whose nearest
enclosing type within τ that is constructed by an λ operator is type 5 .

I1 � a 5 ,C � 5 ,D� 5 I2 � K � 7 , L� 7 ,M � 7 ,N � 7

I3 � A� 5 ,B� 5 ,C � 5 ,D� 5 ,E� 5 , F � 5 I4 � c 9 ,H � 9 , J � 9

Output attributes are labelled similarly, yielding V � a 5 ,C � 5 , L� 7 F � 5 , c 9 .

5. A final syntax simplification is performed as before. This causes the following
variable substitutions for our running example: C �~B�, E�~B�, G�~F �, I �~H �,
K �~D�, M �~L�, U �~D�, and V �~c.

Figure 2.19 shows the encoding query Q21 which is the final result of our running
example Encode�Q19�. Although expression E8 was not used when creating the
body of Q21, it was needed to determine the index tuple I3 in the query head.
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Q21� a 5 ,B� 5 ,D� 5 ; �I1

D� 7 , L� 7 ,N � 7 ; �I2

A� 5 , F � 5 ; �I3

c 9 ,H � 9 , J � 9 ; �I4

a 5 ,B� 5 , L� 7 , F � 5 , c 9 � �� �V
5 R�A�,B��,R�B�,D��,R�B�, F ��

ssffffffffffffff
²² ,,YYYYYYYYYYYYYYYY

6 R�D�, c� 7 S�D�, L��, S�L�,N �� 9 S�F �,H ��, S�H �, J ��
Figure 2.19: Encoding query Q21 � Encode�Q19�

Theorem 2.3.6 Given any satisfiable unparameterized COCQL�fb,fs,fn� query Q, the
query Encode�Q� is a valid encoding query.

Proof. When bodyEncode�Q� is constructed by the algorithm Encode�Q�, the λ
operators effectively partition the traversals of the original algebra tree (ignoring
the traversals corresponding to generalized projection operators, since they don’t
introduce new nodes into bodyEncode�Q�). This means that each labelled node in
bodyQ is only ever visited once, and hence every non-root node of bodyEncode�Q�
has exactly one incoming edge. This partitioning also guarantees that the sets of
local variables in each CQ body are pairwise disjoint. Syntactic validity of query
Q requires that every attribute referenced in a selection predicate must either
be visible in the schema of the current algebra expression or must be bound
within the evaluation environment inherited by the nearest λ operator. The fact
that Q is unparameterized then guarantees that any non-local variable used in
a CQ body occurs as a local variable in one of its ancestor CQ bodies. Hence,
bodyEncode�Q� is a proper HCQ body (as per Definition 2.3.2).

When headEncode�Q� is constructed by algorithm Encode�Q�, the variables in
the head originate from attribute references in Q. Because Q is unparameter-
ized, every variable in headEncode�Q� will be local to bodyEncode�Q�. In order for

headEncode�Q� to contain some variable Wi
v , it follows from the algorithm that

expression Ev must contain some variable Wj such that variables Wi and Wj

were merged during the final step. Syntactic validity of query Q requires that
either Wj is local to expression Ev, or Wj was inherited from the parent evalua-
tion environment in bodyQ. The construction of bodyEncode�Q� entails that either
Wi > Lv or Wi > Lu for some vertex u that is an ancestor of v in bodyEncode�Q�.
Hence, headEncode�Q� satisfies Definitions 2.3.2 and 2.3.3 and so Encode�Q� is
a proper HCEQ.

Finally, we need to establish that Encode�Q� is valid in that it satisfies Defini-
tion 2.3.4. Algorithm Encode�Q� causes each component of the output tuple
to also appear in one of the index tuples (because it necessarily occurs within
the projection list of one of the expressions Ei). Therefore, by Lemma 2.3.5,
Encode�Q� is valid.
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Theorem 2.3.7 Given any satisfiable unparameterized COCQL�fb,fs,fn�� query Q, the
query Encode�Q� is a valid conjunctive encoding query.

Proof. Similar to the proof of Theorem 2.3.6, but relies on the fact that the
extended definition of Encode�Q� avoids introducing hierarchical edges into
the query body for generalized projection operators.

Example 22 Consider the encoding queries Q20 � Encode�Q18� from Figure 2.18
and Q21 � Encode�Q19� from Figure 2.19. Figures 2.20 and 2.21 shows the encoding
relations R8 and R9 that result from evaluating Q20 and Q21, respectively, over database
D3 from Example 21. The reader can verify that decoding either relation with the
signature snsb (cf. Algorithm 3) yields the object o13 shown in Figure 2.22.

Observe that object o13 in Figure 2.22 differs from object Linearizeτ�o12� in
Figure 2.17 only by the additional shading of one of the collection nodes. This “spu-
rious shading” is a side-effect of the decoding process, but it is entirely predictable.
The spuriously shaded set within chain object o13 corresponds to an (unshaded)
set within object o12 that was linearized underneath an instance of an empty nor-
malized bag. By adding additional bookkeeping to Algorithm 1, it is possible to
create a modified function ÆChain that adds spurious shadings whenever a collec-
tion object is linearized beneath an instance of an empty collection. Analogous to
Definition 2.1.8, we can then define a modified linearization function ÆLinearizeτ

as follows ÆLinearizeτ�o� �� ÆChain XCompleteτ�o� (2.25)

which then satisfies o13 � ÆLinearizeτ�o12�. It follows from Observation 2.1.6 that
for each tuple sub-object within Completeτ�o�, the roots of the tuple components
are either all shaded or all unshaded. Given sort τ and object ÆLinearizeτ�o�,
we can therefore identify precisely the shadings that are spurious. The following
theorem and corollary are suitably modified versions of Theorem 2.1.9 and Corol-
lary 2.1.10.

Theorem 2.3.8 Given sort τ not containing any zero-ary tuple sorts, ÆLinearizeτ

has a retraction.

Corollary 2.3.9 Given sort τ not containing any zero-ary tuple sorts, any two
objects o, o� > �� τ �� satisfy the following.

o � o� 
� ÆLinearizeτ�o� � ÆLinearizeτ�o��
Theorem 2.3.10 Given any finite database D and any COCQL�fb,fs,fn� query Q with
output sort τ not containing any zero-ary tuples, let § be the signature corresponding
to the linearization of τ . Then, the complex object �Q�D and the encoding relation�Encode�Q��D are related as follows.

Decode��Encode�Q��D, §� � ÆLinearizeτ��Q�D� (2.26)
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o13

a 2 4 3 c

` e
a 2 4 3 c

` e�S S�
a 2 4 7 dom

` e�S S�� ��S�� S���

a 2 dom 3 c

` e
a 2 dom 3 c

` e�S S�
a 2 dom 7 dom

` e�S S�� ��S�� S���� �

Figure 2.22: Query result o13 � Decode��Q20�D3 ,snsb� � Decode��Q21�D3 ,snsb�
Proof (sketch). For conciseness of presentation, let o denote the object �Q�D,

Q� denote the encoding query Encode�Q�, and R denote the encoding relation�Encode�Q��D.

If o is a trivial object, then Linearizeτ�o� is one of �S S�, � �, or �S�� S��� (depending
upon the first character of §). In this case it is easy to show that R will be an
empty encoding relation, and so the result follows from the definition of Decode
(Algorithm 3). Therefore, assume that o is not trivial.

Consider the simple case where o is a chain object that does not contain empty
collections, and so object linearization (cf. Section 2.1.2) is idempotent.ÆLinearizeτ�o� � ÆChain XCompleteτ�o� � o (2.27)

The procedure Encode essentially partitions the algebraic tree of Q based upon
the λ operators and reshapes the hierarchy of these partitions into a hierarchy
of CQ bodies. It is straightforward to verify that because o does not contain any
empty collections, R does not contain the - symbol. In this simple case, pro-
cedure Decode (Algorithm 3) is equivalent to procedure DecodeSimple (Al-
gorithm 2). Because DecodeSimple essentially performs the same collection-
construction operations as would be required to evaluate Q over D, it is tedious
but straightforward to verify the following.

Decode�R, §� � DecodeSimple�R, §� � o (2.28)

The result then follows from equations 2.26, 2.27, and 2.28.

Now suppose that o is a chain object but contains an empty collection generated
by some λ operator.ÆLinearizeτ�o� � ÆChain XCompleteτ�o� � Completeτ�o� (2.29)
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In this case, function Completeτ introduces shaded nodes to complete the
object. Appealing to the semantics of HCQs, we can show that there exist a
partial application of some terminal embedding of Q� into D that assigns the
value - to all of the variables in the index level corresponding to the shaded
subobject. These embeddings yield index tuples satisfying the predicate a � - SaS
in Algorithm 3, causing the constructed nodes to be shaded. The result then
follows from equations 2.26 and 2.29.

Finally, suppose that o is not a chain object;ÆLinearizeτ�o� � ÆChain XCompleteτ�o� (2.30)

in this case, the effect of the Completeτ function is mimicked by - values in
R and in the decoding process as described above, but the effect of the ÆChain
function is non-trivial. The net effect of the ÆChain function is three-fold: first,
to linearize sibling collection types consistent with a pre-order traversal of τ (see
Example 7); second, to push atomic values down by distributing them across all
of the leaves; and third, to add spurious shadings to certain collection nodes. The
Encode and Decode functions together mirror all three of these behaviours.
The type linearization occurs both when the indexes within encoding head of Q�

are chosen based upon a pre-order traversal of τ and when the signature § used in
the decoding process is calculated via a pre-order traversal of τ . The push-down
of atomic values is implicit in the semantics of HCQs—specifically, that the value
for a particular attribute originating from a parent block is repeated within all
of the tuples originating from different terminal embeddings that agree on the
variable bindings of the parent block but differ on the bindings of the child block.
Lastly, consider any two sibling collection types within sort τ that correspond
to collection types in Chain�τ� at depths i, j with i @ j. Given any tuple that
satisfies I i�1 � - SIi�1S but Ij x - SIj S, the predicate test I i�1 � - SIi�1S in Algorithm 3
will cause a spurious shading of the child collection object constructed at depth
i.

Definition 2.3.11 (Encoding-Equivalence) Given two encoding queries Q, Q�

over database schema S�D� and a signature §, if for each relational database D with
schema S�D� and finite instance T�D� the encoding-equality �Q�D �§ �Q��D holds,

then we say that Q and Q� are encoding-equivalent w.r.t. signature § (abbreviated
§-equivalent, and denoted Q

.�§ Q�).

Theorem 2.3.12 Given two satisfiable, unparameterized COCQL�fb,fs,fn� queries Q,
Q� with the same output sort τ not containing zero-ary tuples,

Q � Q� 
� Encode�Q� .�§ Encode�Q��
where § is the signature corresponding to the linearization of τ .

Proof. Follows from the relationship between the output of queries Q and Encode�Q�
(Theorem 2.3.10) and the existence of a retraction for transformation ÆLinearizeτ

(Theorem 2.3.8 and Corollary 2.3.9).
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Note that the ban on zero-ary tuples in Theorem 2.3.12 is easily overcome. If
the output sort τ of Q and Q� contains a collection of zero-ary tuples, we can
convert this to a collection of unary tuples by modifying both Q and Q� so that the
corresponding query operators project a constant into the collection constructor.
This modification does not change the equivalence relation between Q and Q�.

Corollary 2.3.13 Deciding equivalence of satisfiable CSQL�fb,fs,fn� queries is poly-
nomial-time reducible to §-equivalence of hierarchical conjunctive encoding queries.

Proof. Follows from Proposition 2.1.22.

Corollary 2.3.14 Deciding equivalence of satisfiable CSQL�fb,fs,fn�� queries is poly-
nomial-time reducible to §-equivalence of conjunctive encoding queries.

Proof. Follows from Proposition 2.1.23 and Theorem 2.3.7.

Example 23 The equivalence of COCQL�fb,fs,fn� queries Q18 and Q19 can be decided
by testing the condition Q20

.�snsb Q21 (which we show to be true in Example 59,
Chapter 5).

Now suppose that Q18 and Q19 were each modified by replacing the aggregate
function fn with fb. The modified queries would not be equivalent, because Q20 and Q21

are not sbsb-equivalent. (The reader can easily verify from Figures 2.20 and 2.21 that
R8 �sbsb R9 because object Decode�R8,sbsb� contains a sub-bag with cardinality
four, while object Decode�R9,sbsb� does not.)

2.4 Relevant Literature

Here we briefly survey literature relevant to deciding equivalence between queries
that output complex objects.

2.4.1 Query Languages for Complex Objects

Much of the previous work on complex objects has been performed within the con-
text of nested relations. Because a relation is by definition a set of tuples, a nested
relation corresponds to a complex object whose sort contains only set collections.
The literature surrounding nested relations and (set-based) complex objects is vast;
Abiteboul, Hull, and Vianu provide a good summary in their textbook [6, Ch. 20].

Some of the earliest work on nested structures includes the quotient relations
of Furtado and Kerschberg, in which tuples are organized into blocks via the par-
tition and departition operators [35]. The partitioning of quotient relations is not
recursive, however, and so the nested relational model along with the restructuring
operators nest and unnest of Jaeschke and Schek [65] can be viewed as a recursive
generalization of quotient relations. Jaeschke and Schek’s nest/unnest operators
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are limited to nesting/unnesting of a single attribute, however; the generalization
of nest/unnest to handle nested relations of arbitrary arity is due to subsequent
work by Thomas and Fischer [103].

Gyssens, Paradaens, and Van Gucht analyze the space of possible nested rela-
tions with the goal of identifying useful subclasses, since they contend that not all
nested relations correspond to real world situations [55]. They organize subclasses
of nested relations (NR) into the following hierarchy.

HNR @ NFR @ NL @ NR

The class of normalization-lossless relations (NL) consists of all relations obtainable
from flat relations using arbitrary sequences of nest and unnest operators. Note
that relations containing empty nested sub-relations are members of NR but not
of NL. The class of nested flat relations (NFR) consists of relations obtainable
from flat relations using only consecutive nest operations. Finally, the class of
hierarchical nested relations (HNR) is the subset of NFR in which at each level
of nesting the atomic attributes form a superkey. Relations within HNR are also
known as Verso-relations [5, 13], and have the useful property that the size of an
instance is polynomially-bounded by the number of atomic elements in its active
domain [6, Ch. 20].

Whereas Gyssens et al.’s taxonomy only considers restructuring performed by
sequences of nest and unnest operators, the query language usually called the nested
relational algebra (NRA) is formed by adding Thomas and Fischer’s nest and unnest
operators to the relational algebra. The expressive power of NRA is very limited
compared to many complex object query languages; not only is it unable to create
empty sub-relations, Paredaens and Van Gucht showed that its expressive power
does not exceed the standard relational algebra for queries that both input and
output flat relations [89]. A flurry of research in late 1980s and early 1990s yielded
a variety of query languages for complex objects with expressive power exceeding
NRA (in some cases, far exceeding NRA by including various combinations of
operators such as empty collection constructors, transitive closure, fixed points,
powersets, etc.). For example, pairs of algebraic and calculus-based languages for
complex objects along with a proof of equivalent expressive power are proposed by
Ozsoyoglu et al. [88], Buneman et al. [14], and Abiteboul and Beeri [4]. Grumbach
considers a calculus for bags [49], while Libkin and Wong consider a variety of
calculus-based languages that include nested sets, bags, and various aggregation
functions [78, 79, 112]. A common theme throughout this body of literature is the
focus on the expressive power of the query languages. Since all of these languages
meet or exceed the expressive power of the traditional relational algebra/calculus,
the query equivalence problem is undecidable for any of these languages.

To situate our work within the context of this body of literature, our query lan-
guage COCQL�fb,fs,fn� can be described informally as follows. The restricted subclass
COCQL�fb,fs,fn�� that we study in Chapter 3—queries that do not contain scalar sub-
queries but may contain generalized projection—is essentially an extension of the
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bag semantic conjunctive relational algebra with three variants of the nest operator
(for constructing different collection types), but with no unnest operator and with
certain restrictions on the operations permitted on non-atomic attributes. If the
three variants of nest are replace with analogous variants of the outer-nest operator
described by Levy and Suciu [77], then the full language COCQL�fb,fs,fn� is obtained.

Even though language COCQLF does not contain an unnest operator, it is straight-
forward to show that any object in Gyssens et al.’s class NR can be constructed
by language COCQL�fs� out of some database of flat relations. Similarly, language
COCQL�fs�� is capable of constructing any object in class NL. This apparent dis-
crepancy is due to the simple fact that COCQL�fs�� allows duplicate-eliminating
projection to appear above generalized projection, whereas Gyssens et al. restrict
their attention to operator sequences containing only nest/unnest. While on one
hand this seems to call into question the usefulness of Gyssens et al.’s taxonomy
when considering more powerful query languages, there is an interesting connec-
tion between their taxonomy and the equivalence problem that we study in this
thesis. Because encoding relations rely on atomic-valued index attributes to distin-
guish the encoded objects, encoding relations resemble “flattened” Verso-relations.
Our main result in Chapter 3 can then be construed as saying that equivalence
of COCQL�fb,fs,fn�� expressions can be reduced to equivalence of queries that return
objects in the simplest class HNR. This does not, however, prove the decidability of
the open problem of equivalence between two nest/unnest sequences, because such
a sequence may not be equivalent to any COCQL�fb,fs,fn�� query.

2.4.2 Relational Encodings of Complex Objects

Our approach of encoding arbitrary complex objects into flat relations and subse-
quently translating queries over objects into queries over flat relations is not novel.
Suciu proposes a query language that extends NRA with a bounded fixed point
operator, and his proof that this language is a conservative extension of non-nested
relational algebra plus bounded fixed points—that is, that the languages have the
same expressive power over flat inputs and outputs—uses a similar technique [102].
Suciu’s encoding method uses a separate relation for each collection type in the
object’s sort (he only considers nested sets), and uses index values to distinguish
the elements of each collection. Sucui’s encoding handles arbitrary typed objects,
whereas our encoding method only handles chain objects, and thus necessitates
prior application of the linearization transformation described in Section 2.1.2. The
two encoding methods are fundamentally related: our relational representation ob-
tained by object linearization followed by subsequent encoding of the chain object
is equivalent to the left outer join of the various relations within Suciu’s encoding.
Our encoding requires a special - symbol because it corresponds to the null
values introduced by an outer join operator.
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2.4.3 Algebraic Transformations

Algebraic query optimization is a well-studied problem. The literature pertaining
to algebraic optimization of SQL queries can be divided into a two different veins.

One line of research focuses on algebraic transformations that change the “shape”
of the query, where a query’s “shape” is loosely defined as the nesting structure of
the SELECT-FROM-WHERE-GROUPBY blocks (which corresponds visually to the shape
of the associated Query Graph Model representation [56]). Early work in this vein
includes work by Kim on flattening of nested query blocks [69], and subsequent
work by Dayal on both merging and decorrelating nested blocks [28]. The advent
of rule-based optimization paradigms pioneered by systems like Starburst [56]
and Volcano [47] caused a focus on local manipulations of algebra trees. Vari-
ous algebraic transformation rules for commuting aggregation blocks, partitioning
or merging aggregation operations, avoiding duplicate elimination, or commuting
aggregation with join were proposed by Yan and Larson [113, 114], Paulley and
Larson [91], Gupta, Harinarayan, and Quass [54], and Khizder and Weddell [68].

The second vein of research generalizes the well-known heuristic of pushing
down predicates. Starting with the idea of “magic sets”—an optimization technique
proposed for bottom-up evaluation of recursive Datalog programs [9]—Mumick and
various co-authors apply the idea to nested SQL queries. As a result, they derive
conditions for introducing or eliminating redundant (semi)joins into existing query
blocks, or moving selection or join predicates around the algebra tree [76, 85, 86, 87].

Algebraic transformation rules have also been proposed for nested relational
algebra queries. Scholl proposes a set of algebraic equivalences that hold over NRA
expressions, with the stated goal of eliminating redundant join operations [100].
More recently, Liu and Yu propose an optimization algorithm for NRA expressions
based upon heuristic application of algebraic transformations that also attempt to
reduce the execution cost of certain types of nested join operations [80].

While algebraic transformations have proved to be a powerful and flexible op-
timization technique, many of the transformation rules appearing in the literature
are given with only sound conditions characterizing their applicability. Complete
characterizations for a given transformation rule are difficult to prove because ap-
plicability could easily depend upon global features of the query plan, whereas
algebraic transformations by their nature perform very localized query rewriting.
The query transformation literature as a whole fails to provide a systematic un-
derstanding of underlying principles governing global interactions between different
nested query blocks. As such, this body of work does not furnish a coherent char-
acterization of query equivalence that would enable the development of a provably
complete decision procedure.
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2.4.4 Query Equivalence

The equivalence of conjunctive queries that input and output flat relational struc-
tures is a well-studied problem which we will survey in Chapter 3 when we consider
encoding-equivalence of CEQs. We restrict our attention here to the small amount
of literature that considers the query equivalence problem for queries that output
nested structures.

When a query language allows the ability to both create and explicitly test for
empty collections, it can simulate the full relational algebra and query equivalence
becomes undecidable. Van den Bussche et al. recently proved a more interesting
undecidability result. They show that the query equivalence problem is undecidable
for the Positive-Existential fragment of the Nested Relational Calculus [107]. NRC
is a conservative extension of relational algebra, and it includes the ability to both
create and test for empty sets. PENRC is the fragment of NRC formed by removing
relational difference and the emptiness test. Although PENRC lacks the ability
to explicitly test set-emptiness, Van den Bussche et al.’s proof of undecidability
relies on the ability to both construct objects containing empty subsets and to
union sets, but does not appear to require the ability to unnest sets. As such,
their undecidability result would likely transfer to any extension of our language
COCQLF that includes the ability to union collections, but not necessarily to a similar
extension to COCQLF� since that language does not have the ability to create empty
sets.

Containment and equivalence of queries returning set-based complex objects is
studied by Levy and Suciu [77], who consider “conjunctive OQL” (COQL) queries
(a language with expressive power equivalent to extending our language COCQL�fs�
with an unnest operator). Whereas containment of flat relations indisputably cor-
responds to set inclusion, there is no single definition for containment of nested sets.
Levy and Suciu use an inductive definition of containment previously proposed for
Verso relations [13], and they reduce containment (under this definition) of COQL

queries constructing objects with nesting depth d to testing a relationship between
CQs that they call “simulation to depth d,” defined as follows. Let Q�I1; . . . ;Id;V�
be a CQ whose head has been annotated to distinguish d sets of index variables,
and define I �� �I1; . . . ;Id�. Given two such queries, Q simulates Q� to depth
d—denoted Q jd Q�—iff over every database instance the following equation holds:

¦I1.§I
�
1 . . .¦Id.§I

�
d.¦V �Q�I;V�Ô� Q��I �;V�� (2.31)

a condition characterized by the existence of a simulation mapping, and hence NP-
complete to decide [77]. For COQL queries that cannot construct empty sets (i.e.,
our language COCQL�fs�� plus unnest), containment reduces to a single simulation
test. Levy and Suciu claim that arbitrary COQL containment reduces to testing an
exponential number of simulation conditions; however, Dong et al. point out that
this is insufficient for implying containment [32]. Dong et al. consider containment
of a restricted class of COQL queries (corresponding to XQuery), showing it to be
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Q22: � select �u.C � from E as x,
(select z.P, � z.C � as C from E as z
group by z.P) as u

where x.C � u.P group by x.C �
Q23: � select �u.C � from E as x, E as y,

(select z.P, � z.C � as C from E as z
group by z.P) as u

where x.C � u.P and y.C � u.P group by x.P, y.P �
Q24: � select �C � from E as x,

(select z.P, � z.C � as C
from E as y, E as z where y.C � z.P
group by y.P, z.P) as u

where x.C � u.P group by x.P �
Figure 2.23: COQL queries Q22, Q23, and Q24

in co-NEXPTIME, but NP-complete or co-NP-complete for a variety of further
restrictions. To the best of our knowledge, the complexity of the general COQL

containment problem remains open.

The containment relationship used by Levy and Suciu is not antisymmetric
(mutual containment does not imply equivalence) and so they define a separate
“strong simulation” relationship between CQs for testing COQL equivalence. Query
Q strongly simulates Q� to depth d—denoted Q hhd Q�—iff:

¦I1.§I
�
1 . . .¦Id.§I

�
d.¦V �Q�I;V� 
� Q��I �;V�� (2.32)

a condition which they claim is characterized by the existence of a strong simulation
mapping [77], and hence still NP-complete to decide (although they define this
mapping only for d B 1). While equivalence of general COQL queries is left open,
they claim that equivalence for COQL queries that cannot construct empty sets (i.e.,
our COCQL�fs�� plus unnest) reduces to testing a single strong simulation condition
in each direction (Proposition 6.3 [77]). We end this section with an example
that demonstrates that this reduction of query equivalence to strong simulation is
incorrect.

Example 24 Consider a database containing a relation E(P,C) that denotes parent-
child relationships, along with the three queries shown in Figure 2.23 (written in an SQL-
like syntax that corresponds to empty-set-free COQL). Query Q22 returns sets of related
grandchildren, grouped first into sets with a common parent, and then into sets with a
common grandparent. Query Q23 is similar to Q22, but the outer aggregation groups
by pairs of grandparents. Query Q24 is also similar to Q22, but the inner aggregation
groups by both parent and grandparent. Levy and Suciu’s technique associates Q22,
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Figure 2.24: Database instance D4

Q�
22 A B C

a b1 c1

a b1 c2

a b3 c3

d b2 c1

d b2 c2

d b3 c3

Q�
23 AD B C

a a b1 c1

a a b1 c2

a a b3 c3

a d b3 c3

d a b3 c3

d d b2 c1

d d b2 c2

d d b3 c3

Q�
24 A DB C

a a b1 c1

a a b1 c2

a a b3 c3

a d b3 c3

d a b3 c3

d d b2 c1

d d b2 c2

d d b3 c3

Figure 2.25: Evaluating Q�
22, Q�

23, and Q�
24 over D4

Q23, and Q24 with the following indexed CQs.

Q�
22� I1©

A ;

I2©
B ;

V©
C � ��E�A,B�,E�B,C�

Q�
23�A,D; B ;C � ��E�A,B�,E�B,C�,E�D,B�

Q�
24� A ;D,B;C � ��E�A,B�,E�B,C�,E�D,B�

Consider the database D4 in Figure 2.24 and the corresponding query results in
Figure 2.25 (index groups have been visually separated for clarity). The reader can ver-
ify that over database D4 all six strong simulation conditions Q�

22 hh2 Q�
23, Q�

23 hh2 Q�
22,

Q�
22 hh2 Q�

24, Q�
24 hh2 Q�

22, Q�
23 hh2 Q�

24, and Q�
24 hh2 Q�

23 are satisfied (cf. equation 2.32);
in fact, we can show that they are all satisfied over any database. However, the
queries are not all equivalent since over D4 queries Q22 and Q24 output the object���c1, c2�,�c3��� while Q23 outputs ���c1, c2�,�c3��,��c3���. Using the results from
the next chapter, we can show that queries Q22 and Q24 are equivalent.
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Chapter 3

Encoding-Equivalence of
Conjunctive Encoding Queries

The purpose of this chapter is to present a necessary and sufficient condition
for encoding-equivalence in the case where both queries are conjunctive encoding
queries (see Section 2.3). Combined with Theorems 2.3.12 and 2.3.7 from Chap-
ter 2, the results in this chapter yield a procedure for deciding query equivalence for
the class of COCQL�fb,fs,fn�� expressions. This subclass is of practical interest because
COCQL�fb,fs,fn�� includes queries that can be created by “stacking” views defined by
SPJG algebra expressions [29] (see Proposition 2.1.20).

In Theorem 2.3.7 we showed that when the Encode algorithm is applied to a
COCQL�fb,fs,fn�� query, it yields a valid CEQ (cf. Definition 2.3.4). In this chapter,
however, we consider all valid (and satisfiable) CEQs, independent of their origin.
As per Definition 2.3.3, the body of any CEQ is a single CQ body; therefore,
without loss of generality we dispense with the vertex labels v in the query head,
since all of the components of the head must have the same label. We restrict our
attention to satisfiable CEQs, and so—by our syntactic convention for CQs—we
can assume without loss of generality that the query bodies do not contain explicit
equality predicates. The following lemma then characterizes CEQ validity.

Lemma 3.0.1 Assuming that the set of possible databases is not restricted by
schema constraints, conjunctive encoding query Q is valid if and only if every output
variable also occurs as an index—that is, �V 9 B� b I�1,d�.
Proof. Sufficiency holds by Lemma 2.3.5. Conversely, if �V 9 B� Ú I�1,d� then

construct database D by unioning two copies of bodyQ in which the variables
in �V 9 B� � I�1,d� have been isomorphically renamed within one of the copies.
(Because we have assumed that Q does not contain explicit equality predicates,
bodyQ is simply a set of atoms and can therefore be treated as a set of canon-
ical tuples.) The query result �Q�D then violates the functional dependency
I�1,d� � V, and so is not a valid encoding relation.
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The remainder of this chapter will proceed as follows. We propose a normal
form for CEQs in Section 3.1 and prove that the transformation to the normal form
preserves encoding-equivalence. In Section 3.2 we characterize equivalence between
CEQs in normal form in terms of the existence of a special type of homomorphism.
We survey related literature in Section 3.3.

3.1 A Normal Form for CEQs

The main contribution of this section is a normal form for conjunctive encoding
queries that preserves encoding-equivalence relative to a given signature §. Because
calculating the normal form requires reasoning about dependencies—specifically,
multivalued dependencies—that hold over the result of a conjunctive query, we
start by discussing how to reason about multivalued dependencies that are implied
by a query definition.

3.1.1 Dependencies Over Query Results

We say that a query definition implies a particular dependency if that dependency
is guaranteed to hold over the result of that query when evaluated over any possible
database instance. Before we consider query-implied dependencies, we quickly re-
view the concept of a query homomorphism. The reduction of the query equivalence
problem to the existence of query homomorphisms is a fundamental result within
database theory, and standard textbook material [6].

Definition 3.1.1 (CQ Homomorphism) Given two conjunctive queries Q�W�
and Q��W ��, a homomorphism h from Q� to Q is a mapping h � B� � B8C (suitably
extended to tuples, sets, and atoms, and with identity on constants) satisfying

1. h�bodyQ�� b bodyQ; and

2. h�W �� �W.

We write h � Q� � Q to denote that h is a homomorphism from Q� to Q. A

satisfiable CQ Q�W� is contained under CQ Q��W �� if and only if there exists
a homomorphism h � Q� � Q. Two CQs are equivalent if and only if they are
mutually contained. A conjunctive query Q is minimal if there is no equivalent
query Q� such that SbodyQ� S @ SbodyQS. Each query Q has a unique minimal form
(up to isomorphic renaming of variables), but computing it is NP-complete [6, Sect.
6.2].1 The following theorem proves a property of minimal CQs that will be useful
for later proofs.

1Technically, the NP-complete decision problem is testing query equivalence/containment,
while minimizing a query requires a linear number of such tests.
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Theorem 3.1.2 Given any minimal conjunctive query Q�W�, any mapping h � B � B 8 C
(extended with identity on constants) that satisfies h�W� � W and h�bodyQ� b
bodyQ forms a bijection between B and itself.

Proof. Assume w.l.o.g. that W does not contain repeated variables or constants.
Suppose that mapping h � B � B 8 C satisfies h�W� �W and h�bodyQ� b bodyQ

but does not form a bijection between B and itself. Then, h must satisfySh�bodyQ�S @ SbodyQS. Furthermore, h�W� must be a permutation of W . Be-
cause every permutation has a finite period, there exists some positive integer j
such that the composite mapping hj �� h X . . . X h´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

j

satisfies hj�W� �W; however,

then hj is a homomorphism from Q to itself that contradicts the minimality of
Q.

Implied Multivalued Dependencies

A multivalued dependency (MVD) over some attribute set W is an expression of the
form X � Y , where X,Y are disjoint subsets of W . Let Z denote the attribute set
W � �X 8 Y �. Then, a relation R over W satisfies X � Y if the following equation
holds [6, Sect. 8.3].

R � ΠXY �R� 1X ΠXZ�R� (3.1)

Given an CQ Q that yields a relation over W , we say that Q implies X � Y —
denoted Q�W� à X � Y —if for every database D the relation �Q�D satisfies
X � Y . �Q�D � ΠXY ��Q�D� 1X ΠXZ ��Q�D� (3.2)

Projection and natural join are conjunctive operations, and so the entire right-hand
side of equation 3.2 can be perceived as a single conjunctive query evaluated over
D. The following theorem formalizes this.

Theorem 3.1.3 Q�W� àX � Y 
� Q � ΠXY �Q� 1X ΠXZ�Q�
Corollary 3.1.4 Q�W� à X � Y iff there exists a homomorphism h � Q � Q
(thereby satisfying h�W� � W) such that h�atomsQ� can be partitioned into two
sets SY and SZ satisfying

1. variables Y only occur in SY ,
2. variables Z only occur in SZ, and
3. all variables in common between SY and SZ occur in X.

Corollary 3.1.5 If (satisfiable) conjunctive query Q�W� is equivalent to a constant
selection operation over conjunctive query Q��W�

Q � σA�a�Q��
then Q àX � Y iff Q� àX 8A� Y �A.
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Prof school dept name

UW CS Frank
UW CS David
UW CS Ashraf
UW ENG Linda
UW ENG John

Student school dept name

UW CS Dave
UW CS Xin
UW ENG Cara
UW ENG Julia

Figure 3.1: Database D5 � �Prof,Student�
Corollary 3.1.6 (Proposition 10.2.4 in [6]) If conjunctive query Q�W� is equiv-

alent to a projection operation over conjunctive query Q��W ��
Q�W� � ΠW�Q��W ���

then Q à X � Y iff Q� à X � Y 8 Y � for some Y � b B� �W, where B� is the set of
variables in bodyQ�.

Theorem 3.1.7 Deciding whether a given conjunctive query implies a given mul-
tivalued dependency is NP-complete.

Proof. Theorem 3.1.3 establishes that the problem is in NP. We establish NP-
hardness using a reduction from testing containment of boolean CQs. Let Qa

and Qb be two boolean CQs whose bodies contain the disjoint sets of variables
Ba and Bb, respectively. Let A,Z be two fresh variables. Let Q�W� be a new
conjunctive query whose output tuple satisfies W � Ba8�A,Z�, and whose body
is defined as follows.

bodyQ � bodyQa
8 bodyQb

8 �
x>Ba8Bb

�R�A,x�,R�x,Z��
Then, Qa b Qb iff there exists a homomorphism h � Bb � Ba such that h�bodyQb

� b
bodyQa

iff Q implies Ba � A (and Ba � Z). The last step follows from Corol-
lary 3.1.6.

Example 25 Assume a database schema containing relations Student(school, dept,

name) and Prof(school, dept, name), and consider the following two conjunctive
queries.

Q25�A,B,C� �� Prof�‘UW’,A,B�,Student�‘UW’,A,C�
Q26�A,B,C� �� Prof�‘UW’,A,B�,Student�‘UW’,A,C�,

Prof�F,D,B�,Student�F,E,C�
Figure 3.1 shows a sample database instance D5, while Figure 3.2 shows the relation
R10 resulting from evaluating either query Q25 or Q26 over D5. The reader can verify
that relation R10 satisfies A� C.
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R10 A B C

CS Ashraf Dave
CS Ashraf Xin
CS David Dave
CS David Xin
CS Frank Dave
CS Frank Xin
ENG Linda Cara
ENG Linda Julia
ENG John Cara
ENG John Julia

Figure 3.2: Query result R10 � �Q25�D5 � �Q26�D5

Query Q27 embodies the appropriate query for testing directly—per Theorem 3.1.3—
whether Q25 satisfies the MVD A� C.

Q27�A,B,C� �� Prof�‘UW’,A,B�,Student�‘UW’,A,C ��
Prof�‘UW’,A,B���,Student�‘UW’,A,C�

The following homomorphisms h � Q25 � Q27 and h� � Q27 � Q25 prove that Q25 and
Q27 are equivalent, and so Q25 satisfies A� C.

h �� �A~A,B~B,C~C� h� �� �A~A,B~B,C~C,C �~C,B��~B�
Similarly, query Q28 embodies the appropriate query for testing directly—per The-

orem 3.1.3—whether Q26 satisfies the MVD A� C.

Q28�A,B,C� �� Prof�‘UW’,A,B�,Student�‘UW’,A,C ��,
Prof�F �,D�,B�,Student�F �,E�,C ��
Prof�‘UW’,A,B���,Student�‘UW’,A,C�,
Prof�F ��,D��,B���,Student�F ��,E��,C�

The following homomorphisms h�� � Q26 � Q28 and h��� � Q28 � Q26 prove that Q26 and
Q28 are equivalent, and so Q26 also satisfies A� C.

h�� �� �A~A,B~B,C~C,D~A,E~A,F ~‘UW’�
h��� �� �A~A,B~B,B��~B,C~C,C �~C,D�~D,D��~D,E�~E,E��~E,F �~F,F ��~F�

Alternatively, we could have deduced that Q26 satisfies A� C by instead recognizing
that Q25 and Q26 are equivalent (Q25 is a minimal form of Q26).

A Hypergraph-based Characterization of Query-Implied MVDs

Corollary 3.1.4 provides a straightforward homomorphic condition for testing query-
implied MVDs. However, homomorphisms are sometimes difficult to visualize for
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large queries. We now provide an alternate characterization of query-implied de-
pendencies based upon the topology of a query’s hypergraph; this characterization
is both easier to visualize and provides more intuition into for the role that MVDs
play in the normal form we define later in this section. It also simplifies many of
our proofs. As a simple example, we can see that Q25 in Example 25 implies A� C
because variables C and B are “separated” by variable A within bodyQ25

. We now
formalize this idea of “separation” using graph-theoretic concepts.

Given an undirected graph G � �U,E� and some subset of its vertices2 U � b U ,
the subgraph of G induced by U �—denoted GSU �—is formed from G by deleting the
vertices not in U � as well as any edges incident to them. Given vertices s, t > U , an�s, t�-path in G is a sequence of k C 1 adjacent edges starting at s and ending at
t. Given X ` U and s, t > �U �X�, we call X an �s, t�-articulation set of G if the
subgraph GSU�X does not contain any �s, t�-paths.3 Given disjoint sets X,S,T ` U ,
we call X a weak �S,T �-articulation set if there exists some pair s > S and t > T for
which X is an �s, t�-articulation set, and we call X a strong �S,T �-articulation set
if it is an �s, t�-articulation set for every pair s > S and t > T .

A (undirected) hypergraph is a pair H � �U,F � where U is a set of vertices and
F is a set of non-empty subsets of U , called hyperedges. Given some set U � b U ,
the induced subgraph H SU � is formed from H by deleting the vertices not in U �

and then deleting any hyperedge that has become empty. Given vertices s, t > U ,
an �s, t�-path in H is a sequence of k C 1 hyperedges f1, . . . , fk such that s > f1,
t > fk, and fj 9 fj�1 x g for j > �1, k � 1� [6, Sect. 6.4]. We define the �s, t�- and�S,T �-articulation sets for hypergraphs in terms of �s, t�-paths exactly as we did
for standard graphs.

Example 26 Consider the two hypergraphs depicted in Figure 3.3. The set �A� is a�B,C�-articulation set in H25 but not in H26. Within H26, the set �B,F� is a weak (but
not strong) �E,AD�-articulation set, while �C,F� is a strong �E,AD�-articulation set.

Associated with each conjunctive query Q we define the query hypergraph HQ as
follows. The query variables B from Q form the vertex set of HQ. The hyperedges
correspond to atoms of bodyQ such that for each atom Ri�X i� there is a hyperedge

f containing precisely the set of variables in X i.

Example 27 The query hypergraphs HQ25 and HQ26 are equal to the hypergraphs
H25 and H26, respectively, from Figure 3.3. Observe that the query constant ‘UW’ does
not appear in the hypergraphs.

2To avoid confusion, we use U rather than V to denote the set of graph vertices since we
already use V for the output attributes of CEQs.

3An articulation vertex (or set) is typically defined as vertex (or set of vertices) whose deletion
increases the number of connected components in the graph [11, 58]. In network flow analysis,
an �s, t�-cut is defined as a set of edges whose deletion disconnects s from t [84, 93]. Although
our definition of an �s, t�-articulation set is similar in spirit to each of these concepts, it differs in
the case where the initial graph is disconnected—specifically, we do not assume that s and t were
connected in the original graph G.
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(b) H26

Figure 3.3: Two hypergraphs

Given a hypergraph H � �U,F � and a database D, an embedding of H into D is
a mapping γ � U � dom such that for each hyperedge f > F , there exists some tuple
t in some relation in D such that all of the constants in γ�f� occur in t.

Lemma 3.1.8 Given a database D and conjunctive query Q, any query embedding
γ � bodyQ � D, is also an embedding of hypergraph HQ into D.

Lemma 3.1.9 Given a database D, a hypergraph H � �U,F �, and a set U � b U ,
any hypergraph embedding γ � U � D is also an embedding of the induced hypergraph
H SU � into D.

Theorem 3.1.10 Given a minimal conjunctive query Q�W� and disjoint attribute
sets X,Y `W query Q implies MVD X � Y iff X is a strong �Y,Z�-articulation
set of the hypergraph HQ, where Z �W � �X 8 Y �,
Proof. Follows from Corollary 3.1.4, because any homomorphism h � Q � Q is

necessarily isomorphic over B due to the minimality of Q.

It is trivial to extend Theorem 3.1.10 (and Corollary 3.1.4) to allow constants
in sets X and Y ; we assume this slight extension for the MVDs in the next section.

Example 28 Queries Q25 and Q26 both imply A � C because A is a �B,C�-
articulation set of HQ25 . In contrast, A is not a �B,C�-articulation set of HQ26 .

3.1.2 Converting CEQs to Normal Form

We now define a normal form for CEQs based upon query-implied MVDs. Our

normal form is defined by recursively identifying the core indexes I§i b Ii at each
level i.

Definition 3.1.11 (Core Indexes) Given a CEQ Q�I1; . . . ;Id;V�, a length-d sig-
nature §, and an integer i > �1, d�, define the core indexes at level i relative to

§—denoted I§i —as follows. Let Q�i� be the following CQ.

Q�i��I�1,i�I§�i�1,d�� �� bodyQ (3.3)
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Set I§i is a minimal subset of Ii satisfying both V b I�1,i�1�8I§�i,d�8C and the following
signature-specific conditions.

§i Condition

b Ii b I�1,i�1� 8 I§i 8 C
s Q�i� à �I�1,i�1� 8 I§i �� I§�i�1,d�
n Q�i� à I�1,i�1� � I§�i,d�

We denote by I
§
i the tuple formed by deleting from I i all attributes not in I§i .

Observation 3.1.12 Constant columns are never core; that is, I§�1,d� b B.

Observation 3.1.13 The sets of core indexes at different levels are disjoint.

Observation 3.1.14 If §d � s, then I§d � �Id 9 V 9 B� � I�1,i�1�.
Lemma 3.1.15 Definition 3.1.11 determines a unique minimal set I§i .

Proof. First, let Q��i��I�1,i�I§�i�1,d�� be a minimal CQ equivalent to Q�i� from equa-

tion 3.3. Next, let a “candidate for I§i ” denote any set X b Ii such that if we

choose I§i �� X then all conditions in Definition 3.1.11 except for minimality

are satisfied. We now show that if sets X1,X2 are both candidates for I§i , then

X19X2 is also a candidate for I§i . If V b I�1,i�1�8X18C and V b I�1,i�1�8X28C then
V b I�1,i�1� 8 �X1 9X2� 8 C follows directly. Now consider the signature-specific
conditions.

Case §i � b:
Ii b I�1,i�1� 8X1 and Ii b I�1,i�1� 8X2 implies Ii b I�1,i�1� 8 �X1 9X2�.

Case §i � s:

The MVD Q�i� à I�1,i�1� 8 �X1 9X2�� I§�i�1,d� cannot be derived from ax-

ioms for MVDs [6, Sect. 8.3], but can be reasoned from the query structure
as follows.

1. By candidacy of X1, Q�i� à �I�1,i�1� 8X1�� I§�i�1,d�. By Theorem 3.1.10,

I�1,i�1� 8X1 is a strong (I§�i�1,d�, �Ii �X1�)-articulation set of HQ��i� .
2. By candidacy of X2, Q�i� à I�1,i�1� 8X2 � I§�i�1,d�. By Theorem 3.1.10,

I�1,i�1� 8X2 is a strong (I§�i�1,d�, �Ii �X2�)-articulation set of HQ��i� .
3. The two articulation sets together imply that deleting I�1,i�1�8�X19X2�

from HQ��i� causes the two sets I§�i�1,d� and Ii � �X1 9 X2� to occur
in separate partitions of the remaining hypergraph. The MVD then
follows from Theorem 3.1.10.
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Case §i � n:
Similar to case §i � s. The candidacies of X1 and X2 imply two MVDs

which imply two strong articulation set of HQ��i� . This time, the two
articulation sets together imply that deleting I�1,i�1� from HQ��i� causes

the four sets X1 � X2, X2 � X1, Ii � �X1 8 X2�, and �X1 9 X2� 8 I§�i�1,d�
to occur in separate partitions of the remaining hypergraph. The MVD

Q�i� à I�1,i�1� � �X1 9X2� 8 I§�i�1,d� then follows from Theorem 3.1.10.

We say that CEQ Q�I1; . . . ;Id;V� is in §-normal form (§-NF)if I�1,d� � I§�1,d�,
and so an arbitrary CEQ is converted to §-NF by deleting all non-core indexes from
the query head. Assuming that the original query was valid (cf. Lemma 3.0.1),

Definition 3.1.11 implies �V 9 B� b I§�1,d� and so the new query is guaranteed to be
valid.

Theorem 3.1.16 Performing §-normalization of CEQs is NP-complete.

Proof. NP-hardness follows directly from Theorem 3.1.7. Identifying the core
indexes at each level can be done in NP time using an algorithm that traverses
query hypergraphs (due to Observation 3.1.12, it is not a problem that query
hypergraphs do not contain constants).

Case §i � b: Trivial.

Case §i � s: Minimize the body of Q�i�, then construct hypergraph HQ�i� . Delete
from HQ�i� all nodes corresponding to variables in the set I�1,i�1� 8 �Ii 9V�.
Identify any non-output members of I§i incrementally by traversing the con-
nected components containing I�i�1,d� and deleting the “nearest” member
of Ii.

Case §i � n: Minimize the body of Q�i�, then construct hypergraph HQ�i� . Delete
from HQ�i� all nodes corresponding to variables in the set I�1,i�1�. Iden-

tify I§i by traversing the connected components containing any variable in�Ii 9 V� 8 I§�i�1,d�.
Example 29 Consider the following four CEQs.

Q29� I1¬
A,B ;

I2©
C ;

V©
C � �� Prof�‘UW’,A,B�,Student�‘UW’,A,C�

Q30� A ; C ;C � �� Prof�‘UW’,A,B�,Student�‘UW’,A,C�
Q31� A ;B,C;C � �� Prof�‘UW’,A,B�,Student�‘UW’,A,C�,

Prof�F,D,B�,Student�F,E,C�
Q32� A ; C ;C � �� Prof�‘UW’,A,B�,Student�‘UW’,A,C�,

Prof�F,D,B�,Student�F,E,C�
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R11 A B C C

CS Ashraf Dave Dave
CS Ashraf Xin Xin
CS David Dave Dave
CS David Xin Xin
CS Frank Dave Dave
CS Frank Xin Xin
ENG Linda Cara Cara
ENG Linda Julia Julia
ENG John Cara Cara
ENG John Julia Julia

R12 A B C C

CS Ashraf Dave Dave
CS Ashraf Xin Xin
CS David Dave Dave
CS David Xin Xin
CS Frank Dave Dave
CS Frank Xin Xin
ENG Linda Cara Cara
ENG Linda Julia Julia
ENG John Cara Cara
ENG John Julia Julia

R13 A C C

CS Dave Dave
CS Xin Xin
ENG Cara Cara
ENG Julia Julia

Figure 3.4: Query results R11 � �Q29�D5 , R12 � �Q31�D5 , and R13 � �Q30�D5 ��Q32�D5 .

Observe that Q29 and Q30 have the same body as Q25 from Example 28, while Q31 and
Q32 have the same body as Q26. Therefore, both Q29 and Q31 imply A� C.

Consider signature sb. The dependency A� C implies that B is not a core index
of Q29 relative to sb. In contrast, queries Q30, Q31, and Q32 are all in sb-NF.

Now consider signature nn. This time queries Q29, Q30, and Q32 are already in
nn-NF, but Q31 is not because A� C implies that B is not a core index.

The next theorem establishes that §-normalization does not change the complex
object obtained after decoding the CEQ result with signature §. Before we prove
this formally, however, consider the following example which we will use to illustrate
the core ideas of the proof.

Example 30 Figure 3.4 shows the encoding relations that result when the four queries
from Example 29 are evaluated over the database D5 from Figure 3.1. Query Q30 is the
sb-normal form of Q29, and the reader can verify that both encoding relations R13 and
R11 yield the object ��SDave,Xin S�,�SCara, Julia S� � when decoded with signature sb.
Similarly, Q32 is the nn-normal form of Q31, and both encoding relations R13 and R12

yield the object �S�� �S��Dave,Xin S���,�S��Cara, Julia S��� S��� when decoded with signature nn.

Theorem 3.1.17 §-Normalization preserves §-equivalence.
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Proof. Let Q�I1; . . . ;Id;V� CEQ, and let Q��I§1; . . . ;I§d;V� be its §-normal form.
For every i > �0, d�, let Qi denote the following CEQ.

Qi�I1; . . . ;I i;I
§
i�1; . . . ;I

§
d;V� �� bodyQ (3.4)

Because Q� � Q0, we need to show that Q0
.�§ Q, which we do by induction.

Base Case: Equation 3.4 implies Qd � Q, and so Qd
.�§ Q is trivial.

Induction Hypothesis: Suppose there exists some i > �1, d� such that Qi
.�§ Q.

Inductive Step: We need to show that Qi�1
.�§ Qi. For any database D, let Γ

and Φ denote the sets of embeddings of bodyQi�1 and bodyQi
into D; because Qi�1

and Qi have the same body, Γ and Φ contain the same embeddings. W.l.o.g.,

assume that I i � I§i � J i, where Ji is the set of non-core indexes in Ii. The
encoding relations �Qi�1�D and �Qi�D can now be characterized as follows.

S��Qi�1�D� � Qi�1�I1; . . . ;I i�1;I
§
i ;I

§
i�1; . . . ;I

§
d;V� (3.5)

T��Qi�1�D� � �γ�I�1,i�1�I§�i,d�V� S γ > Γ� (3.6)

S��Qi�D� � Qi�I1; . . . ;I i�1;I
§
iJ i;I

§
i�1; . . . ;I

§
d;V� (3.7)

T��Qi�D� � �φ�I�1,i�1�I§iJ iI
§�i�1,d�V� S φ > Φ� (3.8)

Abusing notation, we will now use Γ and Φ in place of the encoding relations�Qi�1�D and �Qi�D by implicitly associating schema S��Qi�1�D� with Γ and
S��Qi�D� with Φ. Then, we need to show that Γ �§ Φ.

Case §i � b:
By Definition 3.1.11, Ji b I�1,i�1�8C. Because I�1,i�1� functionally determines
Ji, removing Ji from the head does not affect the cardinality or contents of
any encoding sub-relations; hence, there is a trivial isomorphism between
the tuples of Γ and Φ that proves Γ �§ Φ.

Case §i � s:
For each value a > adom�I�1,i�1�,Γ� � adom�I�1,i�1�,Φ� let Ca be a §�i,d�-
certificate rooted by an initially empty set node (see Definition 2.2.5). We
will incrementally construct Ca until it proves that Γ�a� �§�i,d� Φ�a�. Because

adom�I�1,i�1�,Γ� � adom�I�1,i�1�,Φ�, it is then trivial to construct the upper

levels of a §-certificate proving Γ �§ Φ.

Let �b1, . . . , bk� be the set of values in adom�I§i ,Γ�a�� � adom�I§i ,Φ�a��, and

let �b1c
1
1, . . . b1c

l1
1 , . . . bkc

1
k, . . . bkc

lk
k � be the set of values in adom�I§iJ i,Φ�a��.

For each bj, the sub-relation Γ�abj� encodes an object of sort �§�i�1,d�, d� i�
occurring in the set at level i. By Definition 3.1.11, relation Φ satisfies

I�1,i�1� 8 I§i � I§�i�1,d�, which—by Corollaries 3.1.5 and 3.1.6—implies that
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Φ�a� satisfies I§i � I§�i�1,d� (and I§i � Ji). It follows from that all of the

sub-relations Φ�abjc
1
j�, . . .Φ�abjc

lj
j � are identical to each other and to the

sub-relation Γ�abj�. For each clm
j add to Ca the mapping f�bjc

lm
j � �� bj, as

well as a child §�i�1,d�-certificate proving that Φ�abjc
lm
j � �§�i�1,d� Γ�abj� (which

is trivial, because relations Φ�abjc
lm
j � � Γ�abj�). Then, add the mapping

f ��bj� �� bj � c1
j (we could choose any clm

j ). Certificate Ca is complete when

this has been performed for all values of bj.

Case §i � n:

The proof is almost identical to case §i � s. Because I�1,i�1� � I§�i,d� implies

I�1,i�1� 8 I§i � I§�i�1,d�, all of the relations Φ�abjc
1
j�, . . .Φ�abjc

lj
j � are identical

to each other and to the sub-relation Γ�abj�. Furthermore, I�1,i�1� � I§�i,d�
also implies that across all values of j, the sets �c1

j , . . . c
lj
j � are identical.

Therefore, the degree of replication remains constant across all values of

bj > adom�I§i ,Γ�a��.
3.2 CEQ Encoding-Equivalence

In this section we fully characterize §-equivalence of CEQs by tailoring the tradi-
tional homomorphism test for CQs to encoding queries.

Definition 3.2.1 (Index-Covering Homomorphism) Given two conjunctive en-

coding queries Q�I1; . . . ;Id;V� and Q��I �1; . . . ;I �d;V �� of equal depth, an index-
covering homomorphism from Q� to Q is a mapping h � B� � B8C (suitably extended
to tuples, sets, and atoms, and with identity on constants) satisfying

1. h�bodyQ�� b bodyQ,

2. h�V �� � V, and
3. ¦i > �1, d�: Ii b h�I �i�.
Comparing Definitions 3.2.1 and 3.1.1, we note that if h is an index-covering

homomorphism from CEQ Q� to CEQ Q, then h is also a CQ homomorphism

h � Q��V �� � Q�V�, where Q��V �� and Q�V� denote the CQs formed from Q� and

Q by restricting the head tuples to V
�

and V, respectively. Conversely, if h� is a

CQ homomorphism from CQ Q����W ���� to CQ Q���W ���, then h� is also an index-

covering homomorphism from the depth-one CEQ Q����W ���
;W

���� to the depth-one

CEQ Q���W ��
;W

���. For this reason, we use the same notation h � Q� � Q to denote
index-covering homomorphisms as for CQ homomorphisms, and and we will clearly
indicate within the context which type of homomorphism (and queries) we are
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discussing. The next theorem and its corollary follow from well-known results for
conjunctive queries.

Theorem 3.2.2 Given conjunctive encoding queries Q and Q�, each index-covering
homomorphism from Q� to Q corresponds to a tuple in the result of evaluating Q�

over a database isomorphic to the body of Q.

Corollary 3.2.3 Determining the existence of an index-covering homomorphism
is NP-complete.

We now combine our tailored homomorphism with the normal form from the
previous section to obtain a necessary and sufficient test for §-equivalence. The
necessity proof for the following theorem is intricate—as we will discuss further
in Section 3.3, just considering nested sets is already complex [77], and handling
arbitrary signatures requires integrating three different proof techniques (for sets,
bags, and normalized bags). For readability, we give only a short sketch here and
defer the full proof of necessity to Appendix A.

Theorem 3.2.4 Two conjunctive encoding queries are §-equivalent iff there exists
index-covering homomorphisms in both directions between their §-normal forms.

Proof (sketch). Assume without loss of generality that Q and Q� are already
in §-normal form (justified by Theorem 3.1.17).

If index-covering homomorphisms exist in both directions, then for any database
D the encoding relations �Q�D and �Q��D differ at most by permutation of at-
tributes within each index level. A §-certificate proving �Q�D �§ �Q��D is there-
fore straightforward to construct, since each node is simply an isomorphism
between sub-relations; Q

.�§ Q� follows immediately.

We now sketch the argument for the existence of index-covering homomorphisms
(see Appendix A for the full proof). We start by defining a degenerate class
of “pseudo-trivial” §-certificate nodes that imply certain regularities between
the encoding relations that they relate. The overall goal is then to construct
a canonical database D out of the bodies of both Q and Q� such that if we
can find a §-certificate between �Q�D and �Q��D that contains these pseudo-
trivial nodes, we can use it to generate the index-covering homomorphisms in
each direction. We then argue for the existence of such a certificate by prov-
ing that any §-certificate between �Q�D and �Q��D must contain these trivial
nodes. The proof uses induction level-by-level from inside-out to prove trivial-
ity of certificate nodes, and the argument differs depending upon the semantics
of the current level. Bag equivalence is based upon counting, and so for bag
levels we rely upon certain algebraic properties of polynomials combined with a
procedure to inflate the cardinalities of constants in any database in a regular
way such that non-pseudo-trivial certificate nodes would imply differing element
cardinalities, violating bag equivalence. Set equivalence is based upon existence,
and so for set levels we use the query bodies to inject large amounts of symme-
try into the construction of D, with the constants corresponding to the index
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variables in Q and Q� forming the “axes” of the symmetry; we then show that
non-pseudo-trivial certificate nodes would imply the existence (non-existence)
of extra (missing) “canonical sub-objects,” violating set equivalence. Finally,
normalized bag equivalence exhibits both count- and existence-based features,
and so for these levels the argument synthesizes both the polynomial and the
symmetry techniques.

Corollary 3.2.5 Testing §-equivalence of CEQs is NP-complete.

Corollary 3.2.6 Testing equivalence of COCQL�fb,fs,fn�� queries is NP-complete.

Corollary 3.2.6 is the culmination of this chapter, and one of the major results
within this thesis. It is important because it demonstrates that as long as queries
do not compare aggregated values, non-scalar forms of nesting do not increase the
hardness of the query equivalence problem.

Example 31 Consider again queries Q29–Q32 from Example 29. Queries Q30 and Q32

are each in both sb-NF and nn-NF, and so the following index-covering homomorphisms
h � Q30 � Q32 and h� � Q32 � Q30 prove Q30

.�sb Q32 and Q30
.�nn Q32.

h � �A~A,B~B,C~C�
h� � �A~A,B~B,C~C,F ~‘UW’,D~A,E~A�

Performing sb-normalization on Q29 yields Q30, and so Q29
.�sb Q32. In contrast, Q31

is in sb-NF and there clearly cannot exist an index-covering homomorphism from Q32

to Q31, so Q31 ~.�sb Q32 follows by Theorem 3.2.4. By similar analysis we conclude
Q29 ~.�nn Q30

.�nn Q31
.�nn Q32. The encoding relations in Figure 3.4 illustrate a counter-

example proving both Q31 ~.�sb Q32 and Q29 ~.�nn Q30.

3.3 Relevant Literature

In this section we survey literature relevant to deciding various forms of equiva-
lence between conjunctive queries operating within a data model containing only
flat relational structures. The reader is referred to the previous chapter for litera-
ture pertaining to query languages that construct nested objects. In particular, in
Section 2.4.4 we discuss Levy and Suciu’s reduction of COQL equivalence to testing
strong simulation between CQs [77], and so we do not discuss that work further
here, even though it is in many ways the closest research to the CEQ encoding-
equivalence problem which is our focus in this chapter.
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3.3.1 Conjunctive Queries under Set Semantics

Equivalence and containment of conjunctive queries under set semantics was first
studied by Chandra and Merlin [16] who show that the two problems are mutually
reducible, and that they are each mutually reducible to the NP-complete problem
of finding homomorphisms between queries. They also show that every query has
a unique minimal form, and that the minimal forms of equivalent queries are iso-
morphic (hence minimization is also NP-complete). Chekuri and Rajaraman [20]
take a previously-known result that homomorphisms are computable in PTIME
when the query bodies correspond to acyclic hypergraphs [6], and they generalize
the notion of acyclicity to query width. Their work furnishes algorithms for the
containment, equivalence, and minimization problems that run in time polynomial
in nk, for queries of size n and width k. These efficient algorithms are directly ap-
plicable to the problems of performing §-normalization and finding index-covering
homomorphisms that we discuss in this chapter.

3.3.2 Other Processing Semantics

Chaudhuri and Vardi [19] and Ioannidis and Ramakrishnan [64] independently pro-
pose bag/bag-set semantics as a way to model the input to cardinality-sensitive
aggregation functions and proceed to study the query equivalence and contain-
ment problems under the new query processing semantics. Under bag semantics,
conjunctive queries are equivalent precisely when they are isomorphic; the obvious
corollaries are that every conjunctive query is already minimal under bag semantics,
and that testing bag equivalence is GraphIsomorphism-complete. Under bag-set se-
mantics (bag semantics where database relations are known to be sets), queries are
equivalent if and only if they are variable-isomorphic; that is, query minimization
simply entails removing duplicate relational atoms (linear time), and two queries
are equivalent under bag-set semantics precisely when their minimized forms are
equivalent under bag semantics. Chaudhuri and Vardi also show a simple reduction
from bag equivalence to bag-set equivalence, which justifies our design of COCQLF

in Section 2.1.3 as a bag semantic algebra operating over a database of relations
(sets of tuples).

Although both Chaudhuri and Vardi as well as Ioannidis and Ramakrishnan
characterize the CQ equivalence problem under bag/bag-set semantics, the CQ
containment problem under bag/bag-set semantics is still open, although known to
be at least Πp

2-hard [19].4 Ioannidis and Ramakrishnan show bag containment to be
linear time when queries do not contain repeated predicate names, and undecidable
when extended to unions of CQs. More recently, Jayram, Kolaitis and Vee show
that bag containment is undecidable for CQs extended with inequality predicates
(i.e., x) [66].

4Πp
2 is a class within the second tier of the polynomial hierarchy. A decision problem is in Πp

2

if its complement problem is in Σp
2, the class of problems that permit an NP-time reduction to a

problem that is in NP [43, Sect. 7.2].
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Variations of bag/bag-set semantics have also been proposed in the literature.
Grumbach et al. relax bag-set semantics in order model the input to certain nor-
malizing aggregation functions such as AVG. Under their relaxed semantics, two
queries are equivalent if over every database they return two bags containing the
same elements with the same relative cardinalities. They find that CQs are equiva-
lent under these semantics precisely when the query bodies are isomorphic “modulo
a product” which roughly means that they differ at most by the addition of cer-
tain Cartesian product operations [50]. Cohen also relaxes bag-set semantics in
order to study equivalence of SQL queries that contain a nested SELECT DISTINCT

block. She proposes “combined semantics” as a generalization of bag-set seman-
tics in which cardinality depends only on a specified subset of the query variables,
and deduces that CQs are equivalent under these semantics precisely when there
exist homomorphisms in each direction that are isomorphic with respect to the
designated “multi-set variables” [22].

Our results in this chapter for characterizing encoding-equivalence between con-
junctive encoding queries generalizes CQ equivalence under all of these previously-

proposed processing semantics. More specifically, given two CQs Q�V� and Q��V ��,
testing Q � Q� under

� set semantics reduces to Q�V;V� .�s Q��V �;V ��;
� bag-set semantics reduces to Q�B;V� .�b Q��B�;V �� where B and B� are the

query body variables;

� bag-set semantics modulo a product reduces to Q�B;V� .�n Q��B�;V ��; and
� combined semantics reduces to

Q�V 8M;V� .�b Q��V � 8M�;V
�� where M and M� are the specified multi-set

variables.

3.3.3 Aggregation Queries

The equivalence and containment problems for queries containing non-nested aggre-
gation have been studied before. Cohen, Nutt, and Sagiv address the equivalence
problem for conjunctive queries followed by a single aggregation operation applying
one of the functions SUM, COUNT, COUNT-DISTINCT, MAX, or MIN [25]. When the query
bodies do not contain comparison predicates, the equivalence problem for SUM and
COUNT queries reduces to equivalence under bag semantics, while the equivalence
problem for MAX, MIN, and COUNT-DISTINCT reduces to equivalence under set seman-
tics. When the query bodies contain comparison predicates, they show the problem
to be Πp

2-complete for MAX queries, MIN queries, and COUNT-DISTINCT queries un-
der a slight syntactic restriction that limits interaction between the aggregated
variables and the variables involved in comparison predicates. For SUM and COUNT

queries with comparisons they show the problem to be in PSPACE. These authors
also extend their detailed study of aggregation functions to query bodies contain-
ing disjunction [26] and safe atomic negation [27]. In Cohen’s doctoral dissertation
she uses abstract algebra concepts such as commutative semigroups, idempotency,
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and abelian groups to define five properties of aggregation functions—shiftable,
order-decidable, decomposable, singleton-determining, and expandable—with which
she taxonomizes commonly-used aggregation functions [21]. She then generalizes
previous results for equivalence of queries with specific aggregation functions to
black-box functions characterized by this taxonomy, and uses these equivalence re-
sults to characterize the problem of rewriting non-nested aggregation queries over
non-nested aggregation views, an extension that is fleshed out further within a
subsequent journal publication [24].

Grumbach, Rafanelli, and Tininini also consider the problem of rewriting non-
nested aggregation queries over non-nested aggregation views, and as part of this
work characterize the equivalence problem for queries that apply the AVG or PERCENT
aggregation functions to the result of conjunctive queries [51]. Their characteriza-
tion reduces this problem to equivalence of CQs under the relaxation of bag-set
semantics discussed in Section 3.3.2. In related work, Grumbach and Tininini con-
sider the view rewriting problem for the restricted case where the query and view
languages are aggregation queries over a single relation (i.e., no joins) [53]; this
case has very practical application to OLAP-style queries data warehouses with
star schemas. Their main contribution is a polynomial-time rewriting algorithm
which they prove to be complete for finding single-view rewritings of queries con-
taining the SUM, COUNT, and PRODUCT aggregation functions.

The various works by both Cohen et al. and Grumbach et al. surveyed above
only considered non-nested aggregation queries and views. More specifically, their
various query and view languages all correspond to relational algebra expressions
of the form

Π
z�f�y�
x �E� (3.9)

where E is a relational algebra query not containing aggregation functions. Observe
that when generalized projection only occurs as the top-most query operator, every
grouping variable is also an output variable. This syntactic restriction is signifi-
cant, and highlights the orthogonality between our work and the work surveyed in
this section. Whereas previous work focuses on understanding and characterizing
specific aggregation operations, our work focuses on the interaction between aggre-
gation and query nesting. It is precisely the ability to project away attributes that
have been used for grouping at lower levels that makes the equivalence problem for
nested queries a non-trivial extension of work on non-nested aggregation queries.
Our abstraction of aggregation functions as collection constructors is comparatively
primitive, but arguably necessary both as a simplifying assumption and in order
to preserve decidability for the query equivalence problem. Other authors have
shown that too much domain-specific knowledge about the functioning of partic-
ular aggregation functions quickly causes undecidable implication of aggregation
constraints [75, 97]. Within our context, the obvious corollary is that the query
equivalence problem becomes undecidable when queries contain aggregation func-
tions whose results can be both arbitrarily nested and compared with explicit (and
possibly, only implicit) higher-order comparisons.
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Chapter 4

Equivalence of Conjunctive
Queries with Outer Joins

Our goal in this thesis is to characterize equivalence of conjunctive object-constructing
queries. In Chapter 2 we reduced this problem to deciding encoding-equivalence
between hierarchical conjunctive encoding queries. In Chapter 3 we showed that
encoding-equivalence between CEQs generalizes query equivalence between CQs.
Therefore, before we address encoding-equivalence between hierarchical CEQs (HCEQs),
it is helpful for us to first address query equivalence between hierarchical CQs
(HCQs).

In Section 2.3.1 we defined the semantics of HCQs in terms of hierarchical appli-
cations of terminal embeddings of the query body into the database instance. There
is a strong relationship between HCQs and relational algebra expressions contain-
ing the left outer-join (LOJ) operator. In Section 4.1 we show that extending
the conjunctive algebra with LOJ yields a language whose expressive power cor-
responds to a generalization of HCQs that we call directed acyclic CQs (DACQs).
In Sections 4.3–4.5 we address the DACQ equivalence problem (of which the HCQ
equivalence problem is a special case). We end the chapter by surveying relevant
literature in Section 4.6.

4.1 Conjunctive Queries with Outer Joins

In this section we propose two languages for conjunctive queries with outer joins. In
Section 4.1.1 we formally define the SPCL algebra, which extends the conjunctive
algebra with a left outer-join operator. Next, in Section 4.1.2 we define directed
acyclic CQs, a straightforward generalization of hierarchical CQs, and we prove
that DACQs have the same expressive power as SPCL expressions.
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4.1.1 The SPCL Algebra

The conjunctive relational algebra—i.e., the operators base relation, selection, duplicate-
eliminating projection, and Cartesian product along with the syntactic extensions
conjunctive selection and join from Figure 2.5—is sometimes called the SPC al-
gebra. We define the SPCL algebra to be language formed by extending the SPC
algebra with the left outer-join operator [42].

The left outer join (LOJ) of relation R with S—denoted R
�
1p S—is equivalent

to the outer union of the inner- and anti-joins of R and S,

R
�
1p S � �R 1p S� > �R ¤p S� � �R 1p S� > �R � �R %p S�� (4.1)

where the outer union operator > pads the tuples originating from the anti-join with
a special null constant1 - so that they have the same arity as the tuples originating
from the inner join. Alternatively, the LOJ operator can be defined using the notion
of tuple subsumption. Given two tuples t1 and t2 of the same arity, t1 subsumes
t2 if t2 contains strictly more - values than t1, and t1 and t2 coincide on all non--
attributes of t1. The removal of subsumed tuples from R—denoted R �—returns
only the tuples in R that are not subsumed by another tuple. The LOJ expression
R
�
1p S can then be characterized in terms of inner join, outer union, and removal of

subsumed tuples, which can be combined into the minimal union operator ` [37].

R
�
1p S � ��R 1p S� >R� � � �R 1p S�`R (4.2)

An advantage of equation 4.2 is that all of the non-monotonic behaviour is encap-
sulated within the � or ` operators, which can then be commuted above the inner
join operators (although not above projection). This allows a tree of inner and
outer joins to be abstracted as a tree of conjunctive and disjunctive operations,
which can then be transformed into a canonical form; this is the conceptual basis
for Galindo-Legaria’s join-disjunctive normal form (JDNF) [37], which we discuss
further in Section 4.6.1.

In order to combine LOJ with the other conjunctive algebra operators, we must
extend the definitions of the selection and duplicate-eliminating projection oper-
ators to handle input relations that contain nulls (introduced by lower LOJ op-
erators). Following the three-valued logic of the SQL standard [63], we define the
selection predicate A � B to evaluate to false if either attribute A or B is bound
to the null constant; in other words, equality predicates are null-rejecting. Also
following the SQL standard, we extend the definition of duplicate-eliminating pro-
jection to treat the null constant the same as any other database constant; in other
words, identical tuples are always considered duplicate copies of the same tuple.
Due to the interaction between LOJ and projection operators that introduce con-
stants, we also need to slightly modify the syntax of projection attribute lists so

1We intentionally use the symbol - rather than the SQL constant null to highlight our as-
sumption that this special null constant does not occur within the input to an SPCL query, and
therefore all occurrences of - within the query output are introduced by LOJ operators.
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E 1

R�A1,B1� E 2

R�A2,B2�,
S�B2,C2�

ΠA2,B2,C2,b AS X

�
1A1�A2,B1�B2

E 3

R�A3,B3�,
R�B3,E3�

�
1A1�A3,B1�B3

E 4

R�A4,B4�,
S�B4,C4�,
S�C4,D4�

�
1A2�A4,B2�B4,C2�C4

Q33 �� ΠA1,X,D4,A4,- ,A3

Figure 4.1: SPCL query Q33 equivalent to HCQ Q17

that constants are assigned fresh attribute names; for this we adopt the common
“c AS Aij” syntax.

The SPCL algebra is capable of expressing any hierarchical CQ. The following
example illustrates the basic technique behind the formal proof.

Example 32 Consider the SPCL query Q33 shown in Figure 4.1.2 Query Q33 is equiv-
alent to the hierarchical CQ Q17 from Figure 2.11. For example, E 1 corresponds to
the tree T6 in Figure 2.12; similarly, E 2 corresponds to T4, E 3 to T5, and E 4 to T2.
The reader can verify that when Q33 is evaluated over database instance D2 from Ex-
ample 20, the result—relation R14 in Figure 4.2—is obtained from the relations shown
in Figure 2.13 by projecting the appropriate attributes from the result of expression��Γ6 �1 Γ4� �1 Γ5� �1 Γ2.

Theorem 4.1.1 Every HCQ can be expressed as an equivalent SPCL expression.

Proof. Given any HCQ Q, create an equivalent SPCL expression as follows.

1. For each node v in bodyQ, create an SPC expression E v from the CQ bodies
of v and all of v’s ancestors, with “fresh” copies of each attribute name. If
the head of Q contains a constant that is labelled with node v, then add a
projection operator to the top of E v to introduce an appropriate constant
attribute.

2. Arrange these conjunctive queries into a left-deep tree of LOJ operators
whose left-to-right ordering corresponds to a breadth-first traversal of the

2For convenience we have used a hybrid notation rather than pure SPCL; the subexpressions
E

1
, E

2
, E

3
, and E

4
represent CQ bodies that are easily translated into pure SPC expressions.
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R14 A1 X D4 A4 - A3

1 b 5 1 - 1
2 - - - - 2
2 b 6 2 - -
3 b 6 3 - -
3 b - - - 3
5 b - - - -
6 - - - - -

R15 A1 X D4 A4 - A3

1 b - - - 1
1 b 5 1 - 1
2 - - - - 2
2 b - - - -
3 b - - - -
3 b - - - 3
5 b - - - -
6 - - - - -

Figure 4.2: SPCL query results R14 � �Q33�D2 and R15 � �Q34�D2

nodes of bodyQ. For each non-root node v whose parent node in bodyQ is u,
the LOJ operator immediately above E v has a join predicate that equates
all of the attributes from E u with their corresponding attributes in E v .

3. Create a top-most projection operator, and for each component Wi labelled
with v in the head Q�W�, output the associated attribute from E v .

Consider any tree Ti > trees�bodyQ�, and let u1, . . . , uk denote the nodes of Ti

in breadth-first order. Given any database instance D, there is a one-to-one
correspondence between embeddings of Ti into D and tuples in the inner join�E u1

1 . . . 1 E uk
�D. An embedding γ � Ti � D is terminal precisely when the

corresponding tuple in �E u1
1 . . . 1 E uk

�D is not subsumed by any other tuples

in the result of the join tree (prior to the application of the top-most projection
operator).

4.1.2 Directed Acyclic Conjunctive Queries

The following example demonstrates that SPCL is strictly more expressive than
the language of hierarchical CQs.

Example 33 Let Q34 be the SPCL query formed from Q33 in Figure 4.1 by adding
the predicate C2 � E3 to the join predicate of the LOJ operator immediately above
E 4 . Evaluating Q34 over database instance D2 from Example 20 yields the relation
R15 shown in Figure 4.2. There is no HCQ equivalent to Q34.

The reason that SPCL query Q34 cannot be expressed as an HCQ is that the
variables C2 and E3 are inherited from separate blocks that are not themselves in an
ancestor-descendant relationship. Syntactic well-formed-ness of HCQs requires that
node u must be an ancestor of v if Pv 9Lu x g; however, satisfying this requirement
for this query requires a body that is not a tree. We now generalize the language
of HCQs to encompass this case.
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Q35�A 1 , b 2 ,D 4 ,A 4 , - ,A 3 � �� 1 R�A,B�
²² **TTTTTTTTT

2 S�B,C�
²²

3 R�B,E�
ttjjjjjjjjj

4 S�C,D�,C � E

Figure 4.3: Directed acyclic conjunctive query Q35

Γ A B C D E b A 1 b 2 D 4 A 4 - A 3

1 2 4 3 b 1 b - - - 1
1 2 4 5 4 b 1 b 5 1 - 1
2 3 4 b 2 - - - - 2
2 3 5 b 2 - - - - 2
2 4 5 b 2 b - - - -
3 4 5 b 3 b - - - -
3 5 6 7 b 3 b - - - 3
5 7 8 b 5 b - - - -
6 8 b 6 - - - - -

Figure 4.4: Terminal embeddings of Q35 into D2

Definition 4.1.2 (Directed Acyclic Conjunctive Query (DACQ)) A directed
acyclic conjunctive query is a generalization of an HCQ whose body is a rooted, con-
nected DAG.

Let dags�G� denote the set of all non-empty DAGs that can be formed from
some non-empty DAG G by zero or more iterations of selecting and deleting a leaf
node. The evaluation of DACQs is defined analogously to the evaluation of HCQs
(see Section 2.3.1), in terms of embeddings γ � G � D and terminal embeddings
γ � G ; D for G > dags�bodyQ�. The CQ body�G is defined analogously to body�T .

Example 34 Figure 4.3 depicts DACQ Q35, and Figure 4.4 shows the terminal em-
beddings of Q35 into database instance D2.

We now show that every DACQ can be expressed as an SPCL expression and
vice-versa. The basic technique behind the formal proof is illustrated by the fol-
lowing example.

Example 35 Consider the SPCL query Q34 from Example 33. The DACQ Q36 shown
in Figure 4.5 is equivalent to Q34. Observe the close correspondence between the
vertices of bodyQ36

and the SPC blocks within Q34.

Theorem 4.1.3 DACQs and SPCL expressions have the same expressive power.
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Q36�A1
1 , b 2 ,D4

4 ,A1
4 , - ,A1

3 � �� 1 R�A1,B1�
²² **TTTTTTTTTTTT

2 R�A1,B1�, S�B1,C2�
²²

3 R�A1,B1�,
R�B1,E3�

uulllllllll

4 R�A1,B1�, S�B1,C2�,
S�C2,D4�,C2 � E3

Figure 4.5: DACQ Q36 equivalent to SPCL query Q34

Proof. The construction in the proof of Theorem 4.1.1 applies identically to
DACQs, which proves that SPCL expressions are at least as expressive as DACQs.

To prove the other direction, it suffices to restrict our attention to a particular
subclass of SPCL expressions. It follows from the work of previous authors on
algebraic transformations for outer-join queries [12, 41] that given an arbitrary
SPCL query, there exists an equivalent SPCL query that is rooted by a projection
operator whose input is a left-deep tree of LOJ operators with SPC expressions
occurring at its leaves. Let Q be any SPCL query with this restricted form, and
let E u1

, . . . ,E uk
denote the SPC subqueries at the leaves of the left-deep tree,

as they appear in left-to-right order. An equivalent DACQ can be constructed
as follows.

1. Create a root node labelled u1 containing all of the base relations and
join/selection predicates occurring within SPC subquery E u1

.

2. Enumerate SPC queries E u2
, . . . ,E uk

. For each query E ui
, let pi denote

the join predicate of the LOJ operator that has E ui
as its right input.

(a) Create a node labelled ui containing all of the base relations and
join/selection predicates occurring within SPC subquery E ui

, as well

as the predicates in pi.
(b) For each j x i such that pi references an attribute originating from E uj

,

add an edge from node uj to node ui. Note that well-formed-ness of
SPCL expressions guarantees j @ i, and so node uj already exists.

3. Create the head of the DACQ from the projection list of the top projection
operator of Q. For each attribute, label it with the node label corresponding
to the SPC expression from which it originates.

4. Use variable/constant substitution to eliminate any equality predicate that
refers to a variable that is local to the node containing the predicate. Stop
when the equality predicates in each node reference only constants and
parameter variables.
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Corollary 4.1.4 The query equivalence problems for DACQs and SPCL expres-
sions are polynomial-time reducible to each other.

4.2 A Canonical Form for DACQs

In order to standardize the input to the query equivalence problem which we con-
sider in the next section, in this section we define a canonical form for DACQs. The
canonical form is defined in terms of several declarative properties. In Section 4.2.1
we introduce a new type of dependency that we call a nullability dependency. In Sec-
tion 4.2.2 we use nullability dependencies to characterize whether a query adheres
to the properties of the canonical form, and we give an algorithm for converting an
arbitrary DACQ into an equivalent canonical form.

Definition 4.2.1 (DACQ Canonical Form) Given any satisfiable DACQ Q, we
say that Q is in canonical form if it satisfies all of the following properties.

[P1] For each vertex u > bodyQ, CQ body body�u is satisfiable.

[P2] For each non-root leaf vertex u > bodyQ, the head tuple W of Q contains a
component Wi that is labelled with vertex u.

[P3] For each vertex u > bodyQ and each parameter variable X > Pu:
(a) if pred�u implies that X is equal to a constant, then X does not occur

within atomsu; and
(b) if pred�u implies that X is equal to some other parameter Y > Pu, then

atomsu does not contain both X and Y (it may contain one).
(This presumes that predicates in predu do not reference variables from Lu,
which is the (non-restrictive) syntactic convention we previously adopted for
HCQs—see Section 2.3.1.)

[P4] The body of Q does not contain any redundant atoms, predicates, or edges. An
atom within atomsu is redundant if predancu implies that it is identical to an
atom within atomsancu . A predicate within predu is redundant if it is implied
by predancu . An edge �u, v� is redundant if there remains a path from u to v
after deletion of edge �u, v�.

[P5] For each pair of distinct vertices u, v > bodyQ, if v is not an ancestor of u,
then there exists some terminal embedding of Q into some database D that
embeds bodyu into D but not bodyv into D.

The purpose of properties [P1] and [P2] is to avoid having vertices in bodyQ

that do not affect the query output. The purpose of properties [P3] and [P4]
is to standardize the syntax of the CQ bodies within the vertices by removing
redundancy and minimizing the number of parameter variables. The purpose of
[P5] is to standardize the shape of the DAG formed by the vertices of bodyQ—if
property [P5] is violated, then an edge can be added from vertex v to vertex u
without affecting the output of Q over any database instance.
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Q37�0 u ,0 v � ��
x R�A,B�

²²
''OOOOOOOOOO

u R�B,C�,
R�C,D� y R�B,E�

²²
v R�E,F �

(a) DACQ Q37

R col1 col2

a b
b c
b e
c d

(b) D6

Γ A B C D E F 0 u 0 v

γ1 a b c d c d 0 0
γ2 a b c d e 0 -
γ3 b c d - -
γ4 b e - -
γ5 c d - -

(c) Γ �� �γ � Q37 ; D6�
Figure 4.6: Query Q37 and its terminal embeddings into D6

Given a query Q, properties [P1]–[P4] can all be tested in polynomial time by
examining the syntax of Q and using transitivity to reason about implication of
equality predicates. However, it is not obvious how to test property [P5]. On first
glance, it may appear that this is simply a CQ containment problem—specifically,
that body�u is not contained under body�v . However, the following example demon-
strates that the problem is more nuanced than that.

Example 36 Consider the DACQ Q37 shown in Figure 4.6a. The variable mapping
h �� �A~A,B~B,E~C,F ~D� is a homomorphism h � body�v � body�u proving that any
embedding of vertex x that extends to vertex u will also extend to vertex v. Nevertheless,
database instance D6 in Figure 4.6b proves that we cannot safely add an edge from v to
u. Doing so would eliminate the terminal embedding γ2 shown in Figure 4.6c, thereby
removing the output tuple `0, - e from �Q37�D6 .

4.2.1 Functionally-Determined Nullability

In this section we define nullability dependencies, which identify the variables in a
DACQ body that determine whether an embedding extends to some node v.

Definition 4.2.2 (Nullability Dependency (ND)) Given a DACQ Q, a non-
root node v > bodyQ, and a set of variables S b Banc

v , we say that S null-determines
v within the embeddings of Q—denoted Q à S � v—if for every database instance
D and every pair of embeddings γ,φ � bodyancv � D that coincide over S, embedding
γ extends to an embedding of v iff embedding φ extends to an embedding of v.
(Because all embeddings can be assumed to be extended with identity over constants
in C, it is a trivial extension to allow S to contain constants.)

Example 37 Continuing Example 36, terminal embeddings γ1 and γ2 in Figure 4.6c
prove that Q37 à �A,B� � v. However, Q37 à �E� � v holds (by the next lemma).

Lemma 4.2.3 For any DACQ Q and non-root node v > bodyQ containing param-
eter variables Pv, Q à Pv � v.
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Proof. For any embedding γ � bodyancv � D, whether or not γ extends to v is
determined only by the tuple of parameter values γ�Pv�.
We now present a homomorphic condition that characterizes the existence of a

nullability dependency. For simplicity, we start by considering the very restricted
case where the query body contains only two nodes, does not contain any equality
predicates, and obeys properties [P1]–[P4] of Definition 4.2.1.

Theorem 4.2.4 Given

� DACQ Q obeying properties [P1]–[P4] and composed of a single edge from
vertex u to vertex v in which predu � predv � g, and

� a set S b Bu;

Q à S � v iff there exists a mapping h � B�v � B�v 8 C, extended with identity over
constants C, such that

1. h is the identity mapping over atomsu, and
2. for any atom R�X� > atomsv, if h�R�X�� > atomsv then tuple h�X� does not

contain any variables from Bu � S.

Proof. Suppose that h exists. Choose any database instance D, and any two
embeddings γ,φ � bodyu � D that coincide over S and for which there exists
an embedding φ� � body�v � D that extends φ. Define the variable mapping
γ� � B�v � D as follows.

γ��X� �� ¢̈̈¦̈̈¤γ X h�X� if h�X� > Bu

φ� X h�X� otherwise

Because h is the identity mapping over atomsu, γ� is consistent with γ over
bodyu. For each atom R�X� > atomsv, if h�R�X�� > atomsu then γ��R�X�� �
γ X h�R�X�� > D. If h�R�X�� > atomsv, then because h�X� does not contain
any variables from Bu � S and because γ,φ are consistent over S, γ��R�X�� �
φ��R�X�� > D. Therefore γ� is an embedding of body�v into D that extends γ,
which implies Q à S � v.

Now suppose Q à S � v. Let f1 be a function that isomorphically freezes Bu to
constants in C � CQ, extended with identity over CQ. Let f2 be a function that
isomorphically freezes B�v to constants in C �CQ, extended with identity over CQ.
Choose f1, f2 so that they are consistent over S and satisfy f1�Bu � S�9 f2�B�v �
S� � g. Define database instances D1 �� f1�atomsu�, D2 �� f2�atoms�v�, and
D �� D18D2. Because f�1

1 and f�1
2 are consistent over their common domain, we

can define a single inverse mapping f�1 � f�1
1 8f�1

2 that satisfies f�1�D� � atoms�v .
Choose embedding γ � bodyu � D as γ �� f1. Choose embedding φ � body�v � D
as φ �� f2. Because Q à S � v and γ,φ are consistent over S, there must exist
some embedding γ� � body�v � D that extends γ.

Define h1 �� f�1 X γ�, and for each i A 1 define hi�1 �� h1 X hi. Observe that each
hi is a homomorphism from body�v to body�v that is the identity over Bu (and
therefore over bodyu). For h1 and each variable X > Lv, either
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1. γ��X� > CQ and so h1�X� > CQ;
2. γ��X� > f1�S� � f2�S� and so h1�X� > S;
3. γ��X� > f1�Bu � S� and so h1�X� > Bu � S; or
4. γ��X� > f2�B�v � S� and so h1�X� > B�v � S.

Consider the infinite sequence h1�X�, h2�X�, . . .; after k � SLvS steps, either

1. §i > �1, k� such that hi�X� > CQ 8 Bu, which implies that ¦j C i.�hj�X� �
hi�X��, and so γ� X hk�X� > f1�CQ 8 Bu�; or

2. ¦i > �1, k�, hi�X� > Lv, which implies that the mapping composition is
periodic with period at most k, and so ¦j.�hj�X� > Lv�. In this case,
γ� X hk�X� > f2�Lv�.

Consider any atom R�X� > atomsv such that hk�1�R�X�� > atomsv. By property
[P4], hk�1�R�X�� ¶ atomsu and therefore γ� X hk�R�X�� ¶ D1. Suppose that
there exists some variable Y > X such that hk�1�Y � > Bu�S; then, hk�1�Y � must
belong to the first case above, implying that hk�Y � � hk�1�Y � and γ� X hk�Y � �
f1�hk�Y �� ¶ adom�D2�, which is a contradiction. Therefore, variable Y cannot
exist, and so tuple hk�1�X� does not contain variables from Bu � S.

Corollary 4.2.5 There exists a unique minimal set Sv b Bu satisfying Q à Sv � v,
and Sv can be computed in NP time.

Proof. It suffices to show that for any pair of sets S1,S2 b Bu, if Q à S1 � v and
Q à S2 � v then Q à �S1 9 S2� � v. If this is true, then

Sv � Pv � �X > Pv S Q à �Pv � �X�� � v�
and so computing Sv requires testing SPv S nullability-dependencies (each of which
can be tested in NP time á la Theorem 4.2.4).

Suppose that Q à S1 � v, and let h1 be the corresponding homomorphism that
satisfies Theorem 4.2.4. Suppose that Q à S2 � v, with h2 the corresponding
homomorphism. Consider the composite function h2 Xh1. For any atom R�X� >
atomsv, if h1�R�X�� > atomsu then h2 Xh1�R�X�� > atomsu, while if h1�R�X�� >
atomsv and h1�X� contains a variable from Bu�S2 then h2 Xh1�R�X�� > atomsu

as well (because h2 is the identity over Bu and any atom that h2 maps into
atomsv can not contain Bu � S2). The symmetric argument can then be applied
to the role of h2 within the composite function h1Xh2Xh1, and then to the second
h1 within h2 Xh1 Xh2 Xh1, etc. Let h be a mapping formed by composing at leastSatomsv S alternations of h1 and h2; h is the identity over atomsu, and for any
atom R�X� > atomsv that h maps into atomsv, tuple h�X� does not contain any
variable from Bu � �S1 9 S2�. Therefore, h proves Q à �S1 9 S2� � v.

Example 38 Consider the following two DACQs.

Q38�A b � �� a R�A,B�,R�X,Y � // b R�A,A�,R�X,Z�
Q39�A d � �� c R�A,B�,R�X,Y � // d R�A,Z�,R�X,Z�
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The homomorphism hb � �A~A,B~B,X~X,Y ~Y,Z~Y � proves Q38 à �A� � b, and
Sb � �A� is minimal because no homomorphism from body�b to itself can map atom
R�A,A� into bodya. For Q39, the only homomorphism from body�d to itself that is the
identity over bodyc is hd � �A~A,B~B,X~X,Y ~Y,Z~Z�; therefore, Sd � �A,X� � Pd

is the minimal set satisfying Q39 à Sd � d.

We now extend Theorem 4.2.4 to the case where the query body contains equal-
ity predicates.

Theorem 4.2.6 Given

� DACQ Q obeying properties [P1]–[P4] and composed of a single edge from
vertex u to vertex v, and

� a set S b Bu;

assume a total ordering over B 8 C that places all constants before any variables.
Let κ � B � B 8 C be the mapping of each variable to the minimal element Y > B 8 C
such that pred�v àX � Y . Then, Q à S � v iff

1. for each variable X in predv there exists a variable Y > S such that predu à
X � Y ; and

2. κ�Q� à κ�S� � v.

Proof. Suppose that Q à S � v.

1. Suppose that predv contains some predicate X � Z such that there does not
exist a variable Y > S satisfying predu à X � Y . Let γ be any embedding
of body�v into any database D. Let c denote some fresh constant not in
adom�D�. Initialize variable mapping φ as identical to γ; then, for each
variable Y such that predu à X � Y , set φ�Y � �� c. Define database D� ��
D8φ�atomsu�. Both γ and φ embed bodyu into D� and they coincide on S,
yet γ extends to v while φ does not because φ�X� � c x φ�Z� (property [P4]
requires that predu àX � Z). Hence, Q à S � v, which is a contradiction,
and so predv cannot contain predicate X � Z.

2. By construction, mapping κ enacts the equality predicates within pred�v ;
therefore, each embedding of κ�bodyu� is also an embedding of bodyu, and
each embedding of κ�body�v� is also an embedding of body�v . Therefore, any
two embeddings of κ�bodyu� proving κ�Q� à κ�S� � v would also prove
Q à S � v, which is a contradiction. Therefore, κ�Q� à κ�S� � v.

Now suppose that for each variable X in predv there exists a variable Y > S
satisfying predu à X � Y , and suppose that κ�Q� à κ�S� � v. Given any
database D and any two embeddings γ,φ � bodyu � D that coincide over S,
embeddings γ,φ are also embeddings of κ�bodyu� � D that coincide over κ�S�.
Furthermore, γ and φ coincide over Pv, and so γ satisfies predv iff φ satisfies
predv. Suppose that γ� extends γ to an embedding of body�v ; then γ� is also an
embedding of κ�body�v�. By κ�Q� à κ�S� � v, there exists an embedding φ�

that extends φ to κ�body�v�, and φ� is also an embedding of body�v . Therefore,
Q à S � v.
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Each predicate in κ�predQ� is a tautology and can be deleted. Hence, κ�Q�
does not contain equality predicates and so κ�Q� à κ�S� � v can be tested via
Theorem 4.2.4.

Theorem 4.2.6 can be used to test whether the embeddings of an arbitrary
DACQ (satisfying properties [P1]–[P4]) satisfy a given nullability dependency.
Given DACQ Q (obeying properties [P1]–[P4]), vertex v > bodyQ, and some set
S b Banc

v , create query Q� from Q by first deleting all nodes not in �v�8ancestors�v�
and then merging together all of the nodes in ancestors�v�. It follows from Def-
inition 4.2.2 that Q à S � v if and only if Q� à S � v. This further yields the
following two corollaries of Theorem 4.2.6.

Corollary 4.2.7 Given any DACQ Q, there exists a unique minimal set SQ b B
such that for every non-root node v > bodyQ and every set S b Banc

v , if Q à S � v
then Q à �SQ 9 S� � v. Furthermore, SQ contains all variables occurring within
predQ.

Corollary 4.2.8 Set SQ can be computed in NP time.

We call SQ the nullability set of Q. We will not actually use set SQ within this
chapter; however, it plays a prominent role within the next chapter when we define
a normal form for HCEQs.

4.2.2 Converting DACQs to Canonical Form

We now show how property [P5] can be characterized in terms of nullability de-
pendencies. Using this test, we can then define an algorithm for converting an
arbitrary DACQ to an equivalent canonical form.

Theorem 4.2.9 Given

1. any DACQ Q conforming to properties [P1]–[P4] of Definition 4.2.1, and
2. any two distinct vertices u, v > bodyQ such that v is not an ancestor of u;

create the query Qu from Q by merging u with all of its ancestors into the root
vertex of the query body. Let ϑ be a mapping from the vertex labels of Q to the
vertex labels of Qu. Then, the following property holds

¦D.¦G > dags�Q�. ��u > G , v ¶ G�Ô� ��γ � G ; D� � g�� (4.3)

if and only if

1. there exists a homomorphism h � body�v � body�u such that h is the identity
over B�u 9 B�v , and

2. for all t > ancestors�v� 8 �v�, Qu à B�u 9 B�v � ϑ�t�.
Proof. Suppose that property 4.3 holds.

102



1. Property 4.3 implies that any embedding γ � body�u � D can be extended
into an embedding γ� � body�u 8body�v � D (note that body�u 8body�v is a CQ
body since body�u and body�v are each sets of atoms and predicates). This
implies that the following two CQs Q� and Q�� satisfy Q� Z Q��

Q��B�u� �� body�u
Q���B�u� �� body�u 8 body�v

which, by the Homomorphism Theorem for CQ containment [6], implies
that there exists a homomorphism h� � Q�� � Q� satisfying h��B�u� � B�u .
This mapping h� therefore satisfies the criteria for mapping h given above.

2. For any D, let γ,φ be any two embeddings of Qu that are consistent over
B�u 9B�v . For any t > ancestors�v�8v, property 4.3 guarantees that both γ
and φ can be extended into embeddings of ϑ�t�, and so Qu à B�u 9 B�v � ϑ�t�
follows by Definition 4.2.2.

We prove the opposite direction by contradiction. Suppose that h exists and that
Qu satisfies the nullability dependency for each t > ancestors�v�8�v�. Suppose
further than property 4.3 is violated; that is, there exists some database D
and G > dags�Q� with u > G and v ¶ G that allows some terminal embedding
γ � G ; D. Choose any vertex t > ancestors�v�8�v� that does not appear in G
but whose ancestors all appear in G (there must exist a choice for t, since v ¶ G
and the root node is both an ancestor of v and in G). Then,

1. γ is an embedding of bodyancϑ�t� into D;
2. γ X h is an embedding of bodyancϑ�t� into D;

3. γ and γXh are consistent over B�u9B�v (by definition of h and B�u9B�v b Banc
t );

4. γ X h extends to ϑ�v� and therefore also to ϑ�t�; and
5. Qu à B�u 9 B�v � ϑ�t� implies that γ must extend to ϑ�t� within bodyQu

,
which further implies that γ extends to t within bodyQ.

The above reasoning contradicts the choice of γ as a terminal embedding of G.
Therefore, property 4.3 must hold.

Corollary 4.2.10 For a given Q and pair of vertices u, v, testing property 4.3 is
NP-complete.

Corollary 4.2.11 Testing whether Q satisfies property [P5] is co-NP-complete.

Proof. To prove that Q does not satisfy [P5], it suffices to guess the pair of ver-
tices u, v > bodyQ that cause the violation (i.e., that satisfy property 4.3), along
with the homomorphism h from Theorem 4.2.4 and, for each t > ancestors�v�8�v� the homomorphisms needed to verify Qu à B�u 9 B�v � ϑ�t� (cf. Theo-
rems 4.2.4 and 4.2.6).

Corollary 4.2.12 For a given Q and pair of vertices u, v, property 4.3 holds if

1. there exists a homomorphism h � body�v � body�u such that h is the identity
over B�u 9 B�v , and
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Algorithm 4 Converting DACQs into canonical form

Canonical(Q)

¤ Input: satisfiable DACQ Q�W�
¤ Output: an equivalent DACQ in canonical form

1 while §u > bodyQ such that body�u is unsatisfiable
2 do delete vertex u and all its descendants from bodyQ

3 substitute - for each component of W labelled with a deleted vertex
4 while §u > bodyQ such that u is a leaf, u is not the root,

and u does not occur as a label in W
5 do delete vertex u from bodyQ

6 foreach u > bodyQ,X > Pu

7 do if pred�u equates X to Y > Pu 8 C
8 then replace any occurrence of X with Y within atomsu

9 replace any occurrence of X u with Y u within W
10 delete redundant atoms, predicates, and edges from bodyQ

11 foreach pair u, v > bodyQ such that u x v and v ¶ ancestors�u�
12 do if testProperty4.3�u, v� � true
13 then add an edge from v to u
14 while bodyQ contains a cycle
15 do merge all participating vertices
16 delete redundant atoms and predicates from bodyQ

17 return Q

2. for all t > ancestors�v� 8 �v�, Pt b �B�u 9 B�v �.
Proof. By Lemma 4.2.3, Pt b �B�u 9 B�v � implies that Q à B�u 9 B�v � t. By

construction of Qu, this further implies that Qu à B�u 9 B�v � ϑ�t�.
We now consider how to transform a query into an equivalent canonical form.

We start with an example.

Example 39 Reconsider query Q36 from Figure 4.5. It is straightforward to verify
that Q36 satisfies properties [P1]–[P3]. To verify property [P5], it suffices to consider
each of the following pairs as bindings for vertices �u, v�.�� 1 , 2 �, � 1 , 3 �, � 1 , 4 �, � 2 , 3 �, � 2 , 4 �, � 3 , 2 �, � 3 , 4 ��
For each pair, the reader can verify that no homomorphism exists from body�v to body�u;
therefore, Q36 satisfies [P5]. Hence, to convert Q36 to canonical form we simply need
to delete the redundant atoms so that it satisfies [P4]. The resulting query is variable-
isomorphic to query Q35.

The function Canonical�Q� shown in Algorithm 4 transforms an arbitrary
satisfiable DACQ into an equivalent query in canonical form. It relies upon invoking
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the function testProperty4.3�u, v�, which is not shown but directly implements
the homomorphic conditions of Theorem 4.2.9. We now briefly argue the correctness
of this algorithm.

� Lines 1–3: Because body�u is unsatisfiable, neither u nor any of its descen-
dants can participate in any embedding. Deleting u and its descendants from
bodyQ does not change the set of terminal embeddings, and the partial ap-

plication of any terminal embedding to any component of W labelled with u
or any of its descendants always returns -. Hence, when the loop terminates
the modified query remains equivalent and obeys property [P1].

� Lines 4–5: Let G be any DAG in dags�bodyQ� such that u > G, and let
G� > dags�bodyQ� be the DAG formed by deleting u from G. Let γ � G ; D

be any terminal embedding of G into some database D, and let γ� � G� � D be
the restriction of γ to G�. Deleting u from bodyQ deletes terminal embedding
γ but causes γ� to become a terminal embedding; furthermore, the partial
applications of γ and γ� to W are identical. Hence, when the loop terminates
the modified query remains equivalent and obeys properties [P1] and [P2].

� Lines 6–9: For any G > dags�bodyQ� containing vertex u, any embedding
γ of G already satisfies γ�X� � γY . Hence, when the loop terminates the
modified query remains equivalent and obeys properties [P1]–[P3].

� Line 10: For any vertex u and any G > dags�bodyQ� containing u, G necessar-
ily contains all of u’s ancestors and so deleting redundant atoms and predicate
from u does not change the embeddings for G nor the set of terminal embed-
dings. Deleting a redundant edge does not change the set dags�bodyQ�, and
so does not affect the set of terminal embeddings. Hence, after this step the
modified query remains equivalent and obeys properties [P1]–[P4].

� Lines 11–16: If testProperty4.3�u, v� evaluates to true, then any termi-
nal embedding that includes vertex u must also include vertex v. Therefore,
adding edge �v, u� does not change the set of terminal embeddings, although
it can both introduce cycles into bodyQ and cause some atoms or predicates to
become redundant. Any terminal embedding must include either all or none
of the vertices in a cycle, and so merging cycles does not affect the set of ter-
minal embeddings. Hence, after all cycles have been merged and redundant
atoms and predicates deleted, the modified query is again a proper DACQ
that remains equivalent and obeys properties [P1]–[P4]. Once this process
has been repeated for all pairs of vertices in bodyQ, the query also satisfies
property [P5].

Proposition 4.2.13 Given any satisfiable DACQ Q, Canonical�Q� is a DACQ
in canonical form satisfying Q � Canonical�Q�.
Example 40 Consider query Q40 shown in Figure 4.7. The equivalent canonical form
Q41 � Canonical�Q40�—shown in Figure 4.8—is calculated as follows.

1. body�5 is unsatisfiable, so delete nodes 5 and 8 .

body�5 �� R�A,B,C�,R�A,D,2�, S�G,H�,A � 2,A � 3

105



Q40�B 1 ,C 1 ,D 2 ,A 3 ,B 4 , F 4 ,H 5 , J 6 , L 8 ,M 10 � ��
1 R�A,B,C�

sshhhhhhhhhhh
²² **UUUUUUUUUU

2 R�A,D,2�,A � 3

²²

3 R�A,2,2�,A � 3

²²

4 R�E,B,F �
²²

5 S�G,H�,A � 2

²²

6 S�A, I�, S�I, J�
²²

7 S�E,K�
²²

8 R�L,L,L� 9 S�J, J� 10 S�K,M�
Figure 4.7: HCQ Q40 prior to conversion to canonical form

Q41�B 14 ,C 14 ,D 2 ,3 3 ,B 14 , F 14 , - , J 6 , - ,M 10 � ��
14 R�A,B,C�,R�E,B,F �

²² ++WWWWWWWWWWWW

2 R�3,D,2�,A � 3

²²

7 S�E,K�
²²

3 R�3,2,2�
²²

10 S�K,M�
6 S�3, I�, S�I, J�

Figure 4.8: Query Q41 � Canonical�Q40�
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2. Delete non-root leaf node 9 because label 9 does not occur in the query head.
3. Replace variable A with the constant 3 within the atoms of nodes 2 , 3 , and 6 ,

and replace A 3 with 3 3 within the query head.
4. Add an edge from 2 to 3 because testProperty4.3� 3 , 2 � returns true, jus-

tified by Corollary 4.2.12 as follows. Sets B�3 � �A,B,C� and B�2 � �A,B,C,D�,
and so homomorphism h � body�2 � body�3 is the identity over B�3 9 B�2 .

body�3 �� R�A,B,C�,R�A,2,2�,A � 3

body�2 �� R�A,B,C�,R�A,D,2�,A � 3

h �� �A~A,B~B,C~C,D~2�
Next, ancestors� 2 � 8 � 2 � � � 1 , 2 �, and so P1 � g and P2 � �A� are both
subsets of B�3 9 B�2 . Adding this edge makes the predicate A � 3 within node 3

redundant, and makes the edge � 1 , 3 � redundant, so delete them.
5. Add an edge from 4 to 1 because testProperty4.3� 1 , 4 � returns true, justi-

fied by Corollary 4.2.12 as follows. Sets B�1 � �A,B,C� and B�4 � �A,B,C,E,F�,
and so homomorphism h � body�4 � body�1 is the identity over B�1 9 B�4 .

body�1 �� R�A,B,C�
body�4 �� R�A,B,C�,R�E,B,F �

h �� �A~A,B~B,C~C,E~A,F ~C�
Next, ancestors� 4 � 8 � 4 � � � 1 , 4 �, and so P1 � g and P4 � �B� are both
subsets of B�1 9 B�4 . Adding this edge causes a cycle, so merge nodes 1 and 4

into a single node 14 .

4.3 Equivalence of Constant-Headed Queries

Our goal in this chapter is to characterize the query equivalence problem for HCQs
and, more generally, for DACQs. In this section we study the equivalence problem
for a subclass of DACQs that we call constant-headed, which generalize boolean
CQs. We say that a DACQ is constant-headed if its head tuple does not contain
any variables, and we use CH-DACQ to denote the class of constant-headed DACQs.

We describe a method for testing CH-DACQ equivalence via reduction to a set
of logical implication problems. Unfortunately, although this algorithm is sound, it
is not complete for concluding equivalence because it is possible that some of the
generated implication problems are only semi-decidable. As a result, our results in
this section are inconclusive in that we have neither proved nor disproved whether
CH-DACQ equivalence is decidable.

4.3.1 Head Graphs and Canonical Tuples

We will address CH-DACQ equivalence by considering separate equivalence prob-
lems for each canonical tuple. Defining a query’s canonical tuples requires under-
standing a query’s tuple shapes, which are characterized by the query head graph.
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Q42�0 2 ,0 4 ,0 5 ,0 6 � ��
1 R�A,B�,

R�C,D�
zzuuu

uuu
²² $$III

III

2 A � a,
B � b

3 A � a,
C � c

²²

4 B � b,
C � c

²²
5 C � D 6 D � d

(a) CH-DACQ Q42

1

¡¡¢¢
¢¢

¢¢
¢

²² ÁÁ=
==

==
==

2 5 4

²²
6

(b) Ghead
Q42

0 2 0 4 0 5 0 6

- - - -
0 - - -
- 0 - -
- - 0 -
0 0 - -
0 - 0 -
- 0 0 -
- 0 - 0
0 0 0 -
0 0 - 0

(c) CTQ42

Figure 4.9: A constant-headed DACQ with its head graph and canonical tuples

(Although our focus here is on CH-DACQ equivalence, we will make certain def-
initions and theorems general to arbitrary DACQs so that we can reuse them in
Section 4.4 without modification.)

Definition 4.3.1 (Head Graph) Given DACQ Q�W� with head label set L, the
head graph of Q is a rooted DAG Ghead

Q � �U,E� defined as follows.

U �� L 8 � u S u is the root node of bodyQ�
E �� �� vi , vk � S bodyQ contains path vi ; vk, and

¨ vj > L.� bodyQ contains path vi ; vj ; vk��
Definition 4.3.2 (Tuple Shapes) Given DACQ Q�W� with head label set L, we
define a tuple shape ts of Q to be a subset of L corresponding to the vertices of
some DAG within dags�Ghead

Q �. We use TSQ to denote the set of all tuple shapes
of Q.

TSQ �� �ts S §�U,E� > dags�Ghead
Q � , ts � L 9U� (4.4)

We call shape ts � L the terminal shape for Q.

Example 41 Figures 4.9a and 4.9b show constant-headed query Q42 and its head
graph Ghead

Q42
, respectively. The tuple shapes of Q42 are as follows,

TS42 � �tsg, ts2, ts4, ts5, ts24, ts25, ts45, ts46, ts245, ts246, ts2456�
where the subscripts denote the set of labels in each shape. Observe that the rela-
tion in Figure 4.9c (which we will describe further in Example 43) contains one tuple
corresponding to each tuple shape in TS42 except for the terminal shape ts2456.

Next we show that one necessary condition for equivalence between queries in
canonical form is that they have isomorphic head graphs.
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Definition 4.3.3 (Head Graph Isomorphism) Given DACQs Q�W� and Q��W ��
with head graphs Ghead

Q � �U,E� and Ghead
Q� � �U �,E��, a head graph isomorphism θ

is a bijective mapping θ � U � U � satisfying the two properties

1. θ�L� � L
�
, and

2. θ�Ghead
Q � � Ghead

Q� .

We say that Q and Q� are head graph isomorphic if θ exists.

The existence of a head graph isomorphism can be tested in linear time because

the property θ�L� � L
�

dictates the precise bijection between the vertices of the
head graphs. Observe that if θ is a head graph isomorphism between Q and Q�,
then θ�TSQ� � TSQ� follows from Definitions 4.3.2 and 4.3.3.

Theorem 4.3.4 Let Q�W� and Q��W �� be DACQs in canonical form. If Q � Q�

then Q and Q� are head graph isomorphic.

Proof (sketch). We use properties [P1] and [P5] of Definition 4.2.1 and an
analysis of cases under which θ does not exist to establish that if θ does not
exist, then there exists a tuple that only one of the queries is able to output.

The shapes in TSQ can be used to partition the set dags�bodyQ� so that asso-
ciated with each shape ts > TSQ is a subset of dags�bodyQ� comprised of the DAGs
whose terminal embeddings yield the tuples corresponding to shape ts.

dags�bodyQ, ts� �� �G S G � �U,E� > dags�bodyQ� (4.5)

and U contains all of the labels in ts

and U contains none of the labels in L � ts�
dags�bodyQ� � �

ts>TSQ

dags�bodyQ, ts� (4.6)

Observe that equations 4.4 and 4.5 together imply that set dags�bodyQ, ts� contains
a unique minimal DAG—which we denote as Gmin

ts —such that all other DAGs in
dags�bodyQ, ts� are extensions of Gmin

ts .

Gmin
ts �� G > dags�bodyQ, ts�. all leaves of G are in ts (4.7)

We use Gmin
ts to define a particular CQ� we call the shape-ts query.

Definition 4.3.5 (Shape Queries) Given DACQ Q�W�, for each shape ts > TSQ

let W Sts denote the head tuple formed by changing to - any component of W whose
label is not in ts. We define the shape-ts query Q̂Sts as the CQ� with head tuple
W Sts and body body�

Gmin
ts

, and we define shape query Q̂ as the union of all shape-ts

queries.

Q̂Sts�W Sts� �� body�
Gmin

ts
(4.8)

Q̂ �� �
ts>TSQ

Q̂Sts (4.9)
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Example 42 Continuing Example 41, consider shape tsg > TSQ42 , which corresponds
to the following subset of dags�bodyQ42

� (subscripts denote labels within each DAG).

dags�bodyQ42
, tsg� � �G1,G13�

Shape tsg has minimal dag Gmin
tsg � G1, yielding shape-tsg query Q̂42Stsg as follows.

Q̂42Stsg�- , - , - , -� �� R�A,B�,R�C,D�
Theorem 4.3.6 Given DACQ Q and any database D, the output instance of shape
query Q̂ corresponds precisely to the partial applications of all (not just terminal)
embeddings of bodyQ into D.

T��Q̂�D� � �γ̂�W� S §G > dags�bodyQ�, γ � G� D� (4.10)

Proof. By equations 4.5 and 4.6, every G > dags�bodyQ� corresponds to precisely
one shape ts > TSQ, and so G is an extension of the minimal DAG Gmin

ts . Any em-
bedding γ � G� D is therefore also an embedding of Gmin

ts into D, and head tuple

W Sts (Definition 4.3.5) is designed so that γ̂�W� � γ�W Sts� (see equation 2.22).

Corollary 4.3.7 Q Z Q̂

Corollary 4.3.8 Given DACQs Q and Q� in canonical form, if Q � Q� then

¦ts > TSQ.�Q̂Sts � Q̂�Sθ�ts��
where θ is the head graph isomorphism guaranteed by Theorem 4.3.4.

Corollary 4.3.8 is important because it provides another necessary condition
for DACQ equivalence; it can be tested in NP-time per shape ts > TSQ. Roughly
speaking, the condition is analogous to explicitly verifying equivalence between
each pair of terms in the JDNF of two join queries (see Section 4.6.1). In our
context this is only a necessary condition for equivalence, whereas for join queries
it is necessary and sufficient for equivalence (due to lack of a projection operator).
The complicating effect of projection is that it may project away variables used
in outer-join predicates (i.e., any variable used as a parameter variable in a child
CQ�). We can obtain a sufficient condition for query equivalence by dictating a
particular agreement between the attributes used in the outer-join predicates. To
do this, first define for each shape ts > TSQ the set of parameter variables Pts b P�

Q,
as follows.

Pts �� �
v>Gmin

ts

Pv

Theorem 4.3.9 Given DACQs Q and Q� in canonical form, if

� there exists a head graph isomorphism θ between Q and Q�,
� there exists a bijection ν � P�

Q � P�
Q� satisfying ¦ts > TSQ.�ν�Pts� � Pθ�ts��, and
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� for each shape ts > TSQ, the CQ equivalence Q̂Sts � Q̂�Sθ�ts� can be proved by

homomorphisms hts � Q̂�Sθ�ts� � Q̂Sts and h�ts � Q̂Sts � Q̂�Sθ�ts� that are consistent
with ν,

then Q � Q�.

Proof. Suppose that the conditions of the theorem are met. For any database
D, and any tuple shape ts > TSQ, let γ be any terminal embedding of Q into D

yielding a tuple t with shape ts. Then, γ is also an embedding of Q̂Sts into D, and
so γ Xhts is an embedding of Q̂�Sθ�ts� into D, and therefore γ Xhts is an embedding
of Q� into D whose partial application yields t.

If γ X hts is a terminal embedding then we are done; hence, suppose that there
exists some embedding φ � Q� � D that extends γ X hts and generates a tuple t�

with shape ts� that subsumes shape ts. In this case, φ X h�ts� is an embedding of
Q into D yielding t�. Although φ X h�ts� is not necessarily an extension of γ, it is
consistent with γ over any variable in P�

Q over which γ is defined. It follows that
γ must have an extension that generates tuple t�, which contradicts the choice
of γ as a terminal embedding.

The sufficient condition in Theorem 4.3.9 can actually be tested in NP-time,
because agreement of all of the homomorphisms on the parameter variables means
that there must exist a single homomorphism in each direction that can prove
equivalence for each pair of shape queries. We defer an example of Theorem 4.3.9
until the end of Example 47.

Having defined both head graphs and shape queries, we can now formally define
the canonical tuples for a given CQ-DACQ.

Definition 4.3.10 (Canonical Tuples) Given CH-DACQ Q in canonical form,
the set of canonical tuples for Q—denoted CTQ—corresponds to the head tuples of
satisfiable shape queries.

CTQ �� �W Sts S ts > TSQ , Q̂Sts is satisfiable� (4.11)

For a given canonical tuple t > CTQ, we use tsQ
t to denote the corresponding tuple

shape from TSQ.

Lemma 4.3.11 Given CH-DACQ Q and any database D, T��Q�D� b CTQ.

Proof. By Definition 4.3.10 and Corollary 4.3.7, each t > T��Q�D� corresponds to
some satisfiable query Q̂Sts with t �W Sts .

Lemma 4.3.12 Given CH-DACQs Q and Q� in canonical form, if Q � Q� then
CTQ � CTQ�.

Proof. Follows from Definition 4.3.10 because θ�TSQ� � TSQ� (Theorem 4.3.4) and

Q̂Sts � Q̂�Sθ�ts� (Corollary 4.3.8).
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Even though the set of canonical tuples CTQ is defined in terms of satisfiable
shape queries, CTQ can still contain spurious tuples that Q cannot actually output.
We illustrate this in the following example.

Example 43 Continuing Examples 41 and 42, Figure 4.9c shows the canonical tuples
of Q42 (depicted as a relation). Consider the following two shape queries Q̂42Sts25 and
Q̂42Sts2456 , whose bodies correspond to DAGs G125,G12456 > dags�bodyQ42

�.
Q̂42Sts25�0, - ,0, -� �� R�A,B�,R�C,D�,A � a,B � b,C � c,C � D

Q̂42Sts2456�0,0,0,0� �� R�A,B�,R�C,D�,A � a,B � b,C � c,C � D,D � d

The shaded row in Figure 4.9c is canonical tuple t25 � headQ̂42Sts25 . Shape query Q̂42Sts25
is satisfiable, yet Q42 will never output t25 because any embedding γ of Q̂42Sts25 is an
embedding of G125 that can be extended to an embedding of G1245, and therefore γ is
not terminal. The tuple t2456 � `0,0,0,0 e � headQ̂42Sts2456 is not a canonical tuple—even

though ts2456 > TSQ42—because shape query Q̂42Sts2456 is unsatisfiable.

4.3.2 Tuple-Specific Equivalence

Having defined a query’s canonical tuples, we now reduce CH-DACQ equivalence
to a set of tuple-specific equivalence tests, one per canonical tuple.

Definition 4.3.13 (Tuple-Specific Equivalence) Given any tuple t and any two

DACQs Q and Q�, we write Q
t� Q� to mean ¦D.�t > �Q�D 
� t > �Q��D�.

Theorem 4.3.14 Given CH-DACQs Q and Q� in canonical form, Q � Q� iff

1. CTQ � CTQ�, and

2. ¦t > CTQ, Q
t� Q�.

Proof. “If” follows from Lemma 4.3.11 and Definition 4.3.13. “Only if” follows
from Lemma 4.3.12 and Definition 4.3.13.

In the remainder of this section we consider how to decide the tuple-specific
equivalence condition that arises from Theorem 4.3.14. Our presentation of the
problem is organized by the complexity of the head graph.

Tuple-Specific Equivalence: Single-Node Head Graphs

Let Q denote a CH-DACQ in canonical form whose head graph contains only one
node u . This implies dags�Ghead

Q � � �Gu�, and so CTQ � �t� for some (possibly
empty) tuple t. By Definition 4.3.1, vertex u must be the root vertex of bodyQ.
Because Q is in canonical form, property [P2] of Definition 4.2.1 implies that bodyQ

is also only a single vertex—hence, Q is simply a boolean CQ. Given query Q� with
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CTQ� � CTQ, testing tuple-specific equivalence Q
t� Q� therefore corresponds to

boolean CQ equivalence, which corresponds to the NP-complete problem of finding
homomorphisms in each direction between Q and Q�.

Before moving on to queries with more complex head graphs, we first present
an alternative characterization of equivalence in terms of finite implication of de-
pendencies. While this may seem like overkilling the problem for this case, in later
sections we will extend this alternative characterization to handle more complex
head graphs.

An embedded dependency ξ can be expressed as a rule of the form

P ξ � Cξ

where P ξ—called the premise—and Cξ—called the conclusion—are both CQ� bod-
ies [6, 30]. Any variable occurring in both the premise and the conclusion is called
free, and is implicitly universally quantified; all other variables are implicitly ex-
istentially quantified. Dependency ξ is satisfied by database instance D—denoted
D à ξ—if each embedding of the premise into D can be extended to an embedding
of the conclusion. Without loss of generality we can assume that P ξ 9 Cξ � g,
because any atom or predicate occurring on both sides of the dependency is triv-
ially implied and can therefore be deleted from Cξ. Given a set of dependencies Σ
and a database instance D, we write D à Σ to mean ¦ξ > Σ.�D à ξ�. Given two
dependency sets Σ1 and Σ2, we write Σ1 àfin Σ2 and Σ1 �fin Σ2 to mean finite impli-
cation ¦D.�D à Σ1 Ô� D à Σ2� and finite equivalence ¦D.�D à Σ1 
� D à Σ2�,
respectively (àunr and �unr are analogous for when the quantification over D allows
infinite database instances). Deciding àfin and �fin are mutually-reducible problems,

Σ1 àfin Σ2 
� Σ1 �fin �Σ1 8Σ2� (4.12)

Σ1 �fin Σ2 
� �Σ1 àfin Σ2� , �Σ2 àfin Σ1� (4.13)

and so although we use finite equivalence for conceptual simplicity, it corresponds
to the widely-studied problem of finite implication.

Corresponding to node u of query Q and canonical tuple t, we define the fol-
lowing dependency ξ�u,t� and (singleton) dependency set Σ�Q,t�.

ξ�u,t� �� body�u � � (4.14)

Σ�Q,t� �� �ξ�u,t�� (4.15)

Lemma 4.3.15 For any database D, t > �Q�D iff D à Σ�Q,t�.
Proof. By equation 4.14, D à ξ�u,t� iff body�u does not embed into D.

Corollary 4.3.16 Q
t� Q� iff Σ�Q,t� �fin Σ�Q�,t�.

Deciding finite equivalence between sets Σ�Q,t� and Σ�Q�,t� (as defined by equa-
tion 4.15) is NP-complete due to the constrained forms of the dependencies.
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Q43�0 d � �� a R�A,B� // b S�B,C�, T �B,D� // c S�C,E� // d T �D,F �
Q44�0 4 � �� 1 R�A,B� //

++WWWWW
2 S�B,C� // 4 S�C,E�, T �D,F �
3 T �B,D� 22eeeeeee

Q45�0 o � �� l R�A,B� // m S�B,C� // n S�C,E� // o T �B,D�, T �D,F �
Q46�0 z � �� w R�A,B� // x T �B,D� // y T �D,F � // z S�B,C�, S�C,E�

Figure 4.10: Four CH-DACQs with dual-node head graphs

Tuple-Specific Equivalence: Dual-Node Head Graphs

Let Q denote a CH-DACQ in canonical form whose head graph contains a single
edge from parent u to child v . This implies dags�Ghead

Q � � �Guv,Gu�, and so

CTQ � �t1, t2� for some tuple t1 whose corresponding shape tsQ
t1
> TSQ is terminal,

and a second tuple t2 that is subsumed by t1 (and whose corresponding shape
tsQ

t2
> TSQ does not contain v ). Because Q is in canonical form, property [P2] of

Definition 4.2.1 implies that bodyQ is a rooted DAG with root u and the single leaf
v, but with an arbitrary number of intermediate vertices. Given a second query Q�

with CTQ� � CTQ, we can characterize the relationships
t1� and

t2� by reducing them
to deciding finite equivalence between sets of dependencies.

Example 44 Figure 4.10 shows four queries that each have a dual-node head graph
and canonical tuples �`0 e, ` - e�. All four queries are in DACQ canonical form.

Testing equivalence for tuple t1 is analogous to the case of single-node head
graphs. Corresponding to node v of query Q and tuple t1 we define the dependency
ξ�v,t1� and the dependency set Σ�Q,t1� as follows.

ξ�v,t1� �� body�v � � (4.16)

Σ�Q,t1� �� �ξ�v,t1�� (4.17)

As before, deciding finite equivalence between Σ�Q,t1� and Σ�Q�,t1� is NP-complete.

Lemma 4.3.17 For any database D, t1 > �Q�D iff D à Σ�Q,t1�.
Corollary 4.3.18 Q

t1� Q� iff Σ�Q,t1� �fin Σ�Q�,t1�.
Example 45 Continuing Example 44, for canonical tuple `0 e all four queries in Fig-
ure 4.10 yield the same `0 e-dependency set

Σ�Q43,`0 e� � Σ�Q44,`0 e� � Σ�Q45,`0 e� � Σ�Q46,`0 e�
� ��R�A,B�, S�B,C�, T �B,D�, S�C,E�, T �D,F ��� ��
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and so Q43
`0 e� Q44

`0 e� Q45
`0 e� Q46 follows trivially.

Deciding equivalence for tuple t2 is more challenging, because the definition of
DACQ evaluation semantics in terms of terminal embeddings makes query Q non-
monotonic with respect to tuple t2. As a result, the dependencies we derive no
longer have the constrained form of equations 4.14 and 4.16, but instead have con-
clusions with non-empty CQ� bodies. In particular, it is the existentially-quantified
variables within the conclusions that are problematic. Implication of arbitrary sets
of embedded dependencies is a widely-studied problem, and in Section 4.6.4 we
survey some of the literature pertaining to it. For now, the salient features are that
although it is only semi-decidable in general, there are useful sub-classes of the
problem which allow decidability—in particular, classes for which the well-studied
chase algorithm is guaranteed to terminate [6, 30].

To decide Σ àfin ξ using the chase we construct a new dependency ξ̂ by iso-
morphically “freezing” both the free variables and the non-free premise variables
of ξ into fresh constants. Because premise P ξ̂ contains only constants, it can be
treated as a database instance to be chased. Let database D �� chaseΣ�P ξ̂� denote
the (possibly infinite) database resulting from any sequence of chase steps applying
dependencies from Σ to the initial database P ξ̂. If D is finite then D à Σ; if D is
infinite then the truth of D à Σ is independent of the order of chase steps3 [6, Ch.
10]. In either case, the truth of D à ξ̂ is independent of the order of chase steps.3

The chase procedure can return the conclusion Σ àfin ξ in finite time by demon-
strating any finite database D̂ b D corresponding to a prefix of the chase sequence
yielding D, such that either

1. there exists an embedding γ � C ξ̂ � D̂, or
2. D̂ contains a contradiction.

This proves D̂ à ξ̂ and hence D à ξ̂ (because premise P ξ̂ does not contain variables)
which—by the isomorphic freezing—implies Σ àunr ξ and hence Σ àfin ξ.

The chase procedure only returns the conclusion Σ àfin ξ when D is finite and
D à ξ̂ (i.e., D does not contain a contradiction and there does not exist an embed-
ding of C ξ̂ into D). Hence, Σ àfin ξ can only be decided by the chase algorithm in
cases where there exists a finite chase sequence for chaseΣ�P ξ̂�—a condition which
is itself undecidable to identify [30]. In Section 4.5 we discuss how to deal with
cases where chase termination cannot be guaranteed.

Recall from equation 4.5 that dags�bodyQ, tsQ
t2
� contains all of the DAGs in

dags�bodyQ� containing node u but not node v. For each G > dags�bodyQ, tsQ
t2
�

we define the following embedded dependency ξ�G,t2�, and we collect all of these
dependencies into the dependency set Σ�Q,t2�.

ξ�G,t2� �� body�G � body�v (4.18)

Σ�Q,t2� �� �ξ�G,t2� S G > dags�bodyQ, t2�� (4.19)

3As long as the infinite chase sequence obeys certain basic properties—primarily, that no
dependency is “starved.”

115



(When constructing ξ�G,t2� from equation 4.18, any trivially-implied atoms are
deleted from the conclusion.)

Example 46 Continuing Examples 44 and 45, for canonical tuple ` - e the queries in
Figure 4.10 yield the following ` - e-dependency sets.

Σ�Q43,` - e� � � ξ�a,` - e� � �R�A,B��� �S�B,C�, T �B,D�, S�C,E�, T �D,F ��,
ξ�ab,` - e� � �R�A,B�, S�B,C�, T �B,D��� �S�C,E�, T �D,F ��,
ξ�abc,` - e� � �R�A,B�, S�B,C�, T �B,D�, S�C,E��� �T �D,F �� �

Σ�Q44,` - e� � � ξ�1,` - e� � �R�A,B��� �S�B,C�, T �B,D�, S�C,E�, T �D,F ��,
ξ�12,` - e� � �R�A,B�, S�B,C��� �T �B,D�, S�C,E�, T �D,F ��,
ξ�13,` - e� � �R�A,B�, T �B,D��� �S�B,C�, S�C,E�, T �D,F ��,
ξ�123,` - e� � �R�A,B�, S�B,C�, T �B,D��� �S�C,E�, T �D,F �� �

Σ�Q45,` - e� � � ξ�l,` - e� � �R�A,B��� �S�B,C�, S�C,E�, T �B,D�, T �D,F ��,
ξ�lm,` - e� � �R�A,B�, S�B,C��� �S�C,E�, T �B,D�, T �D,F ��,
ξ�lmn,` - e� � �R�A,B�, S�B,C�, S�C,E��� �T �B,D�, T �D,F �� �

Σ�Q46,` - e� � � ξ�w,` - e� � �R�A,B��� �T �B,D�, T �D,F �, S�B,C�, S�C,E��,
ξ�wx,` - e� � �R�A,B�, T �B,D��� �T �D,F �, S�B,C�, S�C,E��,
ξ�wxy,` - e� � �R�A,B�, T �B,D�, T �D,F ��� �S�B,C�, S�C,E�� �

Lemma 4.3.19 For any database D, t2 > �Q�D iff D à Σ�Q,t2�.
Proof. Suppose that t2 > �Q�D. Then, there exists some terminal embedding γ �

G� D of some DAG G > dags�bodyQ, tsQ
t2
� which doesn’t contain v; however, γ is

also an embedding of P ξ�G,t2� that does not extend to Cξ�G,t2� and so D à ξ�G,t2�.
Conversely, let G be a maximal DAG in dags�bodyQ, tsQ

t2
� such that D à ξ�G,t2�.

Then, there exists embedding γ � P ξ�G,t2� � D that does not extend to Cξ�G,t2� ;
however, γ is a terminal embedding of G (by choice of G) and so generates tuple
t2 > �Q�D.

Corollary 4.3.20 Q
t2� Q� iff Σ�Q,t2� �fin Σ�Q�,t2�.

Example 47 Continuing Examples 44–46, we now prove that Q43 � Q44, but for all
other pairs of queries, equivalence does not hold.

Q43
` - e� Q44: Σ�Q43,` - e� àfin ξ�1,` - e�: Trivial

Σ�Q43,` - e� àfin ξ�12,` - e�:
D �� chase

Σ�Q43,` - e���R�a, b�, S�b, c���
� �R�a, b�, S�b, c�, S�b, c1�, T �b, d1�, S�c1, e1�, T �d1, f1�, S�c, e2��
à �T �b,D�, S�c,E�, T �D,F ��

Σ�Q43,` - e� àfin ξ�13,` - e�:
D �� chase

Σ�Q43,` - e���R�a, b�, T �b, d���
� �R�a, b�, T �b, d�, S�b, c1�, T �b, d1�, S�c1, e1�, T �d1, f1�, T �d, f2��
à �S�b,C�, S�C,E�, T �d,F ��

Σ�Q43,` - e� àfin ξ�123,` - e�: Trivial
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Σ�Q44,` - e� àfin ξ�a,` - e�: Trivial
Σ�Q44,` - e� àfin ξ�ab,` - e�: Trivial
Σ�Q44,` - e� àfin ξ�abc,` - e�:

D �� chase
Σ�Q44,` - e���R�a, b�, S�b, c�, T �b, d�, S�c, e���

� �R�a, b�, S�b, c�, T �b, d�, S�c, e�, S�c, e1�, T �d, f1��
à �T �d,F ��

Q43

` - ey Q45: Σ�Q45,` - e� àfin ξ�ab,` - e�:
D �� chase

Σ�Q45,` - e���R�a, b�, S�b, c�, T �b, d���
� �R�a, b�, S�b, c�, T �b, d�, S�c, e1�, T �b, d1�, T �d1, f1��
à �S�c,E�, T �d,F ��

Q43

` - ey Q46: Σ�Q46,` - e� àfin ξ�ab,` - e�:
D �� chase

Σ�Q46,` - e���R�a, b�, S�b, c�, T �b, d���
� �R�a, b�, S�b, c�, T �b, d�, T �d, f1�, S�b, c1�S�c1, e1��
à �S�c,E�, T �d,F ��

Q45

` - ey Q46: Σ�Q46,` - e� àfin ξ�lm,` - e�:
D �� chase

Σ�Q46,` - e���R�a, b�, S�b, c���
� �R�a, b�, S�b, c�, T �b, d1�, T �d1, f1�, S�b, c1�S�c1, e1��
à �S�c,E�, T �b,D�, T �D,F ��

The equivalence Q43 � Q44 also follows from Theorem 4.3.9. Queries Q43 and Q44 have
parameter sets P�

Q43
� P�

Q44
� �B,C,D� with bijection ν being the obvious identity

mapping. The obvious identity mapping also forms the homomorphism between the
shape queries for shapes tsQ43` - e � g � tsQ44` - e

Q̂43Sg�-� �� R�A,B�
Q̂44Sg�-� �� R�A,B�

and shape queries for shapes tsQ43`0 e � � d � > TSQ43 and tsQ44`0 e � � 4 � > TSQ46 .

Q̂43Sd�0� �� R�A,B�, S�B,C�, T �B,D�, S�C,E�, T �D,F �
Q̂44S4�0� �� R�A,B�, S�B,C�, T �B,D�, S�C,E�, T �D,F �

In contrast, queries Q45 and Q46 have parameter sets P�
Q45

� �B,C� and P�
Q46

� �B,D�,
respectively, and so Theorem 4.3.9 does not apply to any other pairings of the four
queries. (Even though P�

Q45
and P�

Q46
are bijective, no homomorphisms exist between

Q̂45So and Q̂46Sz that are consistent with either possible bijection.)

Tuple-Specific Equivalence: Arbitrary Head Graphs

We now consider the problem of deciding tuple-specific equivalence for constant-
headed DACQs with arbitrary head graphs. Our approach is a straightforward
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extension of the technique we used for queries with single-edge head graphs; the
additional complication is that we require reasoning about implication of disjunctive
embedded dependencies. A disjunctive embedded dependency ξ can be expressed
as a rule of the form

P ξ � Cξ
1 S . . . S Cξ

n (4.20)

where the premise P ξ and each conclusion Cξ
i are CQ� bodies; ξ is satisfied by

database instance D if each embedding of the premise into D can be extended to
an embedding of at least one of the conclusions. Deciding implication between sets
of disjunctive embedded dependencies is discussed in Section 4.6.4.

Given any constant-headed DACQ Q and any canonical tuple t > CTQ corre-
sponding to shape tsQ

t > TSQ, let � v1 , . . . vn � b L be the set of vertices in head graph
Ghead

Q that do not occur in shape tsQ
t but are children of vertices in tsQ

t . For each

G > dags�bodyQ, tsQ
t � we define a single embedded disjunctive dependency ξ�G,t�

ξ�G,t� �� ¢̈̈¦̈̈¤body�G � � if n � 0

body�G � body�v1
S . . . S body�vn

otherwise
(4.21)

and we define dependency set Σ�Q,t� as follows.

Σ�Q,t� �� �ξ�G,t� S G > dags�bodyQ, tsQ
t �� (4.22)

Note that n � 0 if and only if tsQ
t is terminal if and only if dags�bodyQ, tsQ

t � ��bodyQ� (by property [P2] of Definition 4.2.1).

Lemma 4.3.21 For any database D and canonical tuple t, t > �Q�D iff D à Σ�Q,t�.
Proof. Suppose that t > �Q�D. Then, there exists some terminal embedding

γ � G ; D of some DAG G > dags�bodyQ, tsQ
t �. However, γ is also an embedding

of premise query P ξ�G,t�
. If tsQ

t is not the terminal shape then γ does not extend

to any conclusion query C
ξ�G,t�
i , whereas if tsQ

t is terminal then the conclusion
of ξ�G,t� is a contradiction to which no embedding can extend; in either case,
D à ξ�G,t�.
Conversely, let G be a maximal DAG in dags�bodyQ, tsQ

t � such that D à ξ�G,t�.
There exists embedding γ � P ξ�G,t� � D that does not extend to any conclusion
of ξ�G,t�; however, γ is a terminal embedding of G that generates tuple t > �Q�D.

Corollary 4.3.22 For any canonical tuple t > CTQ, Q
t� Q� iff Σ�Q,t� �fin Σ�Q�,t�.

4.4 Queries with Variable Heads

In this section consider the equivalence problem for arbitrary DACQs. Given a
DACQ Q whose head tuple W may contain variables, we start by observing that
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the definitions of head graphs, tuple shapes, and shape queries given in Section 4.3.1
are not specific to CH-DACQs. As a result, both necessary conditions for query
equivalence that we derived in that section—isomorphism between head graphs
(Theorem 4.3.4) and equivalence of shape queries (Corollary 4.3.8)—apply to arbi-
trary DACQs.

The definition of canonical tuples given in Section 4.3.1 is specific to CH-DACQs.
In Section 4.4.1 we extend the definition of canonical tuples to handle queries
with variables in the head tuple, using a standard approach of “freezing” the head
variables into constants [6, 34]. This allows us to reduce DACQ equivalence to tuple-
specific equivalence between CH-DACQs, analogous to the similar reduction for CH-
DACQs (Theorem 4.3.14). In the worst case our decision algorithm enumerates an
exponential number of canonical freezings per tuple shape; however, in Section 4.4.2
we discuss an optimization that allows us to avoid considering certain freezings.
For DACQs that can be expressed without explicit equality—including all CQs and
most practical queries expressible in SPCL—this reduces the problem to considering
a single canonical freezing per tuple shape.

4.4.1 Canonical Freezings and Canonical Tuples

The canonical freezings of a query are defined in terms of a set of symbolic constants
CS. Choose CS as any strict subset of C such that both CS and C � CS are infinite.
Without loss of generality, we will assume that CS is chosen so that for any given set
of queries, all constants appearing in the queries are from the set C � CS. Because
the constants in CS do not appear in query definitions, their precise identity is
unimportant (hence the name “symbolic”).

Proposition 4.4.1 Given any two DACQs Q and Q� (satisfying �CQ 8 CQ�� 9 CS �
g), if Q y Q� then there exists a database instance D with adom�D� ` CS 8 CQ 8 CQ�

such that �Q�D x �Q��D.

Given any two tuples t and t� over domain C 8 �-�, we say that t is CS-
homomorphic to t�—denoted t o t�—if there exists a mapping h � CS � C, extended
with identity over �C�CS�8�-�, such that h�t� � t�. We say that t is CS-isomorphic
to t�—denoted t � t�—if t o t� and t� o t. We say that t is more general than
t�—denoted t i t�—if t o t� and t� ç t.

Given two sets of tuples S1, S2 over C, we say that S1 is CS-contained in S2—
denoted S1 �̀ S2—if ¦t1 > S1§t2 > S2.�t1 � t2�. We say that S1 is CS-equivalent to
S2—denoted S1 � S2—if S1 �̀ S2 and S2 �̀ S1.

In order to define the canonical tuples for a DACQ, we first define the canonical
freezings of a satisfiable CQ�. Any tuple that can be output by the CQ� can be
obtained by an isomorphic substitution for the symbolic constants within one of
the canonical freezings.
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Definition 4.4.2 (Canonical CQ� Freezings) Given any satisfiable CQ� Q�W�
with CB9CS � g, let HQ denote the set of all homomorphisms h �W9B � CS8CQ that
have been extended with identity over all symbols not in W 9 B. The (infinite) set
of valid freezings of Q—denoted CF�Q—contains the homomorphic images of head

tuple W under mappings from HQ that are consistent with the equality predicates
in the query body.

CF�Q �� �h�W� S h > HQ , h�predQ� à �� (4.23)

The set of canonical freezings of Q—denoted CFQ—is a minimal subset of CF�Q
satisfying CFQ � CF�Q (if many such sets exist, we arbitrarily choose one).

Set CFQ is finite, with size bounded by a function exponential in both SCQS andSW 9 BS.
Lemma 4.4.3 Given CQ� Q and any database instance D over CS8CQ, T��Q�D� �̀
CFQ.

Proof. Any embedding γ � Q � D yields γ�W� > CF�Q (by Definition 4.4.2), and
so T��Q�D� b CF�Q �̀ CFQ.

Definition 4.4.4 (Canonical Tuples) Given DACQ Q in canonical form, the set
CTQ of canonical tuples for Q corresponds to the canonical freezings of all satisfiable
shape queries.

CTQ �� �t S §ts > TSQ , Q̂Sts is satisfiable , t > CFQ̂Sts�
As defined previously for CH-DACQs, we use tsQ

t to denote the tuple shape from
TSQ corresponding to a given canonical tuple t > CTQ.

Example 48 Consider the three DACQs Q47, Q48, and Q49 shown in Figure 4.11a.
Observe that all three queries have the following set of tuple shapes,

TSQ47 � TSQ48 � TSQ49 � �ts1, ts12, ts13, ts123�
where the subscripts denote the set of labels in each shape. Figures 4.11b–4.11f show
the canonical tuples for Q47, Q48, and Q49, partitioned into sets of canonical freezings
for the different tuples shapes. For each tuple shape we have organized the canonical
freezings into a lattice in which ancestors are more general than their descendants.
Observe that CTQ47 � CTQ48 even though the head tuples of Q47 and Q48 are not
isomorphic. In contrast, CTQ47 x CTQ49 (due to shape ts13) even though the head tuples
of Q47 and Q49 are isomorphic.

Lemma 4.4.5 Given DACQ Q in canonical form and any database instance D
over CS 8 CQ, T��Q�D� �̀ CTQ.
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Q47�A 1 ,B 1 ,C 1 ,E 2 ,B 3 � �� 1 R�A,B,C� //

,,YYYYYYYYYY
2 S�C,E�,A � B

3 B � C

Q48�A 1 ,B 1 ,C 1 ,E 2 ,C 3 � �� 2 S�C,E�,A � B,C � D1 R�A,B,C�,
R�A,B,D� 00bbbbb

..\\\\\\\\\\
3 B � C,B � D

Q49�A 1 ,B 1 ,C 1 ,E 2 ,B 3 � �� 1 R�A,B,C� //

,,YYYYYYYYYY
2 S�C,E�,A � B

3 A � C

(a) DACQs Q47, Q48, and Q49

abc- -

zzttttttttt

²² $$JJJJJJJJJJ

aba- -

%%KKKKKKKKK abb- -

²²

aac- -

yyssssssssss

aaa- -

(b) CFQ̂47Sts1 � CFQ̂48Sts1 � CFQ̂49Sts1

aace-

yyssssssssss

²² %%KKKKKKKKKK

aacc-

%%KKKKKKKKKK aaca-

²²

aaae-

yyssssssssss

aaaa-

(c) CFQ̂47Sts12 � CFQ̂48Sts12 � CFQ̂49Sts12
abb-b

²²
aaa-a

(d) CFQ̂47Sts13 � CFQ̂48Sts13

aba-a

²²
aaa-a

(e) CFQ̂49Sts13

aaaea

²²
aaaaa

(f) CFQ̂47Sts123 � CFQ̂48Sts123 � CFQ̂49Sts123
Q47Sabc- -�a 1 , b 1 , c 1 ,0 2 ,0 3 � �� 1 R�a, b, c� //

,,XXXXXXXXXX
2 S�c,E�, a � b

3 b � c

Q47Saace-�a 1 , a 1 , c 1 , e 2 ,0 3 � �� 1 R�a, a, c� //

,,XXXXXXXXXX
2 S�c, e�, a � a

3 a � c

Q47Sabb-b�a 1 , b 1 , b 1 ,0 2 , b 3 � �� 1 R�a, b, b� //

,,XXXXXXXXXX
2 S�b,E�, a � b

3 b � b

Q47Saaaea�a 1 , a 1 , a 1 , e 2 , a 3 � �� 1 R�a, a, a� //

,,XXXXXXXXXX
2 S�a, e�, a � a

3 a � a

(g) Frozen DACQs obtained from Q47

Figure 4.11: Three DACQs with their canonical tuples
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Proof. Follows from Definition 4.4.4 and Lemma 4.4.3.

Lemma 4.4.6 Given two DACQs Q and Q� in canonical form, if Q � Q� then
CTQ � CTQ�.

Proof. Follows from Definition 4.4.4 because θ�TSQ� � TSQ� (Theorem 4.3.4), and

Q̂Sts � Q̂�Sθ�ts� (Corollary 4.3.8) implies CFQ̂Sts � CFQ̂�Sθ�ts� (by Definition 4.4.2).

Corollary 4.4.7 If Q � Q� then CTQ and CTQ� can be chosen so that CTQ � CTQ�.

Definition 4.4.8 (Frozen DACQ) Given DACQ Q�W� in canonical form and
any canonical tuple t > CTQ with corresponding shape tsQ

t > TSQ,

� recall that t is a canonical freezing of shape query Q̂StsQ
t

(cf. Definition 4.4.4),

� recall that Q̂StsQ
t

is a CQ� with head tuple W StsQ
t

(cf. Definition 4.3.5), and

� recall that there exists some homomorphism ht �W StsQ
t
9B � CS 8 CQ extended

with identity over all symbols not in W StsQ
t
9 B such that t � ht�W StsQ

t
� (cf.

Definition 4.4.2).

We define the freezing of Q with t—denoted QSt—as the following CH-DACQ.

� headQSt ��W St, where W St is constructed from W by locating each component

Wi
v in which Wi is a variable, and if v > tsQ

t replacing Wi with ht�Wi�,
whereas if v ¶ tsQ

t replacing Wi with an arbitrary constant from C � CS (for
simplicity, we always use the constant 0).

� bodyQSt �� ht�bodyQ�
Example 49 Continuing Example 48, Figure 4.11g shows four frozen DACQs obtained
from Q47 by freezing with the most general canonical freezing for each of the four tuple
shapes. Note that all of the DACQs in Figure 4.11g are constant-headed, but none of
them are in canonical form.

Lemma 4.4.9 Given any DACQ Q in canonical form, ¦t > CTQ.�Q t� QSt�.
Proof. Consider any database D. Suppose that t > �Q�D; then there exists some

terminal embedding γ � Q ; D satisfying γ̂�W� � t. This implies that there
exists some G > dags�bodyQ, tsQ

t � such that γ is a terminal embedding of G (see

equation 4.5). By Theorem 4.3.6, γ is also an embedding of Q̂StsQ
t

intoD satisfying

γ̂�W StsQ
t
� � t, and so, by definition of wSt, γ̂�W St � γ̂�W StsQ

t
� � t � ht�W StsQ

t
�.

Because mappings γ and ht agree over W StsQ
t

and ht is the identity mapping over

all other symbols, we can decompose embedding γ as γ � φXht for some mapping
φ � B � adom�D� extended with identity over constants C. Because QSt has body
ht�bodyQ�, mapping φ is an embedding of ht�G� into D satisfying φ̂�W St� � t.
This implies t > �QSt�D.
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Now suppose that t > �QSt�D; then there exists some G� > dags�ht�bodyQ�� and

some terminal embedding φ � G� ; D satisfying φ̂�W St� � t, implying4 G� >
dags�ht�bodyQ�, tsQ

t �. Then γ �� φ X ht is a terminal embedding of the DAG G >
dags�bodyQ� satisfying G� � ht�G�, and γ̂�W� � t because G > dags�bodyQ, tsQ

t �.
The following theorem is the main result of this section. It reduces DACQ

equivalence to a set of tuple-specific equivalence tests between CH-DACQs, which
was the topic of Section 4.3.2.

Theorem 4.4.10 Given two DACQs Q and Q� in canonical form, Q � Q� iff

1. CTQ � CTQ�, and

2. ¦t > CTQ, QSt t� Q�St.
Proof. “If” follows from Proposition 4.4.1, Lemma 4.4.5, and Corollary 4.4.7.

“Only if” follows from Lemmas 4.4.6 and 4.4.9.

4.4.2 Avoiding Tuple-Specific Equivalence Tests

In Section 4.3 we reduced CH-DACQ equivalence to testing one tuple-specific CH-
DACQ equivalence problem per canonical tuple (Theorem 4.3.14). While Theo-
rem 4.4.10 proves a similar result for arbitrary DACQs, the difference is that the
number of canonical tuples per tuple shape depends upon the number of canonical
freezings, which can be exponential in the number of variables in the head tuple. It
is well-known that to test CQ equivalence it suffices to test boolean CQ equivalence
for only the most general freezing (a consequence of the Homomorphism Theorem),
and so the algorithm yielded by Theorem 4.4.10 is clearly not optimal for CQs (i.e.,
DACQs with one vertex in the body). However, the following example illustrates
that for arbitrary DACQs it is not sufficient to only consider the most general
freezings.

Example 50 Continuing Example 49, consider the two queries obtained by freezing
Q48 with canonical tuples abc- - and aace-.

Q48Sabc- -�a 1 , b 1 , c 1 ,0 2 ,0 3 � �� 2 S�c,E�, a � b, c � D1 R�a, b, c�,
R�a, b,D� 00bbbbb

..\\\\\\\\\\
3 b � c, b � D

Q48Saace-�a 1 , a 1 , c 1 , e 2 ,0 3 � �� 2 S�c, e�, a � a, c � D1 R�a, a, c�,
R�a, a,D� 00bbbbb

..\\\\\\\\\
3 a � c, a � D

4We needed to insert arbitrary constants into head W St of query QSt so that W St retains the
same labels and tuple shapes as W. If we instead defined W St �� t—which effectively removes any
output labels not in tsQ

t —then QSt would output the tuple t too often (in particular, QSt would
incorrectly output t for any terminal embedding φ� � G� ; D of any G� > dags�ht�bodyQ�, ts�� for
which tsQ

t ` ts�).
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From the queries in Figure 4.11g it is straightforward to verify the tuple-specific equiv-

alences. Q47Sabc- - `abc- - e� Q48Sabc- - and Q47Saace- `aace- e� Q48Saace- . In fact, for any
canonical tuple t with shape ts12, ts13, or ts123 we can show that the t-specific equiv-

alence Q47St t� Q48St holds (even though the generic equivalence Q47St � Q48St may
not hold). In contrast, for shape ts1, tuple-specific equivalence holds for the most
general freezing abc- -, but the database D7 � �R�a, a, c�,R�a, a, d�, S�c, e�� proves

Q47Saac- -
`aac- - ey Q48Saac- - and therefore Q47

`aac- - ey Q48, as demonstrated by the fol-
lowing relations �Q47�D7 and �Q48�D7 .

�Q47�D7 A 1 B 1 C 1 E 2 B 3

a a c e -
a a d - -

�Q48�D7 A 1 B 1 C 1 E 2 C 3

a a c e -
a a c - -
a a d - -

The “problem” illustrated by Example 50 is that the tuple-specific equivalence

Q47Sabc- - `abc- - e� Q48Sabc- - does not imply Q47Saac- - `aac- - e� Q48Saac- - , even though
canonical tuple `abc- - e is more general than `aac- - e. In order to do better than
the naive algorithm that tests tuple-specific equivalence for every canonical tuple,
we require an admissible heuristic for identifying when these “implication failures”
are guaranteed not to occur. The next theorem proposes a sufficient condition for

identifying when the reasoning that QSt1 t1� QSt1 also implies QSt2 t2� QSt2 , for two
canonical tuples satisfying t1 i t2. First, however, we need to revisit how the chase
procedure is used to decide implication of disjunctive embedded dependencies. (The
reader is referred to page 115 for discussion of how the chase procedure is used to
decide implication of embedded dependencies without disjunction.)

Given disjunctive embedded dependency ξ (see equation 4.20) and a set of
disjunctive embedded dependencies Σ, the chase chaseΣ�P ξ̂� is a (possibly infinite)
chase tree in which each chase step has one branch for each conclusion in the chased
dependency. Each path p in the tree corresponds to a unique chase sequence of (non-
disjunctive) embedded dependencies that defines some (possibly infinite) database
Dp. The chase procedure returns the conclusion Σ àfin ξ if and only if for each

path p it can prove Dp à ξ̂, which it does by exhibiting a finite database D̂p b Dp—

corresponding to some finite prefix of path p—that satisfies D̂p à ξ̂. Given any
mapping h � C � C, and a specific chase invocation that yielded the conclusion
Σ àfin ξ, we say that the conclusion is sound w.r.t. h if for each path p, whenever
the database D̂p contains a contradiction, so does the database h�D̂p�.
Theorem 4.4.11 Given DACQs Q and Q� in canonical form satisfying CTQ �
CTQ�, and given two canonical tuples t1, t2 > CTQ satisfying t1 i t2, let h be the CS-

homomorphism (extended with identity) satisfying h�t1� � t2. If QSt1 t1� Q�St1 (i.e.,
Σ�QSt1 ,t1� �fin Σ�Q�St1 ,t1�) can be proved using only chase invocations that are sound

w.r.t. h, then QSt2 t2� Q�St2 (i.e., Σ�QSt2 ,t2� �fin Σ�Q�St2 ,t2�).
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Proof. Suppose that QSt1 t1� QSt1 . Due to Definition 4.4.8 and equations 4.21
and 4.22, we observe that Σ�QSt2 ,t2� � h�Σ�QSt1 ,t1�� and Σ�Q�St2 ,t2� � h�Σ�Q�St1 ,t1��.
Consider any chase invocation that proves some implication Σ àfin ξ as part of
the proof that Σ�QSt1 ,t1� �fin Σ�Q�St1 ,t1�. Let T denote a (possibly infinite) chase
tree for chaseΣ�P ξ̂�, with Dp denoting the (possibly infinite) database defined

by path p. Let T̂ denote the finite prefix of T that was actually explored by the
chase invocation, with D̂p b Dp the finite database that terminated the search of
the chase sequence along path p.

Define D1 �� P ξ̂, and let D1

�ξi,γ�Ð� �D1.1, . . . ,D1.k� be the first chase step in chase
tree T enacted by some variable mapping γ � X � adom�D1�, where X is the set
of premise and free variables of some dependency ξi > Σ having k conclusions,
and γ embeds premise P ξi into D1. Let D1.j denote the database obtained from
D1 by chasing with the jth conclusion of ξi.

Now consider the dependency set h�Σ� and the dependency h�ξ� which has
premise P h�ξ� � h�P ξ� � h�D1�. Because ξi and h�ξi� have the same variables
(h only remaps certain constants), it follows that h X γ � X � adom�h�D1�� is an
embedding of h�P ξi� � P h�ξi� into h�D1�. Furthermore, h�D1.j� is the database
obtained from h�D1� by chasing with the the jth conclusion of h�ξi�. It follows

that h�D1� �h�ξi�,hXγ�Ð� �h�D1.1�, . . . , h�D1.k�� is a valid—although possibly spuri-
ous5—first step for some chase invocation proving h�Σ� àfin h�ξ�. By induction,
it follows that h�T̂ � is the prefix of a valid chase tree—possibly containing spu-
rious chase steps—for chaseh�Σ��P h�ξ̂��.
Now consider any database D̂p at the leaves of T̂ . We know that D̂p à ξ̂, which

implies that either there exists an embedding γ � Cξ
j � D̂p of one of the conclu-

sions of ξ, or D̂p contains a contradiction (see page 115). If γ exists, then, by

the argument above, h X γ is an embedding of h�Cξ
j � � C

h�ξ�
j into h�D̂p�. Alter-

natively, the final chase step leading into D̂p may have derived a contradiction,
either explicitly (i.e., a dependency of the form P ξi � �) or implicitly by equat-
ing two distinct constants a, b > C; as long as the chase invocation is sound w.r.t.
h, h�D̂p� will also contain a contradiction. In either case, h�D̂p� à h�ξ�. Hence,

the chase tree h�T̂ � proves h�Σ� àfin h�ξ�.
Corollary 4.4.12 For any shape ts > TSQ and corresponding shape ts� > TSQ�, if

� all of the equality predicates in bodyQ occur within Gmin
ts > dags�bodyQ�, and

� all of the equality predicates in bodyQ� occur within Gmin
ts� > dags�bodyQ��,

then only the most general canonical tuple of shape ts needs to be considered when
deciding Q � Q�.

5The chase step D1
�ξi,γ�Ð� �D1.1, . . . ,D1.k� is spurious if D1 à γ�ξi�. The introduction of a

spurious chase step can cause an otherwise finite chase sequence to become infinite, but it does
not change the soundness of the conclusion Σ àfin ξ.
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Corollary 4.4.12 can yield an exponential reduction in the number of canonical
tuples that need to be considered. In particular, for queries expressible without
explicit equality predicates, Corollary 4.4.12 implies that the number of tuple-
specific equality tests required is independent of the number of variables in the query
head. Explicit equality is only required to equate ancestor variables to constants
or to each other, which corresponds to a class of LOJ predicates that occurs only
rarely in real world workloads. The vast majority of LOJ predicates in real-world
SPCL workloads equate one attribute from each side of the LOJ, which can be
expressed as a DACQ without explicit equality by using shared variables.

Example 51 Consider the following queries Q50 and Q51 which are written over the
sample company database schema from Chapter 1 (cf. Figure 1.1).

Q50�M a ,O b , P c , Y c � �� a C�C,M,‘C’� // b O�O,C,D� // c LI�O,L,P,Y �
Q51�M x ,O y , P z , Y z � �� x C�C,M,T � //

y O�O,C,D�,
T � ‘C’

// z LI�O,L,P,Y �
Query Q50 returns the names of all Corporate customers, along with the order ids of any
associated orders (if they exist), and the price and quantity of any associated lineitems
(if they exist); this corresponds to a typical usage of the LOJ operator, and does not
require explicit equality when expressed as a DACQ. Query Q51 is more esoteric in
that it returns the names of all customers, but only returns the associated orders and
lineitems for the Corporate customers; this type of LOJ predicate necessitates explicit
equality when expressed as a DACQ.

4.5 Soundness and Completeness

We have reduced DACQ query equivalence to deciding tuple-specific equivalence
between CH-DACQs (Theorems 4.3.14 and 4.4.10), and tuple-specific CH-DACQ
equivalence to finite equivalence of sets of disjunctive embedded dependencies (Corol-
lary 4.3.22). Certainly it is not ideal to reduce a problem we only know to be
NP-hard to one that is undecidable in general. Given a DACQ equivalence prob-
lem, our algorithm might construct an instance of an implication problem for which
we cannot guarantee chase termination (which does not prove that DACQ equiv-
alence is undecidable). In this section we briefly discuss two strategies for dealing
with difficult implication problems, each of which preserves soundness (but not
completeness) of the equivalence test.

4.5.1 Early Termination

As described in Section 4.3.2, even when database D �� chaseΣ�P ξ̂� is infinite, the
chase algorithm may be able to conclude Σ àfin ξ based upon a finite sequence of
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chase steps yielding some D̂ ` D. Early termination is the obvious pragmatic solu-
tion: run the chase algorithm for a bounded amount of time, and return “I don’t
know” if by the end of the time limit neither Σ àfin ξ nor Σ àfin ξ has been derived.
In the simplest form, the number of chase steps can simply be fixed; unfortunately,
this yields a non-deterministic result depending upon the order of chase steps. Al-
ternatively, bounding either the dependency depth—the maximum length of any
chain of order-dependencies between chase steps—or the Skolem depth—the nest-
ing depth of the Skolem functions (constants) introduced by chase steps—yields a
deterministic result with specific properties that can be used to characterize sub-
classes of database instances over which the implication does hold. Recently, more
sophisticated methods have been proposed that dynamically monitor the chase ex-
ecution and terminate based upon violation of some boundary condition [81].

4.5.2 Constraint Relaxation

The alternative to early termination is to invoke the chase only when it is guaranteed
to terminate. Given a dependency set Σ that does not guarantee a terminating
chase procedure, the main idea behind constraint relaxation is to replace Σ with a
set Σ̂ that both satisfies Σ àfin Σ̂ and guarantees a terminating chase procedure.

Proposition 4.5.1 Given dependency ξ and set Σ, let Σ̂ be any dependency set
satisfying Σ àfin Σ̂. If Σ̂ àfin ξ then Σ àfin ξ.

The trick is in constructing a useful set Σ̂ without requiring a chase procedure
to explicitly prove Σ àfin Σ̂. One technique is to construct Σ̂ from Σ by identifying
dependencies that cause violations of the termination guarantee, and for each such
dependency either delete it from Σ or relax it by adding atoms/predicates to the
premise and/or deleting atoms/predicates from the conclusion.

Example 52 Consider the following dependency ξ and dependency set Σ � �ξ1, ξ2�.
ξ � �R�X,Y ��� �S�Y,Z��

ξ1 � �R�A,B�,R�A,C��� �S�B,D�, S�C,D��
ξ2 � �R�A,B�,R�A,C��� �R�B,E��

Set Σ does not guarantee chase termination, and indeed the database chaseΣ��R�x, y���
is not finite. If we choose Σ̂ � �ξ1� then Σ àfin Σ̂ is trivial, and Σ̂ guarantees chase
termination (due to weak acyclicity—see Section 4.6.4). Then, chaseΣ̂��R�x, y��� ��R�x, y�, S�y, d1�� proves Σ̂ àfin ξ and therefore Σ àfin ξ.

4.6 Relevant Literature

To the best of our knowledge, there is no previous literature that directly addresses
the problem of query equivalence for queries containing outer joins. There is, how-
ever, a wide variety of literature relevant to various aspects of the problem and/or
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our solution to it, and so in this section we briefly survey literature surrounding
five problems that seem the most pertinent—algebraic optimization of outer joins,
containment for query languages with negation, query containment in the presence
of nulls, finite implication of dependencies (equivalently, query containment under
a set of dependencies), and implication of dependencies over relations containing
nulls.

4.6.1 Algebraic Optimization of Outer Joins

Research into algebraic optimization of queries containing outer joins was pioneered
by Galindo-Legaria in his doctoral research with his supervisor, Rosenthal [96, 40,
36]. They propose and study the problem of how to generate all equivalent join
re-orderings of a given “outer-join tree,” which is an algebraic expression composed
of inner, left (right) outer, and full outer joins, together with selection. While
this problem is straightforward for inner joins because both commutativity and
associativity hold, outer joins are not associative in general. The culmination of
this work is a set of transformation rules that is complete for enumerating equivalent
outer-join trees [41]. While a complete set of algebraic transformations could serve
as the basis for a decision procedure for query equivalence, it is important to note
the lack of a projection operator—which means that relation names can be assumed
to be unique (an assumption that simplifies the equivalence problem for CQs from
NP-complete to linear time). Instead, the main contribution of this work is the
study of the conditions under which outer joins are associative.

Subsequent work by Galindo-Legaria proposes join-distinct normal form (JDNF)
as a canonical representation for outer-join trees [37]. JDNF is formed by rewriting
the outer joins in terms of inner join and minimal union—see equation 4.2—and
then commuting all inner joins below all minimal unions. Given a DACQ Q con-
taining unique relation names and whose head tuple does not project away any at-
tributes, JDNF corresponds to replacing union with minimal union within “shape
query” Q̂ (see Definition 4.3.5); hence, the JDNF is exponential in the size of Q.
JDNF has been used as the basis for a view rewriting algorithm that handles outer
joins [71], but arguably its main contribution is conceptual—it explicitly exposes
the interactions between the predicates of the inner and outer-join operators in the
join tree.

Later authors have proposed alternative canonical representations for outer-join
trees. Bhargava, Goel, and Iyer define a canonical representation that encodes the
join predicates within a hypergraph—offering a visual representation of the interac-
tions between join predicates that is much more concise than JDNF [12]. They then
show how hypergraph connectivity can be used to guide the algebraic manipulations
in order to enumerate all equivalent outer-join trees. Rao, Pirahesh, and Zuzarte
propose a canonical representation for outer-join trees that generalizes the standard
normal form for SPC queries [6, Ch. 4], by replacing Cartesian product with outer
Cartesian product and selection with nullification [94]. Whereas the techniques of
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both Galido-Legaria and Bhargava et al. are geared towards transformation-based
enumeration of equivalent join trees, the primary contribution of Rao et al.’s canon-
ical form is that it facilitates integration into bottom-up dynamic-programming join
enumeration.

Recently, Hill and Ross have proposed an algorithm for enumerating equiv-
alent join trees that converts outer-join trees into inner join trees over “derived
relations” [60]. Their focus is on encapsulating all of the logic pertaining to the
non-associativity of outer joins into a pre-computation step, allowing the join enu-
meration phase to assume associativity. By removing the outer-join-specific logic
from the join enumeration phase, they are able to extend existing methods for ex-
panding an optimizer’s search space—in particular, semijoin reduction, which is an
important technique within distributed query processing environments—to queries
containing outer joins.

4.6.2 Queries with Negation

The LOJ operator can be defined in terms of set difference (see equation 4.1),
which accounts for its non-monotonicity with respect to null-padded tuples. It is
well known that adding unrestricted set difference to the conjunctive algebra yields
the full relational algebra, for which query containment is undecidable [6]. However,
there are interesting restrictions on the negation operator that yield decidable query
containment.

The most fundamental result is due to Sagiv and Yannakakis, who show that the
containment problem is only NP-complete for unions of “elementary differences”
(an elementary difference is a difference operations between two CQs) [99]. Their
complexity result hinges upon the fact that within this class of expressions, pro-
jection never occurs after a union or difference operator. As a consequence, query
containment is Πp

2-complete for arbitrary relational algebra expressions as long as
the projection operator never occurs above difference—which implies that SPCL
equivalence is decidable as long as projection never occurs above LOJ. Note the
close correspondence between this class of SPCL expressions and the class of outer-
join trees studied by Galindo-Legaria, described above. The analogous syntactic
restriction for DACQs is that all local variables of all non-leaf nodes appear in the
query head, labelled by the node to which they are local. For this special case, the
necessary condition in Corollary 4.3.8 and the sufficient condition in Theorem 4.3.9
converge to form a complete characterization of DACQ equivalence.

Other restricted forms of negation have also been explored:

� Ullman shows that extending CQs with safe atomic negation (i.e., negation
of individual atoms whose variables all occur within positive atoms) causes
containment to be Πp

2-complete [106]. Whereas Ullman’s algorithm naively
generates canonical databases, for this same class Wei and Lausen propose a
recursive decision procedure that essentially performs a chase algorithm over
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sets of disjunctive full dependencies. They then extend their algorithm—
without any increase in complexity—-to decide containment for unions of
CQs with safe atomic negation [111].

� Klug shows that extending CQs with the predicates x, B, and @ keeps the
CQ containment (and equivalence) problem in Πp

2 [70], assuming an abstract
totally-ordered underlying domain. The matching lower bound is due to van
der Meyden, who proves that just x is enough to make the CQ contain-
ment problem Πp

2-hard [108]. Ibarra and Su generalize this result further to
consider CQs with linear arithmetic constraints, and show the containment
and equivalence problems to be decidable in double exponential time but not
non-deterministic single exponential time when queries are evaluated over the
integers, and decidable in double exponential time but not non-deterministic
polynomial time when constant-free queries are evaluated over the real num-
bers [61].

Unfortunately, there does not appear to be an obvious way to reduce equivalence
of arbitrary DACQs either to or from the equivalence or containment problems for
any of these extensions to CQs.

4.6.3 Query Containment with Null Values

Only recently has the interaction between null values and query containment been
considered. Farré, Nutt, Teniente, and Urṕı study the containment problem for CQs
over database instances containing null values, under the assumption that equality
and join predicates are evaluated using 3-valued logic [34]. They show that the
containment problem remains NP-complete for boolean queries, and corresponds to
the existence of homomorphisms that map join variables onto other join variables.
Interestingly, the problem becomes Πp

2-complete as soon as the language allows
either output variables or an explicit isNull predicate (or both).

4.6.4 Query Containment under Dependencies

Because embedded dependencies can be expressed as a pair of CQs—the premise
and the conclusion—finite implication of embedded dependencies corresponds pre-
cisely to containment of CQs under a set of dependencies. It is standard practise
to transform sets of embedded dependencies into an equivalent form in which every
dependency is either tuple-generating or equation-generating [6, Ch. 10], and most
of the literature that we mention in this section assume this distinction. We did not
make this distinction when we introduced embedded dependencies in Section 4.3
because it is orthogonal to our reduction of query containment/equivalence to de-
pendency implication; furthermore, sets of disjunctive embedded dependencies can
not be decomposed in this way.

The CQ containment problem is decidable for any class of dependencies that
allows a terminating chase procedure. Well-known examples include the class of

130



full dependencies—i.e., dependencies that do not contain existentially-quantified
variables—and the class FDs + JDs + acyclic INDs [6, Ch. 9–10]. Johnson and
Klug show that containment of CQs under FDs and INDs is decidable—even though
the chase does not terminate—as long as the INDs are key-based ; however, their
proof allows for infinite counter-example databases [67]. Rosati extends Johnson
and Klug’s work and shows that CQ containment under INDs or key-based FDs +
INDs is finitely controllable, i.e., that the finite-model and infinite-model problems
coincide [95]. To do this, he uses a complex process for generating chase constants
that is periodic (thereby bounding the total number of constants) but whose period
is provably long enough so that any infinite chase sequence that serves as a counter-
example to containment can be mapped to a “periodic” chase sequence that is also
a counter-example to containment.

For arbitrary embedded dependencies the problem is known to be undecidable;
however, there has been significant research into trying to identify when CQ con-
tainment is decidable for a particular set of embedded dependencies. Cal̀ı, Gottlob,
and Kifer generalize Johnson and Klug’s work by considering CQ containment under
arbitrary tuple-generating and equality-generating dependencies [15]. They define
classes of guarded dependencies for which CQ containment is EXPTIME-complete
with bounded schema size, or 2-EXPTIME-complete in general. With guarded de-
pendencies the chase is still unbounded, but the chase sequence can be modelled
by what they call a squid decomposition, which restricts the possible interactions
between constants generated by different chase paths. Like Johnson and Klug, their
decidability results assume a data model allowing infinite databases; it is not known
whether Rosati’s technique can be extended to show finite controllability for this
more general problem.

Other authors have focused on identifying when the chase is guaranteed to ter-
minate. Deutsch and Popa propose a termination condition called weak acyclicity6

[31, 33]; if set Σ is weakly acyclic, then any chase over set Σ is guaranteed to ter-
minate. Weak acyclicity is directly generalized to a termination condition called
stratification by Deutsch, Nash, and Remmel [30]. Those authors also show that
it is undecidable to identify when a given Σ allows a terminating chase procedure.
Meier, Schmidt, and Lausen generalize the stratification condition further, defining
an infinite hierarchy of sufficient termination conditions, where each level k in the
hierarchy corresponds to a proof that any chase over set Σ will not generate fresh
constants with Skolem depth greater than k.

Most of the research on query containment under dependencies focuses on em-
bedded dependencies for which the chase is a linear search of a sequence of chase
steps. Beeri and Vardi propose extending the chase procedure to a tree search
to handle dependencies containing disjunction in the conclusion [10]. Although
not widely used, this extension does add expressive power. Consider a set Σ con-
taining disjunctive dependencies. Let Σ̂ be the corresponding set of “flattened”

6The condition was derived by collaboratively by Deutsch and Popa, but published indepen-
dently (with other authors) under the names “weak acyclicity” [33] and “stratified-witness” [31].
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dependencies, formed by decomposing each ξ > Σ into separate (non-disjunctive)
dependencies for each conclusion. Any path within a chase tree over Σ corresponds
to a valid prefix of a chase sequence over Σ̂. This implies that decidability un-
der Σ̂ is a sufficient (although not necessary) condition for decidability under Σ,
making all of the research on decidability for non-disjunctive dependencies directly
applicable to disjunctive dependencies.

4.6.5 Dependencies over Relations with Nulls

As mentioned above, the problem of conjunctive query containment under em-
bedded dependencies corresponds precisely to (finite) implication of embedded de-
pendencies. Much of the historic work on dependency analysis is motivated by
problems related to database schema design rather than query equivalence, and
often considers much simpler dependency classes than arbitrary embedded depen-
dencies. The most fundamental result is the axiomatization of inference over sets
of functional dependencies proposed by Armstrong [7], which has been extended
to inference over sets of FDs and MVDs [6, Sect. 8.2]. A key assumption in this
work (and in the work surveyed on query equivalence under dependencies) is that
the data model does not include null values. Literature that extends dependency
analysis to relations containing null values is pertinent to Section 4.2—specifically,
to our definition and use of nullability dependencies to characterize property [P5]
of DACQ canonical form.

Vassiliou pioneered the analysis of dependencies over relations containing null
values [109, 110]. He points out that a null value can be interpreted in two dif-
ferent ways—either to mean “unknown value,” or to mean “no information” [109].
The “unknown value” interpretation assumes that there exists some substitution
of domain values for nulls yielding tuples that occur within some unknown “com-
plete” version of the relation; hence, relations with nulls under this interpretation
are often referred to as “incomplete relations”—a concept further developed by
Imielinski and Lipski [62]—and reasoning about them requires considering the set
of possible worlds. In contrast, the “no information” interpretation is more primi-
tive, making no presumption that there exists any underlying completed version of
the relation.

Vassiliou extends the concept of functional dependencies to relations contain-
ing nulls, assuming the unknown value interpretation [110]. He classifies FDs
as either strong or weak. Vassiliou’s definitions of strong and weak FDs are in
terms of lists of syntactic conditions, but more intuitive characterizations used by
Levene and Loizou [73] are that an FD is strong if under all possible worlds the
completed relation obeys the FD, whereas an FD is weak if there exists at least
one possible world under which the completed relation obeys the FD. Vassiliou
shows that Armstrong’s axioms are sound and complete for inference over strong
FDs. Also assuming the unknown value interpretation, Levene and Loizou ex-
tend Armstrong’s axioms to obtain a set of axioms that is sound and complete
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for inference over sets of both strong and weak FDs [73]. Motivated by schema
design for databases containing nested relations, Levene and Loizou also define an
extension to the nested relational model to handle null values, and they con-
sider “null extended data dependencies”—specifically, null extended FDs, MVDs,
and join dependencies (JDs)—which extend traditional FDs/MVDs/JDs to both
nested relations and null values (interpreted as unknown values) [72].

Atzeni and Morfuni study implication of FDs under the “no information” in-
terpretation [8]. They define FD X � Y to hold over a relation R when for any
two tuples t, t� > R, if t�X� � t��X� and t�X�, t��X� do not contain null, then
t�Y � � t��Y �. Under this definition of FDs, Armstrong’s axiom of transitivity fails
to hold, and so they introduce a concept they call “null transitivity,” which they
use to devise a modified set of axioms that are sound and complete for implication
of FDs over relations containing nulls. Our definition of a nullability dependency
(Definition 4.2.2) is convenient for our purposes in this chapter, but it can be equiv-
alently expressed in terms of Atzeni and Morfuni’s definition of an FD, as follows.

Proposition 4.6.1 Given a query Q and a nullability dependency ABC � v with
v > bodyQ and �A,B,C� b Banc

v , let c be any constant, let �u1, . . . , uk� be the set of
ancestor nodes of v, and let uA denote the ancestor node of v satisfying A > LuA

,
with uB and uC defined analogously. Then, Q à ABC � v if and only if over every
database D, the relation �bodyQ�D (i.e., the result of Q prior to projection onto the

head attributes) satisfies the FD A uA B uB C uC c u1 �c uk � c v (under Atzeni and
Morfuni’s definition).

Whereas all of the literature discussed above addresses dependencies in the
context of database schema design, Paulley in his doctoral dissertation analyzes
how FDs are introduced by and propagated through algebraic queries [92]. Paulley
defines a “strict” FD X � Y to hold over a relation with nulls if the relation
satisfies the FD under the classical definition, treating null as a normal domain
value. He defines a “lax” FD X ( Y to hold if the subset of the relation not
containing a null value in either X or Y satisfies the FD X � Y . Of particular
note, Paulley works out the interaction between strict/lax FDs and the left outer-
join operator [92, Ch. 3]. In the introduction to the next chapter we raise but leave
open the problem of testing query validity for encoding queries with DACQ query
bodies and encoding heads containing arbitrary assignments of node labels to index
attributes. This problem requires testing that the query body implies that that the
query result—which is a relation containing null (i.e., -) values—always satisfies
the strict FD I�1,d� � V . We conjecture that this problem could be solved using
Paulley’s results to characterize the effect of arbitrary assignments of node labels
within the index attributes.
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Chapter 5

Encoding-Equivalence of
Hierarchical CEQ’s

In Chapter 3 we considered the encoding-equivalence problem for CEQs—that is,
encoding queries whose bodies are CQs—and we demonstrated an equivalence pro-
cedure that hinges upon using the encoding signature to convert the query head to
a normal form. In this chapter we extend that approach to encoding queries whose
bodies contain hierarchical edges (HCEQs).

We started Chapter 3 by characterizing CEQ validity, after which we charac-
terized encoding-equivalence between any pair of valid CEQs. CEQ validity cor-
responds to a simple syntactic condition (see Definition 2.3.4 and Lemma 3.0.1);
unfortunately, hierarchical edges interact with functional dependencies, making the
validity problem non-trivial for arbitrary HCEQs. Because the HCEQ validity prob-
lem is orthogonal to our original problem of deciding COCQLF equivalence, when
considering HCEQ encoding-equivalence we will restrict our attention to the sub-
class of HCEQs that can be output by the Encode�� procedure from Section 2.3.2,
which are known to be valid (see Theorem 2.3.6).

Our main result in this chapter is a homomorphism-based sufficient condition for
HCEQ encoding-equivalence akin to a synthesis of Theorem 3.2.4 (complete charac-
terization of CEQ encoding-equivalence) with Theorem 4.3.9 (sufficient condition
for HCQ/DACQ equivalence). In Section 5.1 we enhance the encoding normal
form from Chapter 3 to handle HCEQs. In Section 5.2 we prove a homomorphic
condition between HCEQs in encoding normal form to be sufficient for implying
encoding-equivalence, while in Section 5.3 we give two examples for which the ho-
momorphic condition fails, but for which we can show that encoding-equivalence
holds. We are not aware of any literature specific to the equivalence of queries
outputting complex objects (or relational encodings of complex objects) containing
empty collections, beyond that already discussed in previous chapters, and so this
chapter does not include any further survey of literature.
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5.1 A Normal Form for HCEQs

In Chapter 3 we defined §-normal form for CEQs by identifying a set of core in-
dexes. This definition of core indexes (Definition 3.1.11) explicitly uses MVDs, and
implicitly relies upon the FD I�1,d� � V. However, hierarchical edges (and the sub-
sequent introduction of node labels into the query head) interact with both MVDs
and FDs. The following example illustrates this interaction, and relates it to the
nullability dependencies that we defined in Chapter 4.

Example 53 Consider the following HCQ Q52, along with the two CQs Q53 and Q54

corresponding to the two elements of dags�bodyQ52
�.

Q52�A x ,B x ,0 y � �� x R�A,B� // y R�B,C�
Q53�A,B,0� �� R�A,B�
Q54�A,B,0� �� R�A,B�,R�B,C�

Over attribute set W � �A,B,0�, the FD A � 0 and the MVD A� 0 are both trivial
(because 0 is a constant), and so Q53 à A � 0, Q53 à A � 0, Q54 à A � 0, and

Q54 à A � 0. In contrast, over labelled attribute set W � �A x ,B x ,0 y �, neither

the FD A x � 0 y nor the MVD A x � 0 y is trivial, because the database instance
D8 �� �R�a, a�,R�a, b�� proves Q52 à A x � 0 y and Q52 à A x � 0 y .

�Q52�D8 A x B x 0 y

a a 0
a b -

�Q53�D8 A B 0

a a 0
a b 0

�Q54�D8 A B 0

a a 0

The violation of the FD A x � 0 y within relation �Q52�D8 is caused by two terminal
embeddings of Q52 that agree on variable A, but one embedding extends to vertex
y while the other does not. Restated in the terms of nullability dependencies (see
Definition 4.2.2), the source of this FD violation is the nullability dependency violation

Q52 à A � y. Similarly, the violation of MVD A x � 0 y is related to the fact that the
nullability set SQ52 � �B� (see Corollary 4.2.7) is not subsumed by the left-hand-side
of the MVD.

We now extend the definition of §-NF from Chapter 3 to handle HCEQs orig-
inating from the Encode�� procedure. Our definition of core indexes relies upon
testing whether a CQ� satisfies a particular MVD. In Section 3.1.1 we considered
the comparable problem for CQs, and those results can be extended to CQ�s by
accounting for the equality predicates in a straightforward (albeit tedious) manner;
hence, we do not discuss that problem further here.

Our definition of the core indexes also relies on nullability set SQ (see Corol-
lary 4.2.7). To facilitate calculating SQ via the theorems in Section 4.2.1, we first
convert the query body to DACQ canonical form (assuming W �� I�1,d�V for the
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Q55� 12³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
a,A,B,D;

3³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
L,N,B,P ;

12¬
B,F ;

4³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
c, F,H,J ; a 12 ,B 12 , L 3 , F 12 , c 4 � ��

12 R�A,B�,R�B,D�,R�B,F �
²² ,,XXXXXXXXXXXXXX

3 S�D,L�, S�L,N�,R�B,P � 4 S�F,H�, S�H,J�
Q56� 5³¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹µ

a,B�,D�;

7³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
D�, L�,N �;

5
A�, F � ;

9³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹µ
c,H �, J �; a 5 ,B� 5 , L� 7 , F � 5 , c 9 � ��

5 R�A�,B��,R�B�,D��,R�B�, F ��
²² ,,YYYYYYYYYYYYYYYY

7 S�D�, L��, S�L�,N �� 9 S�F �,H ��, S�H �, J ��
Figure 5.1: Encoding queries Q55 � Canonical�Q20� and Q56 � Canonical�Q21�
purposes of Definition 4.2.1). Conversion to DACQ canonical form may cause the
tree-shaped query body to become a DAG, and so the resulting query is no longer
a hierarchical CEQ. We also wish to restrict our attention to encoding queries orig-
inating from the reduction in Chapter 2; for that reason, we define the following
class of encoding queries which we call derived DACEQs.

Definition 5.1.1 (Derived DACEQs) A directed acyclic conjunctive encoding
query (DACEQ) is a generalization of an HCEQ (see Definition 2.3.3) to have a
DACQ body (see Definition 4.1.2). We call DACEQ Q derived if there exists some
COCQL�fb,fs,fn� query Q� such that Q � Canonical�Encode�Q���.
Example 54 Queries Q55 and Q56 shown in Figure 5.1 are both derived DACEQs, be-
cause they are the result of converting HCEQs Q20 and Q21 (cf. Figures 2.18 and 2.19)
to DACQ canonical form. (To improve readability, we have merged the labels for each
index tuple.)

The following lemma lists properties of derived DACEQs that follow directly
from the definitions of procedures Encode�� (see Section 2.3.2) and Canonical��
(see Algorithm 4 in Section 4.2.2). Recall from the definition of encoding queries
(Definition 2.3.3) that I i is a sequence of labelled indexes, and that we use Îi and
Ii to denote the corresponding sets of labelled and unlabelled indexes, respectively.

Observation 5.1.2 Given any derived DACEQ Q�I1; . . . ;Id;V�, query Q satisfies
the following properties:

[P6] Q is in DACQ canonical form (see Definition 4.2.1).
[P7] For any i > �1, d�, index set Îi is either

(a) a subset of �-� (i.e., �� or �-�), or
(b) a non-empty set of variables and constants all labelled with the same

node vi > bodyQ. It is possible that vi � vj for i x j.
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[P8] For any variable X > I�1,d�, let i > �1, d� be the smallest integer such that
X > Ii. Then, X > Lvi

.
[P9] For any i > �1, d� such that Îi Ú �-�, the parameters of bodyvi

satisfy Pvi
b

I�1,i�1�, implying Q à I�1,i�1� � vi by Lemma 4.2.3.
[P10] For every node v > bodyQ, there exists at least one level i > �1, d� such that

v � vi.

Example 55 Continuing Example 54, the reader can verify that queries Q55 and Q56

each satisfy all of the properties [P6]–[P10]. Notably, property [P7] guarantees that
any valuation of index tuple I i is either entirely - values or does not include any - value.
Property [P9] guarantees that for any valuation of index tuples I�1,i�1�, the possible

valuations of index tuple I i cannot include both the entirely - tuple and a tuple not
containing -. For a concrete example, the reader is invited to refer back to encod-
ing relations R8 � �Q55�D3 and R9 � �Q56�D3 in Figures 2.20 and 2.21, respectively.
(Proposition 4.2.13 guarantees Q55 � Q20 and Q56 � Q21.)

Definition 5.1.3 (Core Indexes) Given any derived DACEQ Q�I1; . . . ;Id;V�
with nullability set SQ, a length-d signature §, and an integer i > �1, d�, for each

G > dags�bodyQ� satisfying vi > G, define set W�G,i� �� B�G 9 �I�1,i� 8 I§�i�1,d��, and let
Q�G,i� be the following CQ�.

Q�G,i��W�G,i�� �� body�G (5.1)

Define the set of core indexes at level i relative to §—denoted Î§i —as a minimal sub-

set of Îi such that I§i (the unlabelled version the indexes in Î§i —see Section 2.3.1)

satisfies both �V 8 SQ� b I�1,i�1� 8 I§�i,d� 8 C and the following signature-specific con-
ditions.

§i Condition

b Ii b I�1,i�1� 8 I§i 8 C
s ¦G containing vi � �Q�G,i� à B�G 9 �I�1,i�1� 8 I§i �� B�G 9 I

§�i�1,d��
n ¦G containing vi � �Q�G,i� à B�G 9 I�1,i�1� � B�G 9 I

§�i,d��
We denote by I

§
i the tuple formed by deleting from I i all attributes not in Î§i .

Lemma 5.1.4 Definition 5.1.3 determines a unique minimal set Î§i .

Proof (sketch). Identical to the proof of Lemma 3.1.15, except that the MVD
arguments for cases §i � s and §i � n need to be repeated for each Q�G,i� (equa-
tion 5.1).

Example 56 Continuing Examples 54 and 55, Query Q55 satisfies �F� � 4 and�D� � 3, and so SQ55 � �D,F�. The core indexes of Q55 with respect to encoding

signature § � snsb are calculated as follows.
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i � 4: §4 � b, Î§4 � �H 4 , J 4 �
c 4 ¶ Î§4 because c > C; F 4 ¶ Î§4 because F > I3; �H,J� b I§4 in order to satisfy

condition I4 � �c, F,H,J� b I�1,3� 8 I§4 8 C.
i � 3: §3 � s, Î§3 � �F 12 �

B 12 ¶ Î§3 because B > I2; F 12 > Î§3 because F > SQ55 � �I�1,2� 8 I§4 8 C�.
i � 2: §2 � n, I§2 � �L 3 ,N 3 �

L 3 > Î§2 because L > V � �I1 8 I§�3,4� 8 C�; B 3 ¶ Î§2 because B > I1; P 3 ¶ Î§2 due
to the MVDs Q�123,2� à aABD � LNF and Q�1234,2� à aABD � LNFHJ ,

while Q�123,2� requires N 3 > Î§2 in order to satisfy the necessary MVD.

Q�123,2��a,A,B,D,L,N,P,F � �� R�A,B�,R�B,D�,R�B,F �,
S�D,L�, S�L,N�,R�B,P �

Q�1234,2��a,A,B,D,L,N,P,F,H,J� �� R�A,B�,R�B,D�,R�B,F �, S�D,L�,
S�L,N�,R�B,P �, S�F,H�, S�H,J�

i � 1: §1 � s, I§1 � �B 12 ,D 12 �
a 12 ¶ Î§1 because a > C; B 12 > Î§1 because B > V � �I§�2,4� 8 C�; D 12 > Î§1 because

D > SQ55 � �I§�2,4� 8C�; A 12 ¶ Î§1 due to the MVDs Q�12,1� à BD� F , Q�123,1� à
BD� LNF , Q�124,1� à BD� FHJ , and Q�1234,1� à BD� LNFHJ .

Q�12,1��a,A,B,D,F � �� R�A,B�,R�B,D�,R�B,F �
Q�123,1��a,A,B,D,L,N,F � �� R�A,B�,R�B,D�,R�B,F �,

S�D,L�, S�L,N�,R�B,P �
Q�124,1��a,A,B,D,F,H,J� �� R�A,B�,R�B,D�,R�B,F �,

S�F,H�, S�H,J�
Q�1234,1��a,A,B,D,L,N,F,H,J� �� R�A,B�,R�B,D�,R�B,F �, S�D,L�,

S�L,N�,R�B,P �, S�F,H�, S�H,J�
Given derived DACEQ Q�I1; . . . ;Id;V�, we convert Q to §-normal form (§-NF)

by deleting all non-core indexes from the query head. Performing §-normalization
of derived DACEQs is clearly NP-hard, as Definition 5.1.3 directly generalizes the
CEQ case. We can also derive a (possibly loose) upper bound directly from Defi-
nition 5.1.3.

Theorem 5.1.5 Performing §-normalization of derived DACEQs is in Πp
2.

Proof. For each level i and each dag G > dags�bodyQ�, the MVD associated with
query Q�G,i� (equation 5.1) dictates that a certain subset of Ii needs to be core,
and this subset can be identified in NP time (per Theorem 3.1.16). Therefore,

verifying each core I > Î§�1,d� is in Σp
2 (by verifying that either I > V 8 SQ or by

guessing the appropriate query Q�G,i� and verifying in NP time that its MVD
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requires I to be core). Hence, verifying the non-core attributes Ii � Î§�1,d� is in

co-Σp
2 � Πp

2.

Conjecture 5.1.6 Performing §-normalization of derived DACEQs is in NP.

Comment. It would suffice to show�¦v > bodyQ. �Q�v,i� à B�v 9 �I�1,i�1� 8 I§i �� B�v 9 I§�i�1,d���Ô��¦G containing vi � �Q�G,i� à B�G 9 �I�1,i�1� 8 I§i �� B�G 9 I
§�i�1,d��� (5.2)

and �¦v > bodyQ. �Q�v,i� à B�v 9 I�1,i�1� � B�v 9 I§�i,d���Ô��¦G containing vi � �Q�G,i� à B�G 9 I�1,i�1� � B�G 9 I
§�i,d��� (5.3)

where Q�v,i� with body body�v is defined analogously to Q�G,i� from equation 5.1.
Then, for each level i it is only necessary to examine each query Q�v,i�, and for
each such query the hypergraph-based algorithm from Theorem 3.1.16 would

identify a subset of Îi that must be core. Î§i would then be the union of these
sets.

Unfortunately, due to the intricacy of the various mappings involved, we have
been unable to definitively prove (or disprove) equations 5.2 and 5.3.

Lemma 5.1.7 Given any derived DACEQ Q�I1; . . . ;Id;V�, any index level i >�1, d�, and any node v > bodyQ: if Q à I�1,i� � v then Q à I§�1,i� � v.

Proof. Definition 5.1.3 implies that �SQ 9 I�1,i�� b I§�1,i�. By Corollary 4.2.7, if

Q à I�1,i� � v then Q à �SQ 9 I�1,i�� � v.

Theorem 5.1.8 §-Normalization preserves §-equivalence

Proof. For every i > �0, d�, let Qi denote the following HCEQ,

Qi�I1; . . . ;I i;I
§
i�1; . . . ;I

§
d;V� �� bodyQ (5.4)

and assume that I i � I§i � J i, where Ĵi is the set of non-core indexes in Îi.
The induction proceeds exactly as in the proof of Theorem 3.1.17. The only
complication is that the conditions in Definition 5.1.3 are stated in terms of the
query Q�G,i� which is a CQ�, whereas query Qi has a hierarchical body. (In

contrast, in the proof of Theorem 3.1.17, queries Q̂i and Qi had the same body.)
We prove here for each case within the inductive step that the conditions on the
output of CQ� Q�G,i� in Definition 5.1.3 imply corresponding conditions for the
output of HCEQ Qi.

Case §i � b:
It suffices to show that for any database D, the relation Φ �� �Qi�D satisfies
the FD Î�1,i�1� � Ĵi; the remainder then follows identically to the proof of
Theorem 3.1.17. By Definition 3.1.11, either
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1. Ji b �-�, or
2. Ji b I�1,i�1� 8 C.

In the second case, property [P7] (Observation 5.1.2) implies that all el-
ements of Ĵi are labelled with vi satisfying Q à I�1,i�1� � vi; therefore, in

either case the relation Φ satisfies the FD Î�1,i�1� � Ĵi.

Case §i � s:
It suffices to show that relation Φ satisfies the MVD Î�1,i�1� 8 Î§i � Î§�i�1,d� 8 V̂;
the remainder then follows identically to the proof of Theorem 3.1.17.

By property [P7], either Îi b �-� or all elements of Îi are labelled with vi.
If Îi b �-� then attributes I i are constant within relation Φ and the MVD
holds trivially; therefore, assume that some vi labels all elements of Îi.

Let φ1 � G1 ; D and φ2 � G2 ; D be any two terminal embeddings

in Φ—of G1,G2 > dags�bodyQ�, respectively—that satisfy φ̂1�I�1,i�1�I§i� �
φ̂2�I�1,i�1�I§i�. (Recall from equation 2.22 that φ̂ denotes the partial appli-

cation of φ.) For each j > �1, i� such that Îj Ú �-�, vj > G1 iff vj > G2. If

vi ¶ G1 then φ̂1�J i� � φ̂2�J i� is a constant tuple composed only of the -
symbol, and so the MVD holds trivially; therefore, assume that vi > G1 and
vi > G2.

Define G3 � G1 9G2.1 Because

Q�G3,i� à B�G3
9 �I�1,i�1� 8 I§i �� B�G3

9 I§�i�1,d�
and φ1, φ2 are embeddings of body�G3

into D that agree on B�G3
9�I�1,i�1�9I§i �,

there exists an embedding φ3 � G3 � D satisfying

� φ̂3�I�1,i�1�I§i� � φ̂2�I�1,i�1�I§i� � φ̂1�I�1,i�1�I§i�,
� φ̂3�Ji� � φ̂2�Ji� which, by I�1,i�1� � vi, implies φ̂3�Ĵi� � φ̂2�Ĵi�, and

� ¦j > �i � 1, d�, if vj ¶ �G1 �G3� then φ̂3�I§j� � φ̂1�I§j�.
Now consider the smallest j > �i � 1, d� such that vj > �G1 �G3�, and define

G4 �� G38�vj�. By property [P9] and Lemma 5.1.7, Q à I�1,i�1� 8 I§�i,j�1� �
vj. By φ̂3�I�1,i�1�I§�i,j�1�� � φ̂1�I�1,i�1�I§�i,j�1�� and the definition of nullability
dependencies (Definition 4.2.2), φ3 must extend to G4. We now iterate the
above argument, appealing to the following MVD

Q�G4,i� à B�G4
9 �I�1,i�1� 8 I§i �� B�G4

9 I§�i�1,d�
and to φ1, φ3 being embeddings of body�G4

into D agreeing on B�G4
9�I�1,i�1�9

I§i � to deduce the existence of some embedding φ4 � G4 � D. By induction,
we eventually arrive at some terminal embedding φk � G1 ; D satisfying

1We are abusing notation by using G to refer to both a DAG within dags�bodyQ� and the set
of node labels occurring within that DAG.
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� φ̂k�I�1,i�1�I§i� � φ̂2�I�1,i�1�I§i� � φ̂1�I�1,i�1�I§i�,
� φ̂k�Ĵi� � φ̂2�Ĵi�, and

� ¦j > �i � 1, d�, φ̂k�I§�i�1,d�� � φ̂1�I§�i�1,d��.
Embedding φk proves that that relation Φ satisfies the desired MVD.

Case §i � n:

It suffices to show that relation Φ satisfies the MVD Î�1,i�1� � Î§�i,d� 8 V̂.
The proof is identical to case §i � s, with appropriate modifications to the
variables in the MVD. The remainder then follows identically to the proof
of Theorem 3.1.17.

Example 57 Continuing Example 56, query Q57 in Figure 5.2a is the snsb-normal
form of Q55 and therefore Q57

.�snsb Q55
.�snsb Q20. Query Q58 in Figure 5.2b is the

snsb-normal form of Q56 and therefore Q58
.�snsb Q56

.�snsb Q21. Figure 5.2c shows the
encoding relation R16 � �Q57�D3 , which can be obtained by projecting away the non-core
index attributes from encoding relation R8 � �Q20�D3 (cf. Figure 2.20). Figure 5.2d
shows the encoding relation R17 � �Q58�D3 , which can be obtained by projecting away
the non-core index attributes from encoding relation R9 � �Q21�D3 (cf. Figure 2.21);
observe that R9 has the identical instance as R8. In the next section (Examples 58
and 59) we will prove that over any database, the pair of encoding relations yielded by
queries Q57 and Q58 will have identical instances.

5.2 Encoding-Equivalence of Derived DACEQs

In this section we partially characterize §-equivalence between derived DACEQs.
We start by deriving a necessary condition that relates §-equivalence to DACQ
equivalence, whose corollary is a necessary isomorphic condition between DACEQ
query bodies analogous to the head graph isomorphisms of Section 4.3.1. We then
extend the definition of index-covering homomorphisms (see Chapter 3) to derived
DACEQs, and show that the existence of index-covering homomorphisms between
the §-normal forms constitutes a sufficient condition for §-equivalence.

Definition 5.2.1 (Structural DACQ) Given derived DACEQ Q�I1; . . . ;Id;V�,
for each i > �1, d� define the attribute Xi as follows.

Xi ��
¢̈̈¦̈̈¤- if Îi b �-�
0 vi otherwise (vi defined as in property [P7] of Observation 5.1.2)

We define the structural query Structural�Q� as the DACQ with the same body
as Q and with the head tuple W �� X�1,d�V.
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Q57� 12¬
B,D;

3¬
L,N ;

12©
F ;

4¬
H,J ; a 12 ,B 12 , L 3 , F 12 , c 4 � ��

12 R�A,B�,R�B,D�,R�B,F �
²² ,,XXXXXXXXXXXXXX

3 S�D,L�, S�L,N�,R�B,P � 4 S�F,H�, S�H,J�
(a) Q57, the snsb-normal form of Q55

Q58� 5³¹¹¹¹·¹¹¹¹¹µ
B�,D�;

7
L�,N �;

5ª
F � ;

9
H �, J � ; a 5 ,B� 5 , L� 7 , F � 5 , c 9 � ��

5 R�A�,B��,R�B�,D��,R�B�, F ��
²² ,,YYYYYYYYYYYYYYYY

7 S�D�, L��, S�L�,N �� 9 S�F �,H ��, S�H �, J ��
(b) Q58, the snsb-normal form of Q56

R16 B 12 D 12 L 3 N 3 F 12 H 4 J 4 a 12 B 12 L 3 F 12 c 4

2 3 4 5 3 4 5 a 2 4 3 c
2 3 4 5 3 4 6 a 2 4 3 c
2 3 4 5 7 - - a 2 4 7 -
2 3 4 6 3 4 5 a 2 4 3 c
2 3 4 6 3 4 6 a 2 4 3 c
2 3 4 6 7 - - a 2 4 7 -
2 7 - - 3 4 5 a 2 - 3 c
2 7 - - 3 4 6 a 2 - 3 c
2 7 - - 7 - - a 2 - 7 -

(c) Query result R16 � �Q57�D3 satisfying Decode�R16,snsb� � o13

R17 B� 5 D� 5 L� 7 N � 37 F � 5 H � 9 J � 9 a 5 B� 5 L� 7 F � 5 c 9

2 3 4 5 3 4 5 a 2 4 3 c
2 3 4 5 3 4 6 a 2 4 3 c
2 3 4 5 7 - - a 2 4 7 -
2 3 4 6 3 4 5 a 2 4 3 c
2 3 4 6 3 4 6 a 2 4 3 c
2 3 4 6 7 - - a 2 4 7 -
2 7 - - 3 4 5 a 2 - 3 c
2 7 - - 3 4 6 a 2 - 3 c
2 7 - - 7 - - a 2 - 7 -

(d) Query result R17 � �Q57�D3 satisfying Decode�R17,snsb� � o13

Figure 5.2: The snsb-normal forms of Q55 and Q56 and their results over D3
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Theorem 5.2.2 Given any two derived DACEQs Q and Q� and any encoding sig-
nature §, if Q

.�§ Q� then Structural�Q� � Structural�Q��.
Proof. Given any database D, let Γ denote the set of terminal embeddings of

bodyQ into D, and let Φ be the analogous set for bodyQ� . Suppose that Q
.�§ Q�;

then, there must exist some §-certificate C proving �Q�D �§ �Q��D. Consider
any γ > Γ—then, there must exist some φ > Φ such that certificate C con-

tains a tuple node nt that proves γ̂�V� � φ̂�V ��. By Definitions 2.2.5–2.2.7,
the certificate node at any level i > �1, d� along the path to nt must satisfy

γ̂�I i� � - SIiS 
� φ̂�I �i� � - SI�iS. It follows that γ̂�X�1,d�V� � φ̂�X ��1,d�V ��, which
proves Structural�Q� Z Structural�Q��. Repeating the argument in the
other direction proves Structural�Q�� Z Structural�Q�.

Corollary 5.2.3 If Q
.�§ Q� then Structural�Q� and Structural�Q�� are

head graph isomorphic.

Proof. Theorem 4.3.4.

Corollary 5.2.4 Given any derived DACEQ Q and any signature §, the §-normal
form of Q contains within its head the label of every node in bodyQ.

Proof. Property [P10] of Observation 5.1.2 implies that the label of every node
in bodyQ appears within the head graph of Structural�Q�, and so the claim
follows by Theorem 5.1.8 and Corollary 5.2.3.

Our previous definition of index-covering homomorphisms between CEQs (Def-
inition 3.2.1) was a simple generalization of homomorphisms between CQs (Defi-
nition 3.1.1). We now extend the definition of index-covering homomorphisms to
handle DACEQs. Unlike CEQ bodies, DACEQ bodies may contain equality predi-
cates; therefore, it is helpful to first review how the definition of CQ homomorphisms
can be extended to to handle CQ�s.

Definition 5.2.5 (CQ� Homomorphism) Given two satisfiable CQ�s Q�W� and

Q��W ��, a homomorphism h from Q� to Q is a mapping h � B� � B 8 C satisfying

1. bodyQ à h�bodyQ��; in other words,
(a) predQ à h�predQ��, and

(b) ¦R�X �� > atomsQ� .§R�X� > atomsQ. �predQ à h�X �� � X�; and

2. for each attribute W �
i >W �

: predQ à h�W �
i � � Wi, where Wi is the correspond-

ing attribute in W.

The reader is invited to verify that in the restricted case where the queries do
not contain equality predicates, Definition 5.2.5 is equivalent to Definition 3.1.1.

Definition 5.2.6 (Index-Covering Homomorphism) Given any two DACEQs

Q�I1; . . . ;Id;V� and Q��I �1; . . . ;I �d;V �� such that Structural�Q�� and Structural�Q�
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are head graph isomorphic, for each node u > bodyQ let u� denote the corresponding
node in bodyQ�, and vice-versa. Then, an index-covering homomorphism from Q�

to Q is a mapping h � B� � B 8 C satisfying

1. for each node u� > bodyQ�, body�u à bodyu�; in other words,
(a) pred�u à h�predu��, and

(b) ¦R�X �� > atomsu� .§R�X� > atoms�u. �pred�u à h�X �� � X�;
2. for each attribute V �

i
u� > V �: pred�u à h�V �

i � � Vi, where Vi
u is the correspond-

ing attribute in V; and
3. ¦i > �1, d�: Îi b h�Î �i�.
Again, the reader is invited to verify that in the restricted case where the query

bodies contain only a single node (i.e., both Q and Q� are CEQs), Definition 5.2.6
is equivalent to Definition 3.2.1.

Example 58 The following mappings h � Q57 � Q58 and h� � Q58 � Q57 between the
queries in Figure 5.2 are both index-covering homomorphisms.

h � �A~A�,B~B�,D~D�, F ~F �, L~L�,N~N �, P ~F �,H~H �, J~J ��
h� � �A�~A,B�~B,D�~D,F �~F,L�~L,N �~N,H �~H,J �~J�

Theorem 5.2.7 Two derived DACEQs are §-equivalent if there exists index-covering
homomorphisms in both directions between their §-normal forms.

Proof. Let Q�I1; . . . ;Id;V� and Q��I �1; . . . ;I �d;V �� be the §-normal forms of the
given queries, and let h � Q� � Q and h� � Q � Q� be index-covering homomor-
phisms between them. By Theorem 5.1.8, the given queries are §-equivalent iff
Q

.�§ Q�. The existence of h and h� implies by definition that there exists a head
graph isomorphism θ from Q to Q�, and by Corollary 5.2.4 θ must be a bijection
between the nodes in bodyQ and bodyQ� .

By Definition 5.2.6, composite mapping hXh� satisfies ¦i > �1, d�. �h X h��Îi� � Îi�.
Therefore, we can assume w.l.o.g. that h X h� satisfies the following property

¦i > �1, d�. �h X h��I i� � I i� (5.5)

(by the finite period of any permutation of tuple I�1,d�).
Consider any database D and any terminal embedding γ � G ; D of any G >
dags�bodyQ�; then, γXh is an embedding of θ�G� > dags�bodyQ�� into D. Defini-

tion 5.1.3 implies SQ b I�1,d�, and equation 5.5 implies γ XhXh��I�1,d�� � γ�I�1,d��;
therefore, the definition of SQ (see Corollary 4.2.7) mandates that γ X h X h�

is a terminal embedding. Hence, embedding γ X h must also be be a terminal
embedding of θ�G�.
Repeating this argument in the other direction proves that encoding relations�Q�D and �Q��D differ only by permutation of attributes within each index level,
and so it is trivial to construct a §-certificate proving �Q�D �§ �Q��D. By our
unrestricted choice of D, Q

.�§ Q� follows.
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Example 59 The homomorphisms in Example 58 prove that over any database, the
encoding relations yielded by Q57 and Q58 will have identical2 instances, and hence
Q57

.�snsb Q58. We conclude that Q20
.�snsb Q21 (see Example 57) and therefore Q18 �

Q19 (see Example 23).

5.3 Food for Thought

In this section we show two examples that provide further insight into the equiva-
lence results of the last section. In particular, the examples illustrate that the con-
dition in Theorem 5.2.7—the existence of index-covering homomorphisms in both
directions between the §-normal forms—is not necessary for §-equivalence between
derived DACEQs.

The first example illustrates a shortcoming in our characterization of core in-
dexes. Ideally, the set of core indexes should be minimal in the sense that no strict
subset would preserve §-equivalence. Our definition of core indexes for CEQs in
Chapter 3 satisfies this minimality property, as evidenced by the proof of Theo-
rem 3.2.4 (see Appendix A). This example demonstrates that our definition of core
indexes for derived DACEQs (Definition 5.1.3) does not share this property.

Example 60 Consider the three HCEQs shown in Figure 5.3a, all sharing a query
body that is already in DACQ canonical form. Consider the sss-normalization of Q59

(using Definition 5.1.3).

i � 3: §3 � s, Î§3 � ��
C v ¶ Î§3 because C > I2.

i � 2: §2 � s, Î§2 � �A u ,C u �
C u > Î§2 because C > V � �I1 8 I§3 8 C�; meanwhile, A u > Î§2 because Q�u,2� à
BA� C and Q�uv,2� à BA� C (both trivially), but Q�u,2� à B � C.

Q�u,2��B,A,C� �� R�A,B�, S�B,C�,R�A,D�, S�D,C�, T �D�
Q�uv,2��B,A,C� �� R�A,B�, S�B,C�,R�A,D�, S�D,C�, T �D�, T �B�

i � 1: §1 � s, Î§1 � �B u �
B u > Î§1 because SQ59 � �B�.

Therefore, Q60 is the sss-NF of Q59. However, we can show that Q60
.�sss Q61, implying

that A should not need to be a core index of Q59 to preserve ss-equivalence.

2In general, the existence of index-covering homomorphisms in both directions only implies only
that query results are identical modulo permutation of attributes within each index level. However,
the index-covering homomorphisms h and h� from Example 58 have the additional property that
for each index level i, h and h� form an isomorphism between the pair-wise components of the
two index tuples. This justifies the stronger claim that the query results are identical, without
any permutation of attributes.
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Suppose that we replace the attribute C v with the constant 0 v within the head of
Q59. Within this new query, variable C would not be an output variable, and so the

trivial MVDs Q�u,2� à B � g and Q�uv,2� à B � g would justify Î§2 � �� (i.e., neither

A u nor C u would be core indexes). Therefore, the assessment that both A u and C u

are core within Q59 (as per Definition 5.1.3) is directly attributable to head attribute
C v .

Now reconsider CQ Q�uv,2� shown above; Q�uv,2� is not a minimal CQ because it
allows the automorphism h � �A~A,B~B,C~C,D~B�. After using h to minimize the
query body, it becomes clear that Q�uv,2� satisfies the MVD B � C. In contrast, h is
not an automorphism for Q�u,2�, and Q�u,2� à B � C. As a concrete example, consider
the the database instance D9 shown in Figure 5.3b and the set of terminal embeddings
Γ � �γ � Q59 ; D9� shown in Figure 5.3c. If we project “relation” Γ onto attributes
ABC, it violates the MVD B � C; however, if we first restrict Γ to only embeddings
that extend to v , then MVD B � C is satisfied.

In summary, index C u needs to be core in order to functionally determine the value
of the output attribute C v , but only for embeddings that extend to node v . Index
A u was deemed core because in general it is not separated from core index C u by an
MVD, but the subset of embeddings that extend to node v —i.e., the embeddings that
require C u to be core—satisfy an MVD separating A u from C u (or more precisely, A
from C).

It is likely that the shortcomings of Definition 5.1.3 illustrated by Example 60
could be overcome by a more sophisticated characterization of core indexes. One
possibility would be to devise a system of bookkeeping that associates with each
core index a set of reasons justifying why that index needs to be core. The reasons
associated with known core indexes would then need to factor into later decisions
identifying further core indexes.

In the next example we use HCEQ encoding-equivalence to decide equivalence
between a pair of HCQs composed of a single edge between two nodes. The two
HCQs in this example have been carefully crafted to illustrate why index-covering
homomorphisms are not sufficient for characterizing HCEQ encoding-equivalence.

Example 61 Consider the two HCQs Q62 and Q63 shown in Figure 5.4. Using the
results of Section 4.3, we can show Q62 � Q63 as follows.

Both queries have canonical tuples �`0 e, ` - e�. The tuple-specific equivalence

Q62
`0 e� Q63 follows as a result of the following two homomorphisms.

h � �A~W,B~X,C~Y,D~Z,E~W,F ~X,B1~X1, . . . ,Bn~Xn�
h� � �W ~A,X~B,Y ~A,Z~B,X1~B1, . . . ,Xn~Bn, Z1~B1, . . . , Zn~Bn�

To prove Q62
` - e� Q63 requires proving Σ�Q62,` - e� �fin Σ�Q63,` - e�, where Σ�Q62,` - e� and
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Q59� I1¬
B u ;

I2³¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹µ
A u ,C u ;

I3«
C v ;

V«
C v � ��

Q60�B u ; A u ,C u ; ; C v � ��
Q61�B u ; C u ; ; C v � ��

u R�A,B�, S�B,C�,
R�A,D�, S�D,C�,
T �D� // v T �B�

(a) HCEQs Q59, Q60, and Q61

R col1 col2

a1 b
a1 d1

a2 b
a2 d2

S col1 col2

b c1

d1 c1

b c2

d2 c2

T col1

d1

d2

(b) Database D9

Γ A B C D B u A u C u C v

γ1 a1 b c1 d1 b a1 c1 -
γ2 a1 d1 c1 d1 d1 a1 c1 c1

γ3 a2 b c2 d2 b a2 c2 -
γ4 a2 d2 c2 d2 d2 a2 c2 c2

(c) Terminal embeddings of Q59 into D9

Figure 5.3: Encoding queries Q59, Q60, and Q61 evaluated over database D9.

Q62�0 v � �� u R�W,X�,
R�Y,Z� //

v S�X,X�, S�X1,X1�, . . . , S�Xn,Xn�,
R�X,X1�,R�X1,X2�, . . . ,R�Xn�1,Xn�,
S�Z,X�, S�Z1,X1�, . . . , S�Zn,Xn�,
R�Z,Z1�,R�Z1, Z2�, . . . ,R�Zn�1, Zn�,
S�Z,Z�, S�Z1, Z1�, . . . , S�Zn, Zn�

Q63�0 2 � �� 1 R�A,B�,
R�C,D�,
R�E,F � //

2 S�B,B�, S�B1,B1�, . . . , S�Bn,Bn�,
R�B,B1�,R�B1,B2�, . . . ,R�Bn�1,Bn�,
S�D,F �

Figure 5.4: HCQs Q62 and Q63
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Σ�Q62,` - e� are defined as follows.

Σ�Q62,` - e� � �ξ�u,` - e� � bodyu � bodyv�
Σ�Q63,` - e� � �ξ�a,` - e� � body1 � body2�

The implication Σ�Q62,` - e� àfin Σ�Q63,` - e� can be proven by the chase procedure using
two chase steps:

1. chase ξ�u,` - e� with binding X~b,Z~� to generate the chains
S�b, b�, S�b1, b1�, . . . , S�bn, bn� and R�b, b1�, . . . ,R�bn�1, bn�;

2. chase ξ�u,` - e� with binding X~f,Z~d to generate the atom S�d, f�.
The implication Σ�Q63,` - e� àfin Σ�Q62,` - e� can be proven by the chase procedure using
n � 2 chase steps:

1. chase ξ�1,` - e� with binding B~x,D~z,F ~x to generate the atom S�z, x� and the
chains S�x,x�, S�x1, x1�, . . . , S�xn, xn� and R�x,x1�, . . . ,R�xn�1, xn�;

2. chase ξ�1,` - e� with binding B~z,D~�, F ~� to generate the chains
S�z, z�, S�z1, z1�, . . . , S�zn, zn� and R�z, z1�, . . . ,R�zn�1, zn�;

3. for each i > �1, n�, chase ξ�1,` - e� with binding B~�,D~zi, F ~xi to generate the
atom S�zi, xi�.

Now consider the following HCEQ Q64.

Q64� I1³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
W u ,X u , Y u , Z u ;

I2³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
X1

v , . . . ,Xn
v , Z1

v , . . . , Zn
v ;

V«
0 v � �� bodyQ62

Theorem 4.2.4 implies that SQ64 � �X,Z� is the minimal set satisfying Q64 à SQ64 � v,
and so ss-normalization of Q64 yields the following query Q65.

Q65�X u , Z u ; ; 0 v � �� bodyQ62

It straightforward to verify that over any database D, the ss-decoding of �Q65�D yields
one of four possible values:

1. ��0�,�-�� if and only if �Q62�D � �`0 e, ` - e�,
2. ��0�� if and only if �Q62�D � �`0 e�,
3. ��-�� if and only if �Q62�D � �` - e�, or
4. �� if and only if �Q62�D � ��.
Repeating the above argument for Q63, we define Q66

Q66� I1³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
A 1 ,B 1 ,C 1 ,D 1 ,E 1 , F 1 ;

I2³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
B1

2 , . . . ,Bn
2 ;

V«
0 2 � �� bodyQ63

which has SQ66 � �B,D,F� and ss-normal form Q67.

Q67�B 1 ,D 1 , F 1 ; ; 0 2 � �� bodyQ63
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Due to correspondence between the outputs of Q67 and Q63, we conclude the following.

Q65
.�ss Q67 
� Q62 � Q63

We have already shown that Q62 � Q63, and therefore Q65
.�ss Q67. Clearly index-

covering homomorphisms can not exist in both directions between Q65 and Q67, since
they have different numbers of core indexes. Furthermore, this phenomenon is not due
to a failure to minimize the core indexes—as in Example 60—because for both Q65 and
Q67 the core indexes are already minimal (in the sense that no strict subset preserves
ss-equality).

The reduction in Example 61 can be repeated for any pair of two-node HCQs.
Consequently, fully solving the HCEQ encoding-equivalence problem necessitates
first solving the HCQ equivalence problem (at least for the restricted case of two-
node HCQs). Unfortunately, our results from Chapter 4 where we considered
HCQ/DACQ equivalence do not guarantee a decidable equivalence condition even
for the simple class of two-node HCQs.
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Chapter 6

Conclusions

In Section 6.1 we summarize the main results of this thesis. In Section 6.2 we revisit
the motivating examples introduced in Chapter 1 and use them to illustrate both
concrete applications of our results and shortcomings in the theory which motivate
some of the avenues of future work we discuss in Section 6.3.

6.1 Summary of Results

To the best of our knowledge, this thesis is the only systematic study of the query
equivalence problem for conjunctive queries extended with nested aggregation. Our
study yielded the following results:

1. A novel encoding of complex objects within a single flat relation.
Most previous encodings of complex objects as flat relations utilize multiple
relations, with the existence of a collection stored separately from the val-
ues of its elements. Our definition of object “linearization” and subsequent
use of null values to encode empty sub-collections highlights an interesting
connection between scalar aggregation (i.e., aggregation operators capable of
aggregating over empty inputs) and the left outer-join operator (see Chap-
ter 2).

2. A normal form for encoding queries that illuminates the interac-
tions between nested aggregation operations.
In particular, our characterization of the core indexes of an encoding query in
terms of query-implied multi-valued dependencies reveals how the joins within
the query body interact with nested aggregation (see Chapters 3 and 5).

3. A complete characterization of equivalence between conjunctive
queries that construct objects without empty sub-collections.
For the special case of object-constructing queries that do not construct empty
sub-collections, deciding query equivalence reduces to deciding encoding-equivalence
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between standard conjunctive queries. We prove that deciding this encoding-
equivalence condition is NP-complete and corresponds to a homomorphic con-
dition between the normal forms of the encoding queries (see Chapter 3 and
Appendix A).

4. Necessary conditions and sufficient conditions for equivalence be-
tween conjunctive queries with outer joins.
To the best of our knowledge, this thesis is the first work addressing the
query equivalence problem for queries containing the left outer-join opera-
tor. We do not completely solve this problem; however, we do introduce a
helpful high-level representation of these queries as DAGs whose nodes are
(rule-based) conjunctive queries. This variable-based (rather than algebraic)
syntax facilitates converting the query bodies to a canonical form, over which
we are able to state several necessary conditions and sufficient conditions
for query equivalence in terms of homomorphisms between query bodies (see
Chapter 4).

5. Necessary conditions and sufficient conditions for equivalence be-
tween conjunctive queries that construct arbitrary objects.
These conditions are stated in terms of homomorphisms between normal forms
of the associated encoding queries, and could be used to develop more power-
ful logical rewriting rules for relational query optimizers. We also show that
query equivalence in the presence of nested aggregation is at least as hard as
query equivalence in the presence of left outer joins (see Chapter 5).

6.2 Comprehensive Examples

Recall the motivating examples from Chapter 1. We now show that, without the
primary and foreign key constraints shown in Figure 1.1, the logical rewriting we
suggest within Example 1 does not preserve equivalence.

Example 62 Consider queries Q1 and Q3 from Example 1. If we model the outputs
of the SQL aggregation functions sum and avg as bags and normalized bags, respec-
tively, then Q1 and Q3 translate into the COCQL�fb,fs,fn� queries Q68 and Q69, shown in
Figures 6.1 and 6.2. The translation of Q1 makes use of a simple transformation from
an aggregation block with k aggregation expressions into a join of k such blocks, each
with a single aggregation expression. (For space reasons, we use a hybrid notation in
Figures 6.1 and 6.2 that replaces blocks of joins between base tables with an equiv-
alent rule-based notation. We have used frames to indicate the logical expansion of
view definitions, with thin frames denoting logical views—which are logically expanded
during query evaluation—and thick frames denoting materialized views—which are not
logically expanded during query evaluation.)

Figure 6.3 depicts the output sort τ14 of Q68 and Q69, as well as its transformation
to the chain sort �bnbnb,6�. Figure 6.4 illustrates the CEQs Q70 �� Encode�Q68� and
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Q71 �� Encode�Q69�. (Components of the queries have been labelled for the sake of
clarity.) Converting query Q70 to bnbnb-NF removes the shaded indexes from I4 and
I2. Query Q71 is already in bnbnb-NF. Clearly, index-covering homomorphisms cannot
exist in both directions between the normalized versions of Q70 and Q71, because the
sizes of the index sets differ. Therefore, we conclude Q70 ~.�bnbnb Q71, which implies
Q68 y Q69, which further implies that the SQL queries Q1 and Q3 are not equivalent
over unrestricted database instances.1

Our characterization of CEQ encoding-equivalence in terms of homomorphisms
is a direct generalization of the traditional characterization of CQ equivalence.
Because of this, it is straightforward to adapt techniques for testing CQ equivalence
with respect to a set Σ of schema constraints (denoted Q �Σ Q�) to CEQ encoding-
equivalence. Assuming that Σ contains only functional dependencies (FDs) and
acyclic inclusion dependencies (INDs)—which generalize primary keys and acyclic
foreign keys—we can decide encoding-equivalence w.r.t. Σ as follows:

1. Prior to the conversion to §-normal form, we pre-process each CEQ by first
applying the standard Σ-chase, as defined over CQs [6, Ch. 8–9]. (Chasing a
query with an FD causes two variables to be merged, while chasing with an
INDs introduces a new atom into the query body.)

2. After the queries have been chased, we use only the FDs in Σ to expand
out the index sets in the query head. For each i > �1, d� starting with i � 1,
we expand I i with all variables functionally determined by I�1,i�, deleting
variables from inner index sets whenever they are added to outer index sets.

3. The conversion to §-NF is unchanged, but the testing of the query-implied
MVDs when identifying core indexes (Definition 3.1.11) may need to account
for the FDs in Σ. (More specifically, if query-implied MVDs are tested via the
hypergraph condition of Theorem 3.1.10, then no changes are necessary; how-
ever, if query-implied MVDs are tested via the query equivalence condition
of Theorem 3.1.3, then that condition needs to use �Σ instead.)

We now repeat Example 62, showing that the logical rewriting we suggest within
Example 1 preserves equivalence with respect to database instances that conform
to the schema constraints.

Example 63 Reconsider queries Q70 and Q71 in Figure 6.4. Let Σ denote the set
of primary and foreign key constraints shown in Figure 1.1. Chasing the body of Q70

with Σ does not introduce any new atoms, but it does merge the variables N,N2,N4.
After expanding the index sets in the head of Q70, we obtain the new query Q72 ��
chaseΣ�Q70� shown in Figure 6.4. Shaded attributes again indicate redundant index
columns that get removed by bnbnb-normalization. Query Q71 is unchanged after
chasing with Σ.

1Cohen et al. prove that queries performing top-level application of sum are equivalent if and
only if the relational inputs to the sum function are always equivalent under bag semantics [25].
Grumbach et al. prove a similar result relating avg to normalized bags [50].
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τ14 Chain(τ14)
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Figure 6.3: Output sort τ14 of Q68 and Q69, and its transformation to a chain
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The following two mappings h � Q72 � Q71 and h� � Q71 � Q72 are index-covering
homomorphisms between the bnbnb-normal forms of Q72 and Q71.

h �� �A~A�,N~N �,R~R�,

C1~C �
1,M1~M �

1,O1~O�
1,D1~D�

1, L1~L�
1, P1~P �

1, Y1~Y �
1 ,

C2~C �
2,M2~M �

2,O2~O�
2,D2~D�

2, L2~L�
2, P2~P �

2, Y2~Y �
2 ,

C3~C �
1,M3~M �

1,O3~O�
1,D3~D�

1, L3~L�
1, P3~P �

1, Y3~Y �
1 ,

C4~C �
2,M4~M �

2,O4~O�
2,D4~D�

2, L4~L�
2, P4~P �

2, Y4~Y �
2 �

h� �� �A�~A,N �~N,R�~R,

C �
1~C1,M

�
1~M1,O

�
1~O1,D

�
1~D1, L

�
1~L1, P

�
1~P1, Y

�
1~Y1,

C �
2~C4,M

�
2~M4,O

�
2~O4,D

�
2~D4, L

�
2~L4, P

�
2~P4, Y

�
2~Y4 �

Homomorphisms h and h� together prove Q72
.�Σ
bnbnb Q71. Because Q72 �� chaseΣ�Q70�

implies Q72
.�Σ
§ Q70 for any compatible signature §, this entails Q70

.�Σ
bnbnb Q71 and

therefore Q68 �Σ Q69. It follows that the SQL queries Q1 and Q3 are equivalent over all
database instances conforming to the schema constraints in Σ.

We now turn our attention to Example 2 and show how the techniques in our
thesis allow for simplification of the nested scalar aggregation in query Q4.

Example 64 Consider queries Q4 and Q6 from Example 2. If we model the output of
aggregation function max as a set, and the output of count��� as a bag of zero-ary
tuples, then Q4 and Q6 translate into the COCQL�fb,fs,fn� queries Q73 and Q74 shown
in Figure 6.5 (thin and thick frames denote the expansions of logical and materialized
views, respectively). Queries Q73 and Q74 both have output sort �S `dom,��Sdom S� � e S�,
which we linearize into the chain sort �bsb,1�.

The encoding query Q75 �� Encode�Q73� is shown in Figure 6.6; observe that Q75

is a hierarchical CEQ due to the scalar aggregation operator in Q4. As described in
Chapter 5, before converting Q75 into bsb-normal form we must first convert its body
into DACQ canonical form (see Chapter 4). Because there exists a homomorphism
hb � body�b � body�a that is the identity over B�a ,

hb � �C~C,R~R,O1~O1,D1~D1,M1~M1,O2~O1,D2~D1�
the conversion to DACQ canonical form merges node b into a . This yields the CEQ
Q76 shown in Figure 6.6; note that because the body does not contain any hierarchical
edges, we can drop the node labels from the query head. We have shaded the attributes
that are removed from the head when Q76 is converted to bsb-NF.

Figure 6.6 also shows encoding query Q77 �� Encode�Q74�; the absence of scalar
aggregation in Q74 means that Q77 does not contain any hierarchical edges, and so the
attributes in the head do not require node labels. We have shaded the attributes that
are removed from the head when Q77 is converted to bsb-NF.
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QC�R1,C1,M1, T1�

C�C1,M1, T1� QCO�R1,C �
1, U�

O�O1,C �
1,D1�,

D�D1,R1�
Π

U�fb��
R1,C�

1

1C1�C�
1

Πdup
R1,C1,M1,T1

σT1�‘R’

D�D2,R2�
O�O2,C2,D2�
σR2�R1,C2�C1

Πdup
g

λX�fb

Π
Z�fs�X�
R1

Q73 �� Eval�Πdup
R1,Z , fb,g�

QMCO�R�, T �, Z ��

C�C �,M �, T �� QCO�R�,C �,X ��
O�O�,C ��,D��,
D�D�,R��

Π
U ��fb��
R�,C�

1C��C��

Π
Z��fs�X��
R�,T �

σT ��‘R’

Q74 �� Eval�Πdup
R�,Z� , fb,g�

Figure 6.5: Q73 and Q74, the COCQL�fb,fs,fn� translations of SQL queries Q4 and Q6
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Figure 6.6: Encoding queries derived from Q73 and Q74
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The following two mappings h � Q76 � Q77 and h� � Q77 � Q76 are index-covering
homomorphisms between the bsb-normal forms of Q76 and Q77.

h �� �O1~O�,C~C �,D1~D�,R~R�,M1~M �,O2~O�,D2~D��
h� �� �O�~O2,C

�~C,D�~D2,R
�~R�

Homomorphisms h and h� together prove Q76
.�bsb Q77. Because Q76 is the canonical

form of Q75 and therefore equivalent to it, this entails Q75
.�bsb Q77 and therefore

Q73 � Q74. It follows that the SQL queries Q4 and Q6 are equivalent.

6.3 Future Work

There are many directions in which the work in this thesis can be extended. We
briefly mention some of them here.

Schema Dependencies Throughout Chapters 2–5 we made the assumption that
the set of possible database instances was not constrained by any schema depen-
dencies. Clearly, taking schema constraints into consideration is desirable for query
optimization (cf. Examples 62 and 63). In Section 6.2 we briefly described how sets
of FDs and acyclic INDs can be utilized when testing CEQ encoding-equivalence (if
we restrict our attention to sets of primary and foreign keys, then we can drop the
acyclicity requirement [67]). This technique can be extended to HCEQ encoding-
equivalence in a straightforward manner: prior to the conversion to DACQ canonical
form, the nodes in the query body are visited in any order that places ancestors
before their descendants, and when each node v is visited the chase is invoked upon
the CQ body�v .

From a practical perspective, the above technique is sufficient to handle most
schema constraints permitted by commercial RDBMSs. An interesting question
is whether our equivalence results can be extended to other types of schema con-
straints that guarantee terminating chases sequences. In particular, our charac-
terization of core indexes in terms of MVDs assumes that all MVDs holding over
the output must have originated from the query structure. If MVDs can also
originate from the database schema, then the definition of core indexes breaks
down—specifically, there is no longer a guarantee that there is one unique set of
core indexes.

Distributive Aggregation Functions The most significant drawback of our
modelling of aggregation functions as collection constructors is the implicit as-
sumption that queries yielding objects of different sorts are not equivalent. For
example, our techniques would fail to recognize that the following two queries are
equivalent, because Q and Q� translate to COCQL�fb,fs,fn� queries with output sorts�S �Sdom S� S� and �S �S �Sdom S� S� S�, respectively.
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Q: select sum(qty)

from LI

Q�: select sum(X)

from (select oid, sum(qty) as X

from LI

group by oid)

Many common SQL aggregation functions are distributive [48], and the ability to “re-
aggregate” their output values is crucial for view rewriting within data warehousing
environments. There are well-known algebraic transformations for manipulating
operators that apply distributive aggregation [114]. A very practical extension to
our work would be to define a normalization algorithm that performs the maximal
flattening of distributive aggregation functions prior to applying the techniques
from our thesis. In the case of query Q� above, a normalization algorithm would
merge the two sum aggregations, yielding query Q.

Inequalities and Higher-Order Comparisons Decision support workloads
commonly include comparison predicates. While we have assumed an abstract
domain of database constants, it would be very useful to extend our results to
permit non-equality atomic comparisons over ordered concrete domains (e.g., inte-
gers or real numbers). We expect that this should be a relatively straightforward
generalization of techniques known for extending CQ equivalence to atomic com-
parisons [70]. A more significant extension along the same vein would be to allow
higher-order comparisons between aggregated values that occur either implicitly
(within group by clauses) or explicitly (within where or having clauses). This
would be particularly useful for optimizing decision support workloads, whose com-
plex queries often contain predicates over the result of scalar aggregated subqueries
(e.g., see the TPC-H [105] or TPC-DS [104] workloads). Explicit higher-order com-
parisons are known to make the equivalence problem undecidable with respect to
the semantics of specific aggregation functions (both for numeric functions such as
count, sum, etc. and for collection constructors such as the functions fs, fb, fs we
used in this thesis) [14, 52, 97]; however, it is possible that the equivalence problem
with higher-order comparisons would remain decidable if we modelled aggregation
functions as black boxes known only to satisfy certain arithmetic properties (e.g.,
see Cohen’s work on queries with non-nested aggregation [24]).

Outer Joins and Null Values In Chapter 4 we considered queries with explicit
outer-join operators but no aggregation, whereas in the rest of the thesis we con-
sidered queries with aggregation but no explicit outer join. We expect that without
too much difficulty our results could be extended to handle queries mixing both
aggregation and explicit outer join, likely by using two types of hierarchical edges
outputting distinct types of null values (- vs. null). A more significant extension
along the same vein would be to consider database instances that contain null
values within the base relations/tables, along with queries that permit an explicit
test for null. This extension was only recently studied for the CQ equivalence
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problem by Farré et al. [34], and it would be interesting to determine whether their
results can be extended to our encoding-equivalence problem.

View Rewriting and Cost-based Optimization As described in Chapter 1,
an equivalence test is only one component of a view-rewriting algorithm. Given a
query, our results in this thesis help to characterize the (infinite) space of equivalent
logical rewritings. From a practical perspective, the most important next step is
to use these results to design algorithms that generate logical query rewritings
(either for the purposes of view rewriting or for query simplification). The design
of any such algorithm and how it would fit into cost-based query optimization would
be dependent upon the architecture of the target query optimizer, and thus this
research needs to be conducted for each architecture. The results would be a set
of cost-based optimizers that can efficiently process arbitrary queries with nested
aggregation and outer joins in the presence of materialized views that also include
nested aggregation and outer joins.
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Appendix A

Proof of Theorem 3.2.4

In this section we formally prove that §-equivalence of CEQs implies the existence of
index-covering homomorphisms between §-normal forms. Throughout this section
we will make the following assumptions:

[A1] Q�I1; . . . ;Id;V� and Q��I �1; . . . ;I �d;V �� are two CEQs satisfying Q
.�§ Q�.

[A2] Q and Q� are already in §-NF (justified by Theorem 3.1.17).
[A3] The body of Q is minimal relative to treating Q as a CQ with head Q�I�1,d��

(justified by �V 9B� b I�1,d� and because minimization of CQs preserves rela-
tional equivalence). Similarly, the body of Q� is minimal relative to CQ head

Q��I ��1,d��.
[A4] Within the context of some database D, we use Γ to denote both the em-

beddings of bodyQ into D and—by abuse of notation—the encoding relation�Q�D with schema Q�I1; . . . ;Id;V�. Then, given some value a > dom�I�1,l�1��,
we use Γ�a� to denote the sub-relation indexed by a, which has schema
Q�I l; . . . ;Id;V� and instance ΠI�l,d�V�σI�1,l�1��a�Γ�� (see Section 2.2.1). We

define Φ analogously for Q�.

The traditional proof of the Homomorphism Theorem for equivalence/containment
of CQs [6, Theorem 6.2.3] can be broken down into the following four steps:

1. Use bodyQ to construct a “canonical database” DQ.
2. Choose a particular embedding γ � bodyQ � DQ that yields a “canonical

tuple” γ�V� within �Q�DQ .
3. Use the definition of query equivalence/containment to argue the existence of

an embedding φ � bodyQ� � DQ that yields the same canonical tuple φ�V �� �
γ�V�.

4. Define a mapping h in terms of φ, and use both the definition of DQ and the
properties of the chosen canonical tuple to prove that h is a homomorphism
from Q� to Q.

At a high level, our proof of Theorem 3.2.4 uses the same four steps. Unfortu-
nately, encoding-equality between encoding relations is characterized by the exis-
tence of a §-certificate (see Theorem 2.2.9), which is a significantly more complicated
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condition than equality/containment of two flat relations. This extra complexity
arises for two distinct reasons—first, the recursive nature of comparing nested (en-
coded) objects rather than flat tuples; and second, the differing semantics required
at each level of the comparison depending upon the encoding signature §.

The complexity due to nested (encoded) objects forces two modifications. First,

we need to generalize the idea of “equal canonical tuples” γ�V� � φ�V �� to “§�i�1,d�-
equal canonical sub-relations” Γ�a�1,i�� �§�i�1,d� Φ�a��1,i�� (that is, corresponding sub-

relations that encode the same “canonical sub-object”). Second, to ensure that h is
index-covering requires demonstrating a relationship between corresponding index
assignments ai and a�i, which requires proving properties about specific certificate
nodes. To this end, Section A.1 defines certain degenerate classes of “pseudo-trivial”
certificate nodes whose existence allows us to conclude the necessary properties for
h.

To argue for the existence of a §-certificate containing the necessary pseudo-
trivial nodes, we require a carefully designed canonical database DQ and corre-
sponding definitions of canonical sub-relations/sub-objects. This is where the com-
plexity due to varying semantics manifests itself—each semantic type places differ-
ent requirements on the design of DQ. Bag equivalence is based upon counting, and
so for bag levels we rely upon certain algebraic properties of polynomials combined
with a procedure to inflate cardinalities of database constants in a regular way such
that non-pseudo-trivial certificate nodes would imply differing element cardinalities.
In Section A.2 we describe this process, including the complete proof for the re-
stricted case where every level requires bag semantics (i.e., § � bd). Set equivalence
is based upon existence, and so for set levels we inject large amounts of symmetry
into the construction of DQ, with the constants corresponding to the index variables
in Q forming the “axes” of the symmetry. We then show that non-pseudo-trivial
certificate nodes would imply the existence/non-existence of extra/missing canon-
ical sub-objects. This process is described in Section A.3, including the complete
proof for the case § � sd. Normalized bag equivalence exhibits both count- and
existence-based features, and so for these levels our argument synthesizes both the
polynomial and the symmetry techniques; Section A.4 details normalized bag equiv-
alence, including the complete proof for the case § � nd. Finally, Section A.5 shows
how the three arguments can be interleaved to handle arbitrary signatures.

A.1 Pseudo-Trivial Certificate Nodes

Given two encoding relations Γ and Φ, consider any §-certificate between them. A
§-certificate is a tree built out of set, bag, normalized bag, and tuple nodes (cf. Def-
initions 2.2.4–2.2.8). Choose any node n at any level i within the certificate; then,
node n is itself the root of a §�i,d� certificate that proves §�i,d�-equality between two

sub-relations Γ�a� and Φ�a��, for some a > adom�I�1,i�1�,Γ� and a� > adom�I ��1,i�1�,Φ�.
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A.1.1 Trivial Nodes

Regardless of the node type of n (i.e., set, bag, or normalized bag), the internal

mechanisms of n effect one or more mappings from adom�I i,Γ�a�� to adom�I �i,Φ�a���
and from adom�I �i,Φ�a��� to adom�I i,Γ�a��, and these mappings govern which
§�i�1,d�-certificates node n must have as children. We say that n is trivial w.r.t.

index value x if any child §�i�1,d�-certificate of n that involves sub-relation Γ�ax�
also involves sub-relation Φ�a�x�, and vice versa (i.e., all of the mappings within n
act as the identity for the value x). We say that n is trivial if it is trivial w.r.t.

every value within adom�I i,Γ�a�� 8 adom�I �i,Φ�a���.
We say that relations Γ�a� and Φ�a�� permit a proof that is trivial w.r.t. index

value x if

1. x > adom�I i,Γ�a��,
2. x > adom�I �i,Φ�a��, and
3. Γ�ax� �§�i�1,d� Φ�a�x�.

If Γ�a� and Φ�a�� permit a proof that is trivial w.r.t. index value x, we call the
node n potentially trivial w.r.t. index value x. It is straightforward to show that if
node n is potentially trivial w.r.t. x then we can re-arrange the mappings within
n until we obtain a node that is trivial w.r.t. value x (while still forming a valid
§�i,d�-certificate between Γ�a� and Φ�a��).

We say that Γ�a� and Φ�a�� permit a proof that is trivial if for every value x

in adom�I i,Γ�a�� 8 adom�I �i,Φ�a�� they permit a proof that is trivial w.r.t. x. In
this case, we call node n potentially trivial ; again, it is straightforward to show for
any potentially trivial node that we can re-arrange the mappings to obtain a trivial
node.

A.1.2 Pseudo-Trivial Nodes

Observe that Γ�a� and Φ�a�� only permit a trivial proof if Γ�a� �b§�i�1,d� Φ�a��; this

follows because triviality implies equality (and hence bijectivity) between adom�I i,Γ�
and adom�I �i,Φ�. If §i x b, proving that Γ�a� and Φ�a�� permit a trivial proof (and
hence, that n can be reorganized into a trivial node) is challenging since it requires
demonstrating bag-equality, which is an encoding relationship that is potentially
stronger than the one enforced by n. For this reason, we want to relax the notion
of a trivial proof/node.

We say that n is pseudo-trivial w.r.t. value x if n contains a child §�i�1,d�-
certificate that proves Γ�ax1� �§�i�1,d� Φ�a�x2�, where x1 > adom�I i,Γ�a�� and x2 >
adom�I �i,Φ�a��� are two (not necessarily distinct) permutations of x. We say that
n is pseudo-trivial if it is pseudo-trivial w.r.t. every value within adom�I i,Γ�a�� 8
adom�I �i,Φ�a���.
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We say that Γ�a� and Φ�a�� permit a proof that is pseudo-trivial w.r.t. value x

1. §x1 > adom�I i,Γ�a�� that is a permutation of x,

2. §x2 > adom�I �i,Φ�a�� that is a permutation of x, and
3. Γ�ax1� �§�i�1,d� Φ�a�x2�.

If Γ�a� and Φ�a�� permit a proof that is pseudo-trivial w.r.t. value x, we say that
node n is potentially pseudo-trivial w.r.t. x because we can re-arrange the mappings
within n to obtain a node that is pseudo-trivial w.r.t. x.

Similarly, we say that Γ�a� and Φ�a�� permit a proof that is pseudo-trivial if for

every value x in adom�I i,Γ�a��8adom�I �i,Φ�a�� they permit a proof that is pseudo-
trivial w.r.t. x. In this case, we say that n is potentially pseudo-trivial because we
can re-arrange the mappings within n to obtain a pseudo-trivial node.

Observe that pseudo-triviality allows the permutation orderings to vary between
different values of x. Because of this, the existence of a pseudo-trivial proof only
implies set-equality between the collections encoded by Γ�a� and Φ�a��. Set-equality
is the weakest form of encoding-equality, and so proving that n can be re-organized
into a pseudo-trivial node does not require demonstrating an encoding relationship
stronger than the one already enforced by n.

Lemma A.1.1 Let I > �V 9 B� and I � > �V � 9 B�� be output variables that occur in

corresponding positions within V and V
�
. Then, I and I � must be indexes at the

same level.

Proof. By Lemma 3.0.1, we know §i, j > �1, d� such that I > Ii and I � > I �j.
Suppose that i A j. Then, it is easy to construct a database D such that for
some a > adom�I�1,j�,Γ�, sub-relation Γ�a� contains two tuples with differing

values for output column I. In contrast, for every a� > adom�I ��1,j�,Φ� the output
column I � is constant across all tuples in Φ�a��, implying Γ�a� �§�j�1,d� Φ�a�� (a

contradiction). Hence, conclude i ¹ j. Conclude i ¸ j similarly.

Corollary A.1.2 If for some index level i > �1, d� both Ii b V and I �i b V �, then for
any database D and any §-certificate between Γ and Φ, all of the certificate nodes
at level i are pseudo-trivial.

A.2 Bag Equivalence: A Counting Argument

Although bag nodes are defined in terms of a bijective function between index
values, their effect can be equivalently stated in terms of counting—bag nodes
effect agreement of element cardinalities. In order to argue that within a given §-
certificate a particular bag node is trivial, we use a counting argument based upon
uniqueness of polynomials. The following example illustrates the core idea.
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Student school dept name

UW CS Dave
UW Art Art

(a) D10 � �Student�
Student school dept name

UW CS Dave
UW CS Dave
UW Art Art

(b) D11 � �Student�
Figure A.1: Databases D10 and D11 for Example 65

R21 A C C

UW Dave Dave
UW Art Art

R22 A B C C

UW CS Dave Dave
UW Art Art Art

R23 B C D C

CS Dave CS Dave
Art Art Art Art

Figure A.2: Query results R21 � �Q78�D10 , R22 � �Q79�D10 , and R23 � �Q80�D10 .

Example 65 Consider the following three conjunctive encoding queries

Q78�A,C;C� �� Student�A,B,C�
Q79�A,B,C;C� �� Student�A,B,C�
Q80�B,C,D;C� �� Student�A,B,C�,Student�A,D,C�

and the database D10 shown in Figure A.1a. The results of evaluating the queries over
D10 are shown in Figure A.2. Clearly, the three encoding relations R21, R22, and R23 are
b-equal (and hence n-equal). Now consider database D11 shown in Figure A.1b which
was created from D10 by “diversifying” the constant CS into two distinct constants
(which we show as CS and CS). Under D11, no two of the resulting encoding relations
(shown in Figure A.3) are b-equal (or n-equal).

In the above example, diversifying a single constant by a factor of two effec-
tively breaks any nodes that prove the b-equality of the original encoding relations.
(Because normalized bag nodes utilize a layer of bag sub-nodes, in this example
the same process also breaks any normalized bag nodes that prove n-equality.) We
formalize this process for bag equality next. Formalizing it for normalized bag
equality requires additional mechanisms which we defer until Section A.4.

R24 A C C

UW Dave Dave
UW Art Art

R25 A B C C

UW CS Dave Dave
UW CS Dave Dave
UW Art Art Art

R26 B C D C

CS Dave CS Dave
CS Dave CS Dave
CS Dave CS Dave
CS Dave CS Dave

Art Art Art Art

Figure A.3: Query results R24 � �Q78�D11 , R25 � �Q79�D11 , and R26 � �Q80�D11 .
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A.2.1 Colour-Diversification

Suppose that we are given an infinite palette of colours, each indexed by a positive
integer:

colour1 colour2 colour3 colour4 colour5 . . .

(It is intentional and significant that colour1 appears transparent.)

Let Ädom ` dom be any set of n constants adhering to some total ordering @.Ädom � �c1, . . . ,cn� ¦1 B i @ j B n � ci @ cj

For each integer i C 2, let Ädomi be a fresh set of constants isomorphic to Ädom, and
let δi � Ädom� Ädomi be a function that “paints” each cj > Ädom with colour colouri to

yield the constant cj > Ädomi . As implied by the transparency of colour1, we defineÄdomi � Ädom and the painting function δ1 � Ädom � Ädom1 as the identity function.
Finally, because the different paintings of Ädom are mutually disjoint, we can define
a single whitewash1 function δ�1 � �i

Ädomi �Ädom as follows.

¦i ¦cj > Ädomi � δ�1�cj � �� cj (A.1)

We now describe a procedure we call “colour-diversification” which we define
for individual tuples, but generalize to arbitrary sets of tuples (and hence relations
and databases).

Definition A.2.1 (Diversification Point) Given totally-ordered domain Ädom of
n constants, a diversification point for Ädom is any n-dimensional point r >Nn whose
coordinates are positive integers.

Definition A.2.2 (r-Colour-Diversification) Given domain Ädom, diversification
point r for Ädom, and any tuple t over Ädom,

t � `ci1 ,ci2 , . . . ,cim e
the colour-diversification of t w.r.t. r—denoted ∆r�t�—is the set of all possible
“paintings” of t generated by independently choosing for each tuple component cij

one of the first rij colours in the colour palette. We also refer to ∆r�t� the r-colour-
diversification of t or the r-diversification of t.

We can colour-diversify an entire database Di by colour-diversifying each tuple
t > Di with the same point r (where r is a diversification point for active domain
adom�Di�). We then obtain a new database Dj

Dj � ∆r�Di� � �
t>Di

∆r�t�
1The inverse of painting
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Student school dept name

UW CS Dave
UW CS Dave
UW CS Dave
UW Art Art
UW Art Art
UW Art Art
UW Art Art
UW CS Dave
UW CS Dave
UW CS Dave
UW Art Art
UW Art Art
UW Art Art
UW Art Art

Figure A.4: Database ∆�2,1,3,2��D10�
which we call the r-(colour-)diversification of Di. We also say that Dj is colour-
diverse w.r.t. point r—a.k.a. r-colour-diverse or r-diverse—if Dj is the result of
performing r-colour-diversification on some other database Di. Because colour-
diversification is defined in terms of painting, the whitewashing function δ�1 from
equation A.1 is also the inverse of r-diversification (when extended to sets of tuples).
Hence, given a database Dj that is r-colour-diverse, we can always re-obtain the
original database Di by whitewashing Dj.

Di � δ�1�Dj� � δ�1 X∆r�Di�
Note that when we say Dj is r-colour-diverse, it implies that r is a diversification
point for active domain adom�δ�1�Dj�� � adom�Di�, not active domain adom�Dj�
(which is already colour-diverse).

Example 66 Consider database D10 in Figure A.1a which contains four distinct con-
stants in its active domain. Assume the following ordering for adom�D10�.

adom�D10� � �UW,CS,Dave,Art�
Then, database D11 in Figure A.1b is the �1,2,1,1�-diversification of D10 because
constant c2 � CS is painted with two colours. As another example, the �2,1,3,2�-
diversification of D10 is shown in Figure A.4.

The cardinality of a tuple’s colour-diversification depends upon both r and the
number of occurrences of each constant ci > Ädom within the tuple. For a given tuple
t, let #�t,ci� denote the number of occurrences of constant ci within t. Then, the
set ∆r�t� has the following cardinality.S∆r�t�S � M

ci>Ädom�ri�#�t,ci� (A.2)
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Observe that if tuple t is fixed, then each value #�t,ci� is also fixed; therefore,
equation A.2 defines a monomial of variables r1, . . . , rn with coefficient one and
degree equal to the arity of t. Given an arbitrary set S of tuples over Ädom, the car-
dinality of the colour-diversification of S is then given by the following multivariate
polynomial fS over variables r.

fS�r� � S∆r�S�S � S�
t>S

∆r�t�S �Q
t>S

S∆r�t�S �Q
t>S

M
ci>Ädom�ri�#�t,ci� (A.3)

Furthermore, given two arbitrary sets S1 and S2 of tuples over Ädom, equation A.3
implies the following relationships between polynomials fS1 and fS2 .

fS1�r� � fS2�r� � f�S18S2��r� (A.4)

fS1�r� � fS2�r� � f�S1�S2��r� (A.5)

Example 67 Consider again Example 66 and observe that database D10 contains two
tuples t1 �� Student�UW,CS,Dave� and t2 �� Student�UW,Art,Art�. The colour-
diversification of t1 and t2 yields the following monomials

ft1�r� � S∆r�`UW,CS,Dave e�S � �r1�1�r2�1�r3�1�r4�0 � �r1��r2��r3�
ft2�r� � S∆r�`UW,Art,Art e�S � �r1�1�r2�0�r3�0�r4�2 � �r1��r4�2

and so the �2,1,3,2�-diversification of D10 (shown in Figure A.4) has the following
cardinality.

fD10��2,1,3,2�� � ft1��2,1,3,2�� � ft2��2,1,3,2��
� 2 � 1 � 3 � 2 � 22

� 14

The symmetry that colour-diversification injects into the base relations of a
database also propagates to the result of any queries. More specifically, let D be any
database, r any diversification point for adom�D�, and Q�� be any conjunctive query
over D that does not contain constants in the query head (i.e., Q�� does not output
constant columns). Then, the output of Q�� exhibits the following characteristic.�Q���∆r�D� � ∆r ��Q���D� (A.6)

The reader can verify that �1,2,1,1�-diversifying the query results in Figure A.2
yields the relations in Figure A.3.

Similarly, by whitewashing the result of any query over a colour-diverse database,
we obtain the result of that query over the original database.

δ�1 ��Q���∆r�D�� � δ�1 X∆r ��Q���D� � �Q���D (A.7)

The reader can verify that whitewashing the query results in Figure A.3 yields the
relations in Figure A.2.
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A.2.2 k-Distinguishing Diversification

Examples 65 and 66 illustrate that by colour-diversifying a database we can dif-
ferentiate queries that are not equivalent; however, the choice of the diversification
point is important. By choosing diversification point �1,2,1,1� for D10 we distin-
guished between the results of Q78, Q79, and Q80 under b-equality (and n-equality).
However, the reader can verify that point �1,2,2,2� fails to distinguish between
any of the queries under b-equality (or n-equality). Ideally, we would like to show
that we can always use colour-diversification to distinguish between non-equivalent
queries.

Definition A.2.3 (k-Distinguishing Diversification Point) Given any positive
integer k and any diversification point r for domain Ädom, we say that r is k-
distinguishing if for any two sets S1, S2 composed of tuples over Ädom with maximum
arity k, either fS1 � fS2 or fS1�r� x fS2�r�.
Definition A.2.4 (k-Distinguishing Database) We say that database D is k-
distinguishing if there exists some k-distinguishing diversification point r for do-
main δ�1�adom�D�� such that D is colour-diverse w.r.t. r.

In light of the polynomials within Definition A.2.3, we turn our attention to
known results about equivalence of polynomials. The Fundamental Theorem of
Algebra (proved by Gauss) states that a univariate polynomial of degree d has
d roots (some of which might be degenerate). The Schwartz-Zippel Theorem is
essentially a generalization of this result to multivariate polynomials. The following
formulation of the theorem is due to Rudich [98].

Theorem A.2.5 (Schwartz-Zippel) Let f�x1, . . . , xn� y 0 be a degree k multi-
variate polynomial over some field F . For any finite set S ` F , if you pick random
(not necessarily distinct) r1, r2, . . . , rn > S then

Pr�f�r1, r2, . . . , rn� � 0� B kSSS .
Corollary A.2.6 Let F � �f1, f2, . . . , fm� be any finite set of distinct multivariate
polynomials over the real numbers with maximum degree k and m C 2. Let S ` N
be any finite set of positive integers. If you pick a random point r > Sn, then

Pr�§i, j > �1,m�.�i @ j , fi�r� � fj�r��� @ km2

2SSS
Corollary A.2.7 For any finite totally-ordered domain Ädom and non-negative in-
teger k, there exists an infinite number of k-distinguishing diversification points.

Corollary A.2.8 Given any database D and any non-negative integer k, there
exists a colour-diversification of D that is k-distinguishing.
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A.2.3 Guaranteeing Pseudo-Trivial Certificate Nodes

We now show how colour-diversification can be used to guarantee that any §-
certificate between the results of queries Q and Q� contains pseudo-trivial nodes.
Consider any colour-diverse database D and any §-certificate proving Γ �§ Φ. For
any i > �1, d�, let n be any node in level i; then, node n proves Γ�a� �§�i,d� Φ�a��
for some a > adom�I�1,i�1�,Γ� and a� > adom�I ��1,i�1�,Φ�. Regardless of the value of
semantic indicator §i, node n must at the very least enforce that Γ�a� and Φ�a��
encode equivalent sets of sub-objects; therefore, let subobjects�n� denote the set
of sub-objects encoded within the sub-relations of Γ�a� and Φ�a�.

subobjects�n� �� Decode�Γ�a�,s§�i�1,d�� � Decode�Φ�a��,s§�i�1,d�� (A.8)

For each sub-object o > subobjects�n�, let Γ�a�So denote the subset of Γ�a� con-
taining only the embeddings that correspond to an encoding of sub-object o.

Γ�a�So �� �γ S §b > adom�I i,Γ�a��. �γ > Γ�ab� ,Decode�Γ�ab�, §�i�1,d�� � o�� (A.9)

When viewed as an encoding relation, Γ�a�So has the same schema as Γ�a�. Define
relation Φ�a��So analogously.

In order to invoke count-based reasoning, we need to model sub-object car-
dinalities as polynomials. Consider the relation ΠIi

�Γ�a��—because D is colour-
diverse w.r.t. some point r, it follows from equation A.6 that ΠIi

�Γ�a�� is r-diverse.
Now, for each sub-object o > subobjects�n�, consider the relation ΠIi

�Γ�a�So�—
unfortunately, this relation is not necessarily r-diverse, because all of the values in
attributes Ii9V will be constant (they are functionally determined by o). However,
if we define J i as the non-output columns in I i, then the relation ΠJ i

�Γ�a�So� is
r-diverse. Next, define set So as the whitewashing of the tuples in this relation
instance

So �� δ�1 �T�ΠJ i
�Γ�a�So��� (A.10)

and define polynomial fSo as in equation A.3. Finally, define J
�
i, S�

o, and fS�o
analogously for Φ�a��. If we let #�Γ�a�, o� and #�Φ�a��, o� denote the frequency
of sub-object o within the encoding relations Γ�a� and Φ�a��, then the following
equations hold by construction and the fact that D is r-diverse.

#�Γ�a�, o� � SΠIi
�Γ�a�So�S � SΠJ i

�Γ�a�So�S � S∆r�So�S � fSo�r� (A.11)

#�Φ�a��, o� � SΠ
I
�
i
�Φ�a��So�S � SΠ

J
�
i
�Φ�a��So�S � S∆r�S�

o�S � fS�o�r� (A.12)

Using the definitions above, we can now identify situations where certificates
contain pseudo-trivial nodes. This is enough to prove Theorem 3.2.4 in the re-
stricted case where every level requires bag semantics (i.e., § � bd).

Lemma A.2.9 Given

� some database D such that Γ and Φ are non-empty,
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� some §-certificate that proves Γ �§ Φ, and
� some level i > �1, d� such that §i � b;

if D is �SI�1,d�S� SI ��1,d�S�-distinguishing then every node nb in level i of the certificate
is potentially pseudo-trivial.

Proof. Suppose that D is k-distinguishing for k � SI�1,d�S � SI ��1,d�S. If SIiS � SI �i S � 0

then any node at level i is trivial; therefore assume SIiS � SI �i S A 0. Choose any
nb in level i of the certificate. Then, nb proves Γ�a� �b§�i�1,d� Φ�a�� for some

a > adom�I�1,i�1�� and a� > adom�I ��1,i�1��;
For each o > subobjects�nb�, bag equivalence requires that #�Γ�a�, o� � #�Φ�a��, o�.
BecauseD is colour-diverse w.r.t. some k-distinguishing point r, by equations A.11
and A.12, this implies fSo�r� � fS�o�r�. Observe that sets So and S�

o both con-
tain tuples whose arity does not exceed the value k; hence, fSo � fS�o follows by
Definitions A.2.3 and A.2.4.

By virtue of equations A.3 and A.2, fSo � fS�o implies that each tuple t > So

can be mapped to a permutation of itself in S�
o, and vice versa. (It additionally

implies that there is a bijection between So and S�
o that satisfies this property,

but we don’t require that to prove pseudo-triviality). This further implies that
a similar “permuting mapping” exists in each direction between the tuples of
relations ΠJ i

�Γ�a�So� and Π
J
�
i
�Φ�a��So�.

Lemma A.1.1 implies that the same set of constant columns both extends relation
ΠJ i

�Γ�a�So� into ΠIi
�Γ�a�So� and extends relation Π

J
�
i
�Φ�a��So� into Π

I
�
i
�Φ�a��So�.

Hence, the “permuting mappings” between ΠJ i
�Γ�a�So� and Π

J
�
i
�Φ�a��So� are eas-

ily extended into a “permuting mappings” between ΠIi
�Γ�a�So� and Π

I
�
i
�Φ�a��So�—

in other words, Γ�a� and Φ�a�� permit pseudo-trivial proofs for all of the in-
dex values in ΠIi

�Γ�a�So� and Π
I
�
i
�Φ�a��So�. Repeating this argument for each

o > subobjects�nb�, we conclude that Γ�a� and Φ�a�� permit a pseudo-trivial
proof (which means nb is potentially pseudo-trivial).

Lemma A.2.10 If § � bd then there exists index-covering homomorphisms in both
directions between Q and Q�.

Proof. To construct an index-covering homomorphism h from Q� to Q, we start
by defining the canonical database DQ as follows

DQ �� ∆r�bodyQ� (A.13)

where r is any �SI�1,d�S� SI ��1,d�S�-distinguishing diversification point for (any total

ordering of) the set B8CQ (i.e., the variables and constants occurring in bodyQ).

Consider any bd-certificate proving Γ �bd Φ. Choose any γ > Γ that satisfies
δ�1 X γ�I�1,d�� � I�1,d� (by construction of DQ, there exist many such γ). Let

a�1,d� denote the tuple of index values γ�I�1,d��. By Lemma A.2.9, the root
node of the certificate is potentially pseudo-trivial w.r.t. a1; therefore, re-arrange
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the mappings within the node until it is pseudo-trivial w.r.t. a1. By recursing
into any child bd�1-certificate involving sub-relation Γ�a1� and repeating this
procedure, we eventually arrive at a tuple node proving Γ�a�1,d�� �g Φ�a��1,d�� for

some a��1,d� > adom�I ��1,d�,Φ�. Choose any φ > Φ�a��1,d��.
Define h �� δ�1 X φ. Then, h is a mapping from B� to δ�1�adom�DQ�� � B 8 CQ

that satisfies the following properties.

1. h�bodyQ�� � δ�1 X φ�bodyQ�� b δ�1�DQ� � bodyQ

2. h�V �� � δ�1 X φ�V �� � δ�1 X γ�V� � V
3. ¦i > �1, d�, h�I �i� � δ�1 X φ�I �i� � δ�1 X γ�Ii� � Ii

which holds because the node proving Γ�a�1,i�1�� �§�i,d� Φ�a��1,i�1�� was re-

arranged to be pseudo-trivial w.r.t. ai and so φ�I �i� � a�i is a permutation of
ai � γ�I i�.

Hence, h satisfies Definition 3.2.1. The proof is analogous for h� from Q to Q�.

A.3 Set Equivalence: A Symmetry Argument

The proof for bag equivalence in the previous section focuses on object frequencies
without paying much attention to the objects themselves. In particular, within the
proof of Lemma A.2.10 where we argue that any bag node involving sub-relation
Γ�a�1,i�1�� must be pseudo-trivial w.r.t. ai, the argument complete ignores the actual
sub-object encoded by sub-relation Γ�a�1,i��. Instead, the focus is entirely upon the
effect that index tuple ai has on the sub-object’s frequency.

In contrast, the argument for set equivalence depends upon examining the con-
tents of the encoded sub-objects. To argue that any set node involving some sub-
relation Γ�a�1,i�1�� must be pseudo-trivial w.r.t. some ai, we use a carefully crafted
“canonical sub-object” that can be uniquely identified only by the precise collec-
tion of constants within index tuple a�1,i�1�. We illustrate the basic idea using the
following (rather lengthy) example. For the duration of this section we assume that
the encoding signature contains only set semantics (§ � sd).

Example 68 Consider a relation schema Wrote(Name, Title, Year) that models
the fact that an author published a particular title in a particular year. Assume that each
publication is uniquely identified by the combination of its title and year, so multiple
tuples with the same title and year represent a co-authored publication. Figure A.5
shows a sample database instance D12 containing relation Wrote.

Now consider the following CEQ Q81. Figure A.5 shows the encoding relation R27

that results from evaluating Q81 over D12, as well as the object o16 that results from
decoding R27 with signature ss.

Q81�N,M,Y ;T ;T � �� Wrote�N,T,Y �,Wrote�M,T,Y �
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Wrote Name Title Year

Amy A1 2007
Amy AB1 2007
Amy A2 2008
Amy AB2 2008
Amy AB3 2008
Amy AC1 2008
Amy AC2 2008
Bob B1 2007
Bob AB1 2007
Bob B2 2008
Bob AB2 2008
Bob AB3 2008
Chad C1 2008
Chad AC1 2008
Chad AC2 2008

o16 = { { A1, AB1 },
{ A2, AB2, AB3, AC1, AC2 },
{ AB1 },
{ AB2, AB3 },
{ AC1, AC2 },
{ B1, AB1 },
{ B2, AB2, AB3 },
{ C1, AC1, AC2 } }

R27 N M Y T T

Amy Amy 2007 A1 A1
Amy Amy 2007 AB1 AB1
Amy Amy 2008 A2 A2
Amy Amy 2008 AB2 AB2
Amy Amy 2008 AB3 AB3
Amy Amy 2008 AC1 AC1
Amy Amy 2008 AC2 AC2
Amy Bob 2007 AB1 AB1
Amy Bob 2008 AB2 AB2
Amy Bob 2008 AB3 AB3
Amy Chad 2008 AC1 AC1
Amy Chad 2008 AC2 AC2
Bob Amy 2007 AB1 AB1
Bob Amy 2008 AB2 AB2
Bob Amy 2008 AB3 AB3
Bob Bob 2007 B1 B1
Bob Bob 2007 AB1 AB1
Bob Bob 2008 B2 B2
Bob Bob 2008 AB2 AB2
Bob Bob 2008 AB3 AB3
Chad Amy 2008 AC1 AC1
Chad Amy 2008 AC2 AC2
Chad Chad 2008 C1 C1
Chad Chad 2008 AC1 AC1
Chad Chad 2008 AC2 AC2

Figure A.5: Database D12 � �Wrote�, query result R27 � �Q81�D12 , and object
o16 � Decode�R27,ss�.
Intuitively, encoding query Q81 groups together publication titles related to pairs of
(not necessarily distinct) author names and a particular year; hence, object o16 could be
called the “set of annual co-authorships,” where each “annual co-authorship” is simply
a set of related titles. The crucial point is that o16 does not actually contain the author
names and year that relate the titles within a particular annual co-authorship.

Now consider three more CEQs that all contain fewer index variables than Q81.

Q82�N,Y ;T ;T � �� Wrote�N,T,Y �
Q83�T ; ;T � �� Wrote�N,T,Y �

Q84�N,M ;T ;T � �� Wrote�N,T,Y �,Wrote�M,T,Y �
Ideally, we would like o16 to contain a sub-object that can be uniquely identified only
via the author pair and year that index it in R27. Such an sub-object could be used to
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distinguish o16 from the result of any CEQ whose resulting encoding relation does not
contain an index tuple with the same combination of authors and year (including the
three queries above).

Consider sub-object { A1, AB1 } corresponding to index tuple Amy-Amy-2007 in
R27. The reader can easily verify that this sub-object also occurs in the result of Q82

corresponding to index tuple Amy-2007. The same argument applies to any sub-object
corresponding to an index tuple in R27 with a repeated author name, including {A2,
AB2, AB3, AC1, AC2 }, {B1, AB1}, {B2, AB2, AB3}, and {C1, AC1, AC2}.

Consider sub-object { B1 } corresponding to index tuples Amy-Bob-2007 and Bob-
Amy-2007 in R27. Clearly, this sub-object also occurs in the result of Q83 and the same
argument would apply to any other singleton set.

Consider sub-object { AC1, AC2 } corresponding to index tuples Amy-Chad-2008
and Chad-Amy-2008 in R27. This sub-object also occurs in the result of Q84 corre-
sponding to index tuples Amy-Chad and Chad-Amy.

Finally, consider sub-object { AB2, AB3 } corresponding to index tuples Amy-Bob-
2008 and Bob-Amy-2008 in R27. Because the sub-object is not singleton it does not
occur in the result of Q83, and it also does not occur in the results of Q82 or Q84

because each of those encoding relations only contains index tuples with two out of the
three necessary values needed to isolate the set { AB2, AB3 }.

Unfortunately, sub-object { AB2, AB3 } is not sufficient to distinguish object o16

from the result of any CEQ. Consider the following query Q85, which is also in ss-NF.

Q85�T �, T ��;T ;T � �� Wrote�N,T,Y �,Wrote�M,T,Y �,
Wrote�N,T �, Y �,Wrote�M,T ��, Y �

The reader can verify that the relation �Q85�D12 contains an encoding of sub-object {
AB2, AB3 } (corresponding to index tuples A2-B2 and B2-A2). Query Q85 exploits
the fact that within D12, occurrences of the values A2 and B2 are corrolated with
occurrences of other constants. Specifically, any embedding of Q85 into D12 that maps
attribute T � to A2 must also map N to Amy and Y to 2008; similarly, mapping T �� to B2
forces mappings of M to Bob and Y to 2008. By “triangulating” index values A2 and
B2, Q85 effectively isolates the values Amy, Bob, and 2008 without explicitly naming
them. Indiscriminately adding a few tuples with titles A2 or B2 to the database instance
will not necessarily prevent this, either. For example, adding the tuples Wrote(Don, A2,
2008) and Wrote(Chad, A2, 2007) to D12 does not change the sub-object corresponding
to A2-B2 or B2-A2 in �Q85�D12 , because these tuples do not increase the possible choices
for authors who co-authored with Bob in 2008. However, by adding tuple Wrote(Chad,
B2, 2008) to D12 we allow variable M to map to either Bob or Chad, which changes
the sub-object A2-B2 (and B2-A2) in �Q85�D12 to { AB2, AB3, AC1, AC2 } without
affecting the value of sub-object Amy-Bob-2008/Bob-Amy-2008 in �Q27�D12 .

Example 68 only considers encoding queries/relations of depth two, which is
actually the simplest interesting case for nested sets (because a depth one query in
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s-NF is essentially just a CQ). Nevertheless, from the example we can still draw
several lessons about the necessary features of any canonical sub-object and the
implications for the structure of the database instance that yields it; these lessons
generalize to considering canonical sub-objects of varying depth. First of all, the
canonical object needs to be a strict subset of the objects formed when one or
more of the index columns is removed from the query head. Second, the canonical
object cannot be a singleton set, or else it could be constructed by grouping on
values from inner index columns. Finally, the database needs to contain enough
symmetry to guarantee that isolating an index value via data triangulation requires
more triangulation points than there are index columns in either Q or Q�.

A.3.1 Labels, Prefixes and Canonical Database DQ

We now describe a method for constructing canonical database DQ from the body
of query Q that contains large amounts of symmetry. The symmetry is designed so
that each constant is related to a large number of other constants in a symmetric
manner, which forms the basis of the argument against isolating particular index
values via triangulation. Whereas in Section A.2 we “painted” with different colours
to generate multiple copies of database constants, in this section we will embellish
database constants with labels which we denote as superscripts.

Choose N to be any integer satisfying the following constraint.

N A max�SI�1,d�S, SI ��1,d�S� � 1 (A.14)

The symmetry will be specified using mechanisms we will call label-generating com-
ponents, sequences, and prefixes. For each level i > �1, d�, let LGCi denote the set
of label-generating components at level i, defined as follows.

LGCi �� ��yi, zi� S yi, zi > �1,N�SIiS� (A.15)

We say that component c � �yi, zi� contains a conflict at position i.j if yi.j � zi.j,
and we use CF-LGCi to denote the conflict-free subset of LGCi.

CF-LGCi �� LGCi � ��yi, zi� S §j. �yi.j � zi.j�� (A.16)

Observe that set LGCi has size N2SIiS, while set CF-LGCi has size N SIiS�N � 1�SIiS.
Example 69 Suppose Q � Q81 and N � 6. Because every integer in �1,N� is a single
digit, we will represent each x > �1,N�SIiS simply as a SIiS-digit number. Then, sets
LGC2 and CF-LGC2 are as follows

LGC2 � ��1,1�, . . . , �1,6�, �2,1�, . . . , �6,6��
CF-LGC2 � LGC2 � ��1,1�, �2,2�, . . . , �6,6��
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with sizes N2SI2S � 36 and N SI2S�N � 1�SI2S � 30, respectively. Similarly, LGC1 and
CF-LGC1 are as follows

LGC1 � ��111,111�, . . . �111,666�, �112,111�, . . . �666,666��
CF-LGC1 � LGC1 � ��111,111�, . . . , �111,661�, �112,111�, . . . , �666,666��

with sizes N2SI1S � 46656 and N SI1S�N � 1�SI1S � 27000, respectively.

Let LGS denote the set of label-generating sequences, composed out of label-
generating components as follows.

LGS �� �c1.c2 . . . cd S ¦i > �1, d� � ci > LGCi� (A.17)

We say that a sequence s > LGS is conflict-free if it is composed entirely of conflict-
free components, and we use CF-LGS to denote the conflict-free subset of LGS.

For each integer m > �1, d�, let LGPm denote the set of label-generating prefixes
of length m, defined as follows.

LGPm �� �c1.c2 . . . c�m�1�.ym S¦i > �1,m � 1�. �ci > LGCi�
,§zm. ��ym, zm� > LGCm�� (A.18)

Let LGP denote the set of all label-generating prefixes. Every sequence s > LGS
corresponds to a unique prefix in each of LGP1, . . . ,LGPd. Conversely, every prefix
p > LGPm with m @ d can be extended in N SImS�SI�m�1�S different ways to yield a prefix
in LGPm�1, while every prefix p > LGPd can be extended in N SIdS different ways to
yield a complete sequence in LGS. We say that a prefix p > LGP is conflict-free if
it can be iteratively extended into a conflict-free sequence, and we use CF-LGPm

(CF-LGP) to denote the conflict-free subset of LGPm (LGP). Every conflict-free
prefix p > CF-LGPm with m @ d can be extended in �N � 1�SImSN SI�m�1�S different
ways to yield a conflict-free prefix in CF-LGPm�1, while every conflict-free prefix
p > CF-LGPd can be extended in �N � 1�SIdS different ways to yield a conflict-free
sequence in CF-LGS.

Example 70 Continuing Example 69, consider the following label-generating sequences
s1, s2, s3 > LGS and prefixes p12, p3, p123 > LGP.

s1 � �354,133�.�6,5� p12 � �354,133�.6
s2 � �354,133�.�6,6� p3 � �354,134�.1
s3 � �354,134�.�1,2� p123 �354

Sequence s1 is conflict-free, while s2 and s3 contain conflicts at positions 2.1 and 1.3,
respectively. Prefix p12 is the length 2 prefix of both s1 and s2; p3 is the length 2
prefix of s3; and p123 is the length 1 prefix of s1,s2, and s3. Finally, p12 and p123 are
conflict-free, but p3 is not.

We now define a complex system of labels in terms of the label-generating com-
ponents/sequences/prefixes defined above. The easiest way to describe the labels
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in the labelling system is to show how they are applied; hence, for the moment, let
l denote an abstract label. Corresponding to each such label l, let Bl be a fresh
set of constants isomorphic to B (the variables in query Q), and let αl � B � Bl be
a “labelling function” from each x > B to the corresponding constant in Bl (which
we will denote as xl). Because all such sets Bl are mutually disjoint, we use α�1 to
denote the obvious “de-labelling function” α�1 � ��l Bl�� B which we extend with
identity over constants in CQ (the constants in query Q).

For each label-generating sequence s > LGS, we now define the following label-
generating function βs � B � ��l Bl� which performs a particular labelling of the
variables of Q.

β�y1,z1�...�yd,zd��x� ��
¢̈̈̈̈̈̈̈̈̈
¨̈̈̈¦̈̈̈̈̈̈̈̈
¨̈̈̈̈¤

αy1.j�x� if §j > �1, SI1S� such that x � I1.j

αz1.y2.j�x� if §j > �1, SI2S� such that x � I2.j

αz1.z2.y3.j�x� if §j > �1, SI3S� such that x � I3.j

� �
αz1...z�d�1�.yd.j�x� if §j > �1, SIdS� such that x � Id.j

αz1...zd�x� otherwise

(A.19)

We immediately extend function βs to tuples, sets, and atoms and with identity on
constants in C. We make the following observations about function βs.

1. Because βs is defined purely in terms of labelling functions, the de-labelling
function α�1 acts as an inverse of βs.

2. For any level m > �1, d�, the labels that βs assigns to index variables in Im

depend only on the length m prefix of s. Therefore, for each p > LGPm we
can define the function βp � I�1,m� � ��l Bl� such that βp�I�1,m�� � βs�I�1,m��
for every extension s of p.

3. Suppose s > LGS contains a conflict at position i.j. Given any tuple t con-
taining both variable Ii.j and some variable I > B � I�1,i� (i.e. a non-index
variable or a member of I�i�1,d�), the labelled tuple βs�t� evidences the con-

flict at i.j. That is, because βs�Ii.j� � I
z1...z�i�1�.yi.j

i.j and βs�I� is assigned a
label that starts with z1 . . . zi, from tuple βs�t� we can infer that yi.j � zi.j

and so conclude that sequence s has a conflict at position i.j.

We now define the canonical database DQ as follows.

DQ �� �
s>CF-LGS

βs�bodyQ� (A.20)

Because variable s ranges over only conflict-free label-generating sequences, database
DQ does not contain any tuple that evidences any conflicts. Furthermore, observe
that by de-labelling DQ we re-obtain bodyQ.

α�1�DQ� � bodyQ (A.21)
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Example 71 Continuing Example 70, functions βp123 , βp12 , and βp3 work as follows
(recall that we assumed Q � Q81).

βp123�I1� �βs1�I1� � βs2�I1� � βs3�I1���N3,M5, Y 4�
βp12�I�1,2��� βs1�I�1,2�� � βs2�I�1,2�� ��N3,M5, Y 4, T 133.6�
βp3�I�1,2�� � βs3�I�1,2�� ��N3,M5, Y 4, T 134.1�

Thus, applying functions βs1 , βs2 , and βs3 to bodyQ81
yields the following sets of tuples.

βs1�bodyQ81
� � �Wrote�N3, T 133.6, Y 4�,Wrote�M5, T 133.6, Y 4��

βs2�bodyQ81
� � �Wrote�N3, T 133.6, Y 4�,Wrote�M5, T 133.6, Y 4��

βs3�bodyQ81
� � �Wrote�N3, T 134.1, Y 4�,Wrote�M5, T 134.1, Y 4��

Database DQ81 is constructed out of SCF-LGSS � SCF-LGC1S � SCF-LGC2S � 162000
labelled copies of bodyQ81

, one for each conflict-free label-generating sequence.2 Note
that in this particular example, bodyQ81

does not contain any non-index variables which
implies

βs2�bodyQ81
� � βp12�bodyQ81

� � βs1�bodyQ81
� ` DQ81

even though s2 ¶ CF-LGS; however, this is a special case. Indeed, any tuple containing
both T 134.1 and Y 4 evidences a conflict at position 1.3, and so βs3�bodyQ81

� Ø DQ81 .

A.3.2 Canonical Objects

Having just defined the canonical database DQ, we now define the canonical objects
encoded within Γ.

Definition A.3.1 (Canonical Object) Given any integer m > �1, d� and any
label-generating prefix p > LGPm, we define the canonical object for prefix p—
denoted op—as follows.

op �� Decode�Γ�βp�I�1,m���, §�m�1,d��
Observe that if m � d, the canonical object for prefix p > LGPd is simply the

tuple βp�V�. The following two lemmas reveal how the design of database DQ

endows canonical objects with specific properties.

Lemma A.3.2 Given any prefix p > LGPd,

1. if p is conflict-free then βp�I�1,d�� > adom�I�1,d�,R�; and

2. if βp�I�1,d�� > adom�I�1,d�,R� then for any position i.j for which p contains a

conflict, that conflict is evidenced within the tuple βp�I�i�1,d�V�.
2That database DQ has exponential size compared to Q is not important because we never

materialize DQ nor evaluate any query against it. For the purposes of the proof, it suffices that
DQ is finite.
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Proof. If p is conflict-free, then there exists some s > CF-LGS that extends p, and
so βp�I�1,d�� � βs�I�1,d�� > adom�I�1,d�,R� follows by equation A.20 Conversely,

suppose both that βp�I�1,d�� > adom�I�1,d�,R� and that p contains a conflict at
position i.j; this entails i > �1, d � 1�, j > �1, SIiS�, and SI�i�1,d�S A 0. If attribute

Ii.j > V, then tuple βp�I�i�1,d�V� is guaranteed to evidence the conflict (see Sec-
tion A.3.1). If Ii.j ~> V, let s > LGS be any label-generating sequence that extends
p. By the design of DQ, embedding γ �� βs proves Q à �I�1,i� � �Ii.j��� � Ii.j�
which, by Definition 3.1.11, implies that Q is not in sd-NF (a contradiction).

Lemma A.3.3 Given any integer m > �1, d� and any prefix p > CF-LGPm, canon-
ical object op contains enough information to reconstruct the value βp�Im�.
Proof. By induction on m. Our assumption that Q is in sd-NF implies that
Id b V (see Definition 3.1.11); therefore, the base case m � d is trivial be-
cause object op is a single tuple whose output values contain all of the values
in βp�Im�. Now suppose that the lemma holds for all prefixes of length in the
range �m � 1, d�. Recall from equations A.18 and A.19 that p has the form
p � �y1, z1� . . . �y�m�1�, z�m�1��.ym, but computing βp�Im� only requires deducing
the sequence z1 . . . z�m�1�.ym. Consider each prefix q > LGP�m�1� that extends p.
If q is conflict-free, then by the induction hypothesis oq contains enough infor-
mation to identify the value βq�I�m�1��, from which we can deduce the values
of sequence z1 . . . z�m�1�.zq

m.yq�m�1�, where the values zq
m and yq�m�1� vary for dif-

ferent choices of q. If q contains a conflict, then Lemma A.3.2 guarantees that
the existence of the conflict can be detected by examining oq. By examining all
of the sub-objects of op we can determine which values of zq

m corresponds to a
conflict-free extension of p, from which we can deduce the value of ym.

A.3.3 Pseudo-Trivial Certificate Nodes

We now show that sub-relations of Γ that encode canonical objects can only be
equated to sub-relations of Φ by pseudo-trivial certificate nodes.

Lemma A.3.4 Given

� any integer m > �1, d�,
� any prefix p > CF-LGPm, and
� any sub-relation Φ�a��1,m�� that encodes canonical object op;

index tuple a��1,m� must contain all of the values in βp�Im�.
Proof. For each j > �1, SImS�, consider the index attribute Im.j > Im and the cor-

responding value βp�Im.j� � I
z1...z�m�1�.ym.j

m.j . By Lemma A.3.3, index tuple a��1,m�
must contain enough information to compute the value βp�Im.j�. In order to do
this, either a��1,m� must contain βp�Im.j�, or a��1,m� must contain enough values
to isolate βp�Im.j� via data triangulation. By the symmetry in the construction
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of DQ, every database constant that co-occurs with βp�Im.j� in a tuple also co-

occurs symmetrically with at least N �2 other constants of the form I
z1...z�m�1�.n
m.j .

Therefore, isolating βp�Im.j� via data triangulation requires at least N�1 A SI ��1,d�S
triangulation points, which exceeds the size of a��1,m�. Hence, a��1,m� must contain
the value βp�Im.j�.

Lemma A.3.5 Given

� any conflict-free label-generating sequence s > CF-LGS,
� any §-certificate that proves Γ �§ Φ, and
� any integer m > �1, d�;

every certificate node involving sub-relation Γ�βs�I�1,m�1��� is pseudo-trivial w.r.t.

βs�Im�.
Proof. Suppose that Q

.�sd Q�. We have not constrained which query was chosen
as Q and which was chosen as Q�, and so assume without loss of generality that
if Q and Q� do not have the same number of index variables at every level, then

Q was chosen so that SImS A SI �mS at the first level m upon which they disagree,
starting at level 1 and counting up to d.

Choose any conflict-free label-generating sequence s > CF-LGS; within any sd-
certificate proving R �sd R�, the certificate must contain a tuple node proving

Γ�βs�I�1,d��� �g Φ�a��1,d�� for some a��1,d� > adom�I ��1,d�,Φ�. Lemma A.3.4 implies

that a�1 contains all values in βs�I1�, and so by choice of Q above conclude thatSI1S � SI �1S and therefore a�1 is a permutation of βs�I1�. A simple induction proves
that a�m is a permutation of βs�Im� for every m > �1, d�.

Lemma A.3.6 If § � sd then there exists index-covering homomorphisms in both
directions between Q and Q�.

Proof. Choose any conflict-free label-generating sequence s > CF-LGS. Consider
any sd-certificate proving Γ �sd Φ. The certificate must contain a tuple node

proving Γ�βs�I�1,d��� �g Φ�a��1,d�� for some a��1,d� > adom�I ��1,d�,Φ�. Choose any
φ > Φ�a��1,d��.
Define h �� α�1 X φ. Then, h is a mapping from B� to α�1�adom�DQ�� � B 8 CQ

that satisfies the following properties.

1. h�bodyQ�� � α�1 X φ�bodyQ�� b α�1�DQ� � bodyQ

2. h�V �� � α�1 X φ�V �� � α�1 X βs�V� � V
3. ¦i > �1, d�, h�I �i� � α�1 X φ�I �i� � α�1 X βs�Ii� � Ii

By Lemma A.3.5 the node proving Γ�βs�I�1,i�1��� �§�i,d� Φ�a��1,i�1�� is pseudo-

trivial w.r.t. βs�I i�, and so φ�I �i� � a�i is a permutation of βs�I i�.
Hence, h satisfies Definition 3.2.1. The proof is analogous for h� from Q to Q�.
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A.4 Normalized Bag Equivalence: Symmetry +

Counting

Whereas bag equivalence requires agreement of absolute frequencies between corre-
sponding sub-objects, normalized bag equivalence only requires agreement of rela-
tive frequencies. We introduced colour-diversification in Section A.2 as a technique
for controlling the frequency of sub-objects, and in Lemma A.2.9 we showed that
by applying colour-diversification to any database we can guarantee the existence
of pseudo-trivial nodes within the §-certificate (assuming Q �§ Q�). While colour-
diversification is still a key technique in our proof for normalized bag equivalence,
the following example shows that we require more care when selecting the database
to diversify. For the duration of this section we assume that the encoding signature
contains only normalized bag semantics (§ � nd).

Example 72 Consider the following two CEQs, which assume the same relation schema
Wrote(Name, Title, Year) as used in Example 68.

Q86�T,Y ;Y � �� Wrote�N,T,Y �
Q87�N,T,Y ;Y � �� Wrote�N,T,Y �

Intuitively, both queries characterize the relative annual publication rate. They differ
in that Q86 counts titles (per year), whereas Q87 counts (author name,title) pairs (per
year).

Consider our approach for testing bag equivalence (Section A.2), using the canonical
database defined by equation A.13. Start with database D13 formed from bodyQ86

,

D13 � �Wrote�N,T,Y ��
assume adom�D13� has order �N,T,Y �, and choose any 3-distinguishing diversification
point r. For conciseness of presentation we will use r � �2,3,2� even though it is not
3-distinguishing. Encoding relations R28 and R29 in Figure A.6 shows the result of
evaluating Q86 and Q87, respectively, over database D14 � ∆�2,3,2��D13�. Whereas D14

discriminates between R28 and R29 under b-equality, it does not discriminate between
them under n-equality because the effect of multiplicative factors r1 � 2 and r2 �
3 (corresponding to number of colours for N and T , respectively) is voided by the
normalization.

We can create a database that discriminates between Q86 and Q87 under n-equality
by a slight modification of the above approach. Start with database D15 formed from
two distinct copies of bodyQ86

,

D15 � �Wrote�N,T,Y �,Wrote�N �, T �, Y ���
assume adom�D13� has order �N,T,Y,N �, T �, Y ��, and choose r � �2,3,2,1,1,1�. Fig-
ure A.7 shows the result of evaluating Q86 and Q87 over database ∆�2,3,2,1,1,1��D15�,
along with the differing normalized bags obtained after decoding.
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Wrote Name Title Year

N T Y
N T Y
N T Y
N T Y
N T Y
N T Y
N T Y
N T Y
N T Y
N T Y
N T Y
N T Y

R28 T Y Y

T Y Y
T Y Y
T Y Y
T Y Y
T Y Y
T Y Y

o17 � �S�� Y , Y S���

R29 N T Y Y

N T Y Y
N T Y Y
N T Y Y
N T Y Y
N T Y Y
N T Y Y
N T Y Y
N T Y Y
N T Y Y
N T Y Y
N T Y Y
N T Y Y

Figure A.6: Database D14 � ∆�2,3,2��D13�, query results R28 � �Q86�D14 and R29 ��Q87�D14 , and object o17 � Decode�R28,n� � Decode�R29,n�

Wrote Name Title Year

N T Y
N T Y
N T Y
N T Y
N T Y
N T Y
N T Y
N T Y
N T Y
N T Y
N T Y
N T Y
N � T � Y �

R30 T Y Y

T Y Y
T Y Y
T Y Y
T Y Y
T Y Y
T Y Y
T � Y � Y �

R31 N T Y Y

N T Y Y
N T Y Y
N T Y Y
N T Y Y
N T Y Y
N T Y Y
N T Y Y
N T Y Y
N T Y Y
N T Y Y
N T Y Y
N T Y Y
N � T � Y � Y �

o18 � �S�� Y,Y, Y, Y , Y , Y , Y � S���
o19 � �S�� Y,Y, Y, Y, Y, Y, Y , Y , Y , Y , Y , Y , Y � S���

Figure A.7: Database D16 � ∆�2,3,2,1,1,1��D15�, query results R30 � �Q86�D16 and
R31 � �Q87�D16 , and objects o18 � Decode�R30,n� and o19 � Decode�R31,n�.

184



The key lesson from the above example is that in order for colour diversification
to distinguish the results of two encoding queries under n-equality, the encoded
normalized bag must contain two sub-objects whose bag cardinalities are described
by polynomials (equations A.11 and A.12 in Section A.2) without any common
multiplicative factors. In this case, the choice of a �SI�1,d�S � SI ��1,d�S�-distinguishing
diversification point guarantees that the encoded bag cannot be normalized further.
Extending this to nested normalized bags requires guaranteeing that there exists
a recursive descent of the encoding relation in which at each level the encoded
normalized bag contains two sufficiently-different encoded sub-objects. To ensure
this, we next devise a canonical database containing canonical objects defined in
terms of a system of label-generating prefixes, similar to the one we devised for
nested sets.

A.4.1 Labels, Prefixes, and Canonical Database DQ

The requirements of our labelling system in this section are significantly simpler
than the requirements in Section A.3; however, it is expedient to adopt the same
terminology of label-generating components/sequences/prefixes and simply modify
the definitions.

For each level i > �1, d�, let LGCi denote the set of label-generating components
at level i, defined as follows.

LGCi �� �1,2� (A.22)

Let LGS denote the set of label-generating sequences, composed out of label-generating
components as follows.

LGS �� �c1.c2 . . . cd S ¦i > �1, d� � ci > LGCi� (A.23)

For each integer m > �1, d�, let LGPm denote the set of label-generating prefixes of
length m, defined as follows.

LGPm �� �c1.c2 . . . cm S ¦i > �1,m�. �ci > LGCi�� (A.24)

Let LGP denote the set of all label-generating prefixes. We do not require the notion
of a conflict, and so for uniformity of terminology we simply define CF-LGCi ��
LGCi which then entails CF-LGPm � LGPm, CF-LGP � LGP, and CF-LGS � LGS.

As in Section A.3, we define a system of labels in terms of the label-generating
components/sequences/prefixes defined above. For each label l, we define the set Bl

and the labelling function αl � B � Bl and the de-labelling function α�1 � ��l Bl�� B
exactly as in Section A.3. For each label-generating sequence s > LGS, we define
the following label-generating function βs � B � ��l Bl� which performs a particular
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labelling of the variables of Q.

βc1.c2...cd
�x� ��

¢̈̈̈̈̈̈̈̈̈
¨̈̈̈¦̈̈̈̈̈̈̈̈
¨̈̈̈̈¤

αc1�x� if x > I1

αc1.c2�x� if x > I2

� �
αc1...c�d�1��x� if x > I�d�1�
αc1...cd�x� if x > Id

αc1...cd�x� otherwise

(A.25)

We immediately extend function βs to tuples, sets, and atoms and with identity on
constants in C. Equation A.25 is much simpler than equation A.19, and in this case
it suffices that L �� LGP (which was not true for nested sets). We observe that α�1

again acts as an inverse of βs, and for any level m > �1, d� and each p > LGPm we
again define the function βp � I�1,m� � ��l Bl� as in Section A.3.

We now define the canonical database DQ in two stages. First, we form the
database Dpre

Q in terms of the label-generating sequences just defined, analogous to
the canonical database used for nested sets (equation A.20).

D
pre
Q �� �

s>CF-LGS

βs�bodyQ� (A.26)

Next, we let r be any �SI�1,d�S�SI ��1,d�S�-distinguishing diversification point for adom�Dpre
Q �

and we use colour-diversification to define canonical database DQ, as we did with
nested bags (equation A.13).

DQ �� ∆r�Dpre
Q � (A.27)

Observe that by first whitewashing and then de-labelling DQ we re-obtain bodyQ.

α�1 X δ�1�DQ� � bodyQ (A.28)

Lemma A.4.1 Given

� any integer i > �1, d�,
� any embedding γ > Γ, and
� any label-generating sequence s > LGS;

if γ �I�1,d� � �Ii � V�� � βs �I�1,d� � �Ii � V�� and δ�1 X γ�Ii � V� x βs�Ii � V�
then α�1 X δ�1 X γ�Ii � V� x �Ii � V�.
Proof. Assume w.l.o.g. that s � c1 . . . cd. Assume to the contrary that

� γ �I�1,d� � �Ii � V�� � βs �I�1,d� � �Ii � V��,
� δ�1 X γ�Ii � V� x βs�Ii � V�, and
� α�1 X δ�1 X γ�Ii � V� � �Ii � V�.

Let j be any integer such that Ii.j ¶ V. Variable Ii.j is a core index (assumption
[A2]), and so by Definition 3.1.11 (with the assumption § � nd) and Theo-
rem 3.1.10 it follows that

186



1. S�Ii 9 V� 8 I�i�1,d�S A 0, and
2. set I�1,i�1� is not a strong �Ii.j, �Ii 9 V� 8 I�i�1,d��-articulation set of hyper-

graph HQ. In other words, if we delete vertices I�1,i�1� from hypergraph HQ,
the remaining hypergraph must contain an �Ii.j, I�-path for some variable
I > �Ii 9 V� 8 I�i�1,d�.

Now consider the function α�1 X δ�1 X γ. Because whitewashing function δ�1 acts
as the identity over colour1 and because α�1 is the inverse of βs, it follows
that α�1 X δ�1 Xγ �I�1,d� � �Ii � V�� � �I�1,d� � �Ii � V��. Combined with the above

assumption and with equation A.28, this implies that α�1 X δ�1 X γ�I�1,d�� � I�1,d�
and α�1 Xδ�1 Xγ�bodyQ� b bodyQ. Because bodyQ is minimal (assumption [A3]),
it follows from Theorem 3.1.2 that α�1 X δ�1 X γ is a bijection from B onto B;
hence, hypergraphs HQ and γ�HQ� must be isomorphic.

Now consider deleting vertices γ�I�1,i�1�� from hypergraph γ�HQ�. By isomor-
phism of HQ and γ�HQ� the remaining hypergraph contains a path between
vertices γ�Ii.j� and γ�I�. By the bijectivity of α�1 X δ�1 X γ, all of the remaining
vertices are labelled copies of either non-index variables or variables in I�i,d�—
and so by equations A.27 and A.25 all of the other vertices in the same connected
component as γ�I� (including γ�Ii.j�) must have labels that begin with c1 . . . ci.
By α�1 X δ�1 X γ�Ii � V� � �Ii � V�, conclude that δ�1 X γ�Ii.j� > βs�Ii � V�.
Repeating this argument for each value of j > �1, SIiS� such that Ii.j ¶ V, and
combining it with α�1 X δ�1 X γ�Ii � V� � �Ii � V�, conclude the contradiction
δ�1 X γ�Ii � V� � βs�Ii � V�.

A.4.2 Canonical Objects

Having just defined the canonical database DQ, we now define the canonical objects
encoded within Γ exactly the same as we defined them for nested sets (Defini-
tion A.3.1). That is, the canonical object op for prefix p > LGPm is defined as
follows.

op �� Decode�Γ�βp�I�1,m���, §�m�1,d��
Observe that given any integer m > �1, d � 1� and any prefix p > LGPm, canonical
object op always contains canonical sub-objects op.1 and op.2.

A.4.3 Pseudo-Trivial Certificate Nodes

We now show that sub-relations of Γ that encode canonical objects can only be
equated to sub-relations of Φ by pseudo-trivial certificate nodes.

Lemma A.4.2 Given

� any label-generating sequence s > LGS,
� any §-certificate that proves Γ �§ Φ, and
� any level m > �1, d�;
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every certificate node involving sub-relation Γ�βs�I�1,m�1��� is potentially pseudo-

trivial w.r.t. βs�Im�.
Proof. The proof is by induction on m. First, however, note that we have never

constrained which query was chosen as Q and which was chosen as Q� (i.e, which
query should be used to create DQ). W.l.o.g. assume that if Q and Q� do not
have the same number of index variables at every level, then Q was chosen so
that SIlS A SI �l S at the first level l upon which Q and Q� disagree, starting at level
d and counting down. Also, assume s � c1 . . . cd and without loss of generality
assume that cm � 1 (the proof is symmetric if cm � 2).

Base Case: Suppose m � d. Define prefix p �� c1 . . . c�d�1�. If SIdS � 0 then
every certificate node at level d is trivially pseudo-trivial; therefore, assume thatSIdS A 0. The proof is lengthy, and so we will break it into numbered steps for
readability.

1. Let nn be any certificate node proving Γ�a� �§d
Φ�a�� for a �� βs�I�1,d�1��

and some a� > adom�I ��1,d�1�,Φ�. Relation Γ�a� encodes canonical object op,
which contains canonical sub-objects op.1 and op.2. Let sets Sop.1 and Sop.2

be defined as in equation A.10, containing the tuples of non-output values
that index sub-objects op.1 and op.2, respectively, within Γ�a�. Define S�

op.1

and S�
op.2

analogously for Φ�a��. Define polynomials fSop.1
, fSop.2

, fS�op.1
, and

fS�op.2
as in equations A.11 and A.12.

2. By definition of Γ�a�, every assignment γ > Γ�a� satisfies

γ�I�1,d�1�� � βp.1�I�1,d�1�� � βs�I�1,d�1�� (A.29)

while by definition of canonical object op.1 every γ > Γ�a�Sop.1 satisfies the
following.

γ�Id 9 V� � βp.1�Id 9 V� � βs�Id 9 V� (A.30)

Tuples in Sop.1 are formed by projecting J d from the assignments in Γ�a�Sop.1

(see equation A.10, and recall Jd � Id � V). Therefore, there cannot exist a
tuple t > Sop.1 such that

(a) α�1 X δ�1�t� contains all of the variables in Jd, and
(b) the label p.2 occurs within t.

If t did exist, then it would correspond to an assignment γ satisfying

α�1 X δ�1 X γ�Jd� � Jd (A.31)

δ�1 X γ�Jd� x βp.1�Jd� � βs�Jd� (A.32)

which contradicts Lemma A.4.1. In contrast, the design of DQ implies that
βp.1�Id� > adom�Id,Γ�a��, and the definition of canonical object op.1 further
implies βp.1�Id� > adom�Id,Γ�a�Sop.1�; therefore, Sop.1 does contain the tuple

βs�J d� � βp.1�J d�, for some ordering J d of Jd.
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3. Each monomial in fSop.1
(resp., fSop.2

) corresponds to a collection of val-

ues occurring within a tuple in Sop.1 (resp., Sop.2). Define polynomial
fGCD �� GCD�fSop.1

, fSop.2
�. By definition of greatest common divisor, there

exists two polynomials f1,f2 with GCD�f1, f2� � 1 that satisfy fSop.1
� f1 �

fGCD and fSop.2
� f2 � fGCD. We will now prove by contradiction that

degree�fGCD� � 0. Suppose that degree�fGCD� � k A 0. Because Sop.1 con-

tains tuple βp.1�J d�, polynomial fSop.1
contains a monomial corresponding

to the values βp.1�Jd�. Therefore, there must exist some subset J �
d b Jd withSJ �

dS � k such that polynomial fGCD contains a monomial corresponding to
values βp.1�J �

d�. By symmetry of DQ, polynomial fGCD must be symmetric
between labels p.1 and p.2 which means that fGCD also contains a mono-
mial corresponding to values βp.2�J �

d�. However, this implies that fSop.1

contains a monomial corresponding to values βp.1�Jd �J �
d�8βp.2�J �

d�, which
further implies the existence of tuple t > Sop.1 with α�1 Xδ�1 Xγ�Jd� � Jd and
δ�1 X γ�Jd� x βp.1�Jd� � βs�Jd�—which contradicts the previous paragraph.
Hence, GCD�fSop.1

, fSop.2
� is a constant.

4. Because Γ�a� and Φ�a�� encode the same normalized bag, we know

fSop.1
�r�

fSop.2
�r� � fS�op.1

�r�
fS�op.2

�r�
and so

fSop.1
�r� � fS�op.2

�r� � fSop.2
�r� � fS�op.1

�r� (A.33)

follows. During construction of database DQ point r was chosen to be�SI�1,d�S � SI ��1,d�S�-distinguishing, while each side of equation A.33 is a poly-

nomial of degree �SIdS � SI �dS�; therefore the two sides must be the same
polynomial.

fSop.1
� fS�op.2

� fSop.2
� fS�op.1

(A.34)

5. From Lemma A.1.1 we know that SId 9V S � SI �d 9V �S. From equation A.30 it
follows that every φ > Φ�a��Sop.1 must satisfy φ�I �d 9 V �� � βp.1�Id 9 V�.

6. We know SIdS C SI �dS by choice of Q, and so by SId 9V S � SI �d 9V �S conclude the
following.

degree�fSop.1
� � SId � V S C SI �d � V �S � degree�fS�op.1

� (A.35)

Because GCD�fSop.1
, fSop.2

� is a constant, from equation A.34 conclude that
fSop.1

must be a constant multiple of fS�op.1
. Therefore, for each tuple t > Sop.1

there exists a permutation of t within S�
op.1

, and vice versa.

7. By the definitions of a and canonical object op.1 By βs�I�1,d�1�� � a and

βs�Id� � βp.1�Id�, we know that Γ�aβs�Id�� is a sub-relation of Γ�a� that
encodes op.1. From the previous two steps it follows that there must be

some tuple x� > adom�I �d,Φ�a��� such that Φ�a�x�� encodes op.1 and x� is
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a permutation of βs�Id�. Therefore, node nn is potentially pseudo-trivial
w.r.t. βs�Id�.

Induction Hypothesis: Suppose that there exists i > �1, d � 1� such that the
lemma is true whenever m A i.

Inductive Step: Suppose m � i. Define prefix p �� c1 . . . c�i�1�. If SIiS � 0 then
every certificate node at level i is trivially pseudo-trivial; therefore, assume thatSIiS A 0. The proof is identical to the base case, with the following additions.

� By the induction hypothesis, for every level j > �i � 1, d� every certificate
node involving sub-relation Γ�βs�I�1,j�1��� is potentially pseudo-trivial w.r.t.

βs�Ij�. Because potentially pseudo-trivial nodes can always be re-arranged
until they are pseudo-trivial, assume that that within the given certificate
every certificate node involving sub-relation Γ�βs�I�1,j�1��� is pseudo-trivial

w.r.t. βs�Ij�.
� Within the second step we need to note that there exists an assignment γ >

Γ�a�Sop.1 that satisfies γ�I�i,d�� � βs�I�i,d��. Every tuple t > Sop.1 corresponds

to a sub-relation of Γ�ax� that is §§�i�1,d�-equal to Γ�aβs�I i��, and so by the

induction hypothesis there must exist an assignment γ� > Γ�ax� satisfying
γ��Ij� � βs�Ij� for all j > �i � 1, d�. This implies α�1 X δ�1 X γ��I�i�1,d�� �
βs�I�i�1,d��, which is needed to contradict Lemma A.4.1.

� Within the sixth step, SIiS C SI �i S follows from the choice of Q because the
induction hypothesis implies that SIj S � SI �j S for every j > �i � 1, d�.

Lemma A.4.3 If § � nd then there exists index-covering homomorphisms in both
directions between Q and Q�.

Proof. Choose any label-generating sequence s > LGS. Consider any nd-certificate
proving Γ �nd Φ. By Lemma A.4.2, the root node of the certificate is poten-
tially pseudo-trivial w.r.t. βs�I1�; therefore, re-arrange the mappings within
the node until it is pseudo-trivial w.r.t. βs�I1�. By recursing into any child
nd�1-certificate involving sub-relation Γ�βs�I1�� and repeating this procedure,
we eventually arrive at a tuple node proving Γ�βs�I�1,d��� �g Φ�a��1,d�� for some

a��1,d� > adom�I ��1,d�,Φ� such that for each i > �1, d�, a�i is a permutation of βs�I i�.
Choose any φ > Φ�a��1,d��.
Define h �� α�1 X δ�1 Xφ. Then, h is a mapping from B� to α�1 X δ�1�adom�DQ�� �
B 8 CQ that satisfies the following properties.

1. h�bodyQ�� � α�1 X δ�1 X φ�bodyQ�� b α�1 X δ�1�DQ� � bodyQ

2. h�V �� � α�1 X δ�1 X φ�V �� � α�1 X δ�1 X βs�V� � V
3. ¦i > �1, d�, h�I �i� � α�1 X δ�1 X φ�I �i� � α�1 X δ�1 X βs�Ii� � Ii

which follows because φ�I �i� � a�i is a permutation of βs�I i�.
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Hence, h satisfies Definition 3.2.1. The proof is analogous for h� from Q to Q�.

A.5 Arbitrary Signatures

We can combine the proof from the previous three sections to obtain a general
proof of Theorem 3.2.4 that handles signatures denoting arbitrary combinations of
nested sets, bags, and normalized bags. Like the proof for normalized bags, the
general proof relies on both colour-diversification and a labelling system in respect
to which certain objects are deemed to be canonical.

We use the same vocabulary of label-generating components/prefixes/sequences
as we used in both Sections A.3 and A.4. For any level m in which §m � s, we
define LGCm, CF-LGCm, LGPm, and CF-LGPm as we defined them in Section A.3.
When §m � n we instead use the corresponding definitions from Section A.4. When
§m � b we could use either labelling system, but we prefer the one from Section A.4
because it is simpler. The set of label-generating sequences LGS is defined relative
to the interleaved definitions of LGCm, and so the label-generating function βs �
B � ��l Bl� is formed from equations A.19 and A.25 by selecting the labelling
system appropriate to the semantics of each level. The canonical database DQ

is then constructed using both colour-diversification and labelling (exactly as in
Section A.4), and the same definition of canonical objects is used as we used for
both sets and normalized bags.

We can prove the existence of (potentially) pseudo-trivial certificate nodes in-
ductively, with the inductive argument varying depending upon the semantics of
the level. When §m � b, we use Lemma A.2.9 to argue that nodes involving
Γ�βs�I�1,m�1��� are potentially pseudo-trivial w.r.t. βs�Im�. When §m � s, the
argument uses Lemmas A.3.4 and A.3.5, and when §m � n the argument uses
Lemma A.4.2. The construction of index-covering homomorphisms is then identi-
cal to Lemma A.4.3.
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