481 research outputs found

    The Vectorial λ\lambda-Calculus

    Full text link
    We describe a type system for the linear-algebraic λ\lambda-calculus. The type system accounts for the linear-algebraic aspects of this extension of λ\lambda-calculus: it is able to statically describe the linear combinations of terms that will be obtained when reducing the programs. This gives rise to an original type theory where types, in the same way as terms, can be superposed into linear combinations. We prove that the resulting typed λ\lambda-calculus is strongly normalising and features weak subject reduction. Finally, we show how to naturally encode matrices and vectors in this typed calculus.Comment: Long and corrected version of arXiv:1012.4032 (EPTCS 88:1-15), to appear in Information and Computatio

    Semantics of a Typed Algebraic Lambda-Calculus

    Full text link
    Algebraic lambda-calculi have been studied in various ways, but their semantics remain mostly untouched. In this paper we propose a semantic analysis of a general simply-typed lambda-calculus endowed with a structure of vector space. We sketch the relation with two established vectorial lambda-calculi. Then we study the problems arising from the addition of a fixed point combinator and how to modify the equational theory to solve them. We sketch an algebraic vectorial PCF and its possible denotational interpretations

    Linear-algebraic lambda-calculus

    Full text link
    With a view towards models of quantum computation and/or the interpretation of linear logic, we define a functional language where all functions are linear operators by construction. A small step operational semantic (and hence an interpreter/simulator) is provided for this language in the form of a term rewrite system. The linear-algebraic lambda-calculus hereby constructed is linear in a different (yet related) sense to that, say, of the linear lambda-calculus. These various notions of linearity are discussed in the context of quantum programming languages. KEYWORDS: quantum lambda-calculus, linear lambda-calculus, λ\lambda-calculus, quantum logics.Comment: LaTeX, 23 pages, 10 figures and the LINEAL language interpreter/simulator file (see "other formats"). See the more recent arXiv:quant-ph/061219

    Completeness of algebraic CPS simulations

    Full text link
    The algebraic lambda calculus and the linear algebraic lambda calculus are two extensions of the classical lambda calculus with linear combinations of terms. They arise independently in distinct contexts: the former is a fragment of the differential lambda calculus, the latter is a candidate lambda calculus for quantum computation. They differ in the handling of application arguments and algebraic rules. The two languages can simulate each other using an algebraic extension of the well-known call-by-value and call-by-name CPS translations. These simulations are sound, in that they preserve reductions. In this paper, we prove that the simulations are actually complete, strengthening the connection between the two languages.Comment: In Proceedings DCM 2011, arXiv:1207.682

    A System F accounting for scalars

    Full text link
    The Algebraic lambda-calculus and the Linear-Algebraic lambda-calculus extend the lambda-calculus with the possibility of making arbitrary linear combinations of terms. In this paper we provide a fine-grained, System F-like type system for the linear-algebraic lambda-calculus. We show that this "scalar" type system enjoys both the subject-reduction property and the strong-normalisation property, our main technical results. The latter yields a significant simplification of the linear-algebraic lambda-calculus itself, by removing the need for some restrictions in its reduction rules. But the more important, original feature of this scalar type system is that it keeps track of 'the amount of a type' that is present in each term. As an example of its use, we shown that it can serve as a guarantee that the normal form of a term is barycentric, i.e that its scalars are summing to one

    Typing Quantum Superpositions and Measurement

    Get PDF
    We propose a way to unify two approaches of non-cloning in quantum lambda-calculi. The first approach is to forbid duplicating variables, while the second is to consider all lambda-terms as algebraic-linear functions. We illustrate this idea by defining a quantum extension of first-order simply-typed lambda-calculus, where the type is linear on superposition, while allows cloning base vectors. In addition, we provide an interpretation of the calculus where superposed types are interpreted as vector spaces and non-superposed types as their basis.Fil: DĂ­az Caro, Alejandro. Universidad Nacional de Quilmes. Departamento de Ciencia y TecnologĂ­a; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Dowek, Gilles. Institut National de Recherche en Informatique et en Automatique; Franci

    The probability of non-confluent systems

    Get PDF
    We show how to provide a structure of probability space to the set of execution traces on a non-confluent abstract rewrite system, by defining a variant of a Lebesgue measure on the space of traces. Then, we show how to use this probability space to transform a non-deterministic calculus into a probabilistic one. We use as example Lambda+, a recently introduced calculus defined through type isomorphisms.Comment: In Proceedings DCM 2013, arXiv:1403.768
    • …
    corecore