1,124 research outputs found

    Automatic object classification for surveillance videos.

    Get PDF
    PhDThe recent popularity of surveillance video systems, specially located in urban scenarios, demands the development of visual techniques for monitoring purposes. A primary step towards intelligent surveillance video systems consists on automatic object classification, which still remains an open research problem and the keystone for the development of more specific applications. Typically, object representation is based on the inherent visual features. However, psychological studies have demonstrated that human beings can routinely categorise objects according to their behaviour. The existing gap in the understanding between the features automatically extracted by a computer, such as appearance-based features, and the concepts unconsciously perceived by human beings but unattainable for machines, or the behaviour features, is most commonly known as semantic gap. Consequently, this thesis proposes to narrow the semantic gap and bring together machine and human understanding towards object classification. Thus, a Surveillance Media Management is proposed to automatically detect and classify objects by analysing the physical properties inherent in their appearance (machine understanding) and the behaviour patterns which require a higher level of understanding (human understanding). Finally, a probabilistic multimodal fusion algorithm bridges the gap performing an automatic classification considering both machine and human understanding. The performance of the proposed Surveillance Media Management framework has been thoroughly evaluated on outdoor surveillance datasets. The experiments conducted demonstrated that the combination of machine and human understanding substantially enhanced the object classification performance. Finally, the inclusion of human reasoning and understanding provides the essential information to bridge the semantic gap towards smart surveillance video systems

    A planetary nervous system for social mining and collective awareness

    Get PDF
    We present a research roadmap of a Planetary Nervous System (PNS), capable of sensing and mining the digital breadcrumbs of human activities and unveiling the knowledge hidden in the big data for addressing the big questions about social complexity. We envision the PNS as a globally distributed, self-organizing, techno-social system for answering analytical questions about the status of world-wide society, based on three pillars: social sensing, social mining and the idea of trust networks and privacy-aware social mining. We discuss the ingredients of a science and a technology necessary to build the PNS upon the three mentioned pillars, beyond the limitations of their respective state-of-art. Social sensing is aimed at developing better methods for harvesting the big data from the techno-social ecosystem and make them available for mining, learning and analysis at a properly high abstraction level. Social mining is the problem of discovering patterns and models of human behaviour from the sensed data across the various social dimensions by data mining, machine learning and social network analysis. Trusted networks and privacy-aware social mining is aimed at creating a new deal around the questions of privacy and data ownership empowering individual persons with full awareness and control on own personal data, so that users may allow access and use of their data for their own good and the common good. The PNS will provide a goal-oriented knowledge discovery framework, made of technology and people, able to configure itself to the aim of answering questions about the pulse of global society. Given an analytical request, the PNS activates a process composed by a variety of interconnected tasks exploiting the social sensing and mining methods within the transparent ecosystem provided by the trusted network. The PNS we foresee is the key tool for individual and collective awareness for the knowledge society. We need such a tool for everyone to become fully aware of how powerful is the knowledge of our society we can achieve by leveraging our wisdom as a crowd, and how important is that everybody participates both as a consumer and as a producer of the social knowledge, for it to become a trustable, accessible, safe and useful public good. Graphical abstrac

    A planetary nervous system for social mining and collective awareness

    Get PDF
    We present a research roadmap of a Planetary Nervous System (PNS), capable of sensing and mining the digital breadcrumbs of human activities and unveiling the knowledge hidden in the big data for addressing the big questions about social complexity. We envision the PNS as a globally distributed, self-organizing, techno-social system for answering analytical questions about the status of world-wide society, based on three pillars: social sensing, social mining and the idea of trust networks and privacy-aware social mining. We discuss the ingredients of a science and a technology necessary to build the PNS upon the three mentioned pillars, beyond the limitations of their respective state-of-art. Social sensing is aimed at developing better methods for harvesting the big data from the techno-social ecosystem and make them available for mining, learning and analysis at a properly high abstraction level. Social mining is the problem of discovering patterns and models of human behaviour from the sensed data across the various social dimensions by data mining, machine learning and social network analysis. Trusted networks and privacy-aware social mining is aimed at creating a new deal around the questions of privacy and data ownership empowering individual persons with full awareness and control on own personal data, so that users may allow access and use of their data for their own good and the common good. The PNS will provide a goal-oriented knowledge discovery framework, made of technology and people, able to configure itself to the aim of answering questions about the pulse of global society. Given an analytical request, the PNS activates a process composed by a variety of interconnected tasks exploiting the social sensing and mining methods within the transparent ecosystem provided by the trusted network. The PNS we foresee is the key tool for individual and collective awareness for the knowledge society. We need such a tool for everyone to become fully aware of how powerful is the knowledge of our society we can achieve by leveraging our wisdom as a crowd, and how important is that everybody participates both as a consumer and as a producer of the social knowledge, for it to become a trustable, accessible, safe and useful public good.Seventh Framework Programme (European Commission) (grant agreement No. 284709

    The Functional Anatomy of Time: What and When in the Brain

    Get PDF
    This Opinion article considers the implications for functional anatomy of how we represent temporal structure in our exchanges with the world. It offers a theoretical treatment that tries to make sense of the architectural principles seen in mammalian brains. Specifically, it considers a factorisation between representations of temporal succession and representations of content or, heuristically, a segregation into when and what. This segregation may explain the central role of the hippocampus in neuronal hierarchies while providing a tentative explanation for recent observations of how ordinal sequences are encoded. The implications for neuroanatomy and physiology may have something important to say about how self-organised cell assembly sequences enable the brain to exhibit purposeful behaviour that transcends the here and now

    Discovering visiting behaviors and city perceptions by mining semantic trajectory

    Get PDF
    Tourism is a crucial industry for many cities, necessitating the development of unique attractions to draw in more visitors. Understanding the visiting behaviors and perceptions of visitors helps to uncover the city’s distinctive characteristics, thereby aiding in the further growth of its tourism industry. It’s important to note that different population groups may exhibit varying visiting behaviors depending on the time of their visit, which in turn can shape their impressions of the city. This study explores the dynamic visiting behaviors and city perceptions of locals and tourists throughout different times of the day and week. The study area is London, one of the world’s most famous tourist cities. To conduct this study, User-Generated Content (UGC) is utilized, specifically data from Foursquare check-ins and Flickr tags from April 3, 2012, to September 16, 2013. The study first identifies the spatiotemporal distribution of hotspots for each population group based on their Foursquare check-ins. The relative concentration of locals and tourists is then examined through the difference ratio to understand their unique visiting preferences. Next, the spatiotemporal movements of locals and tourists and their city descriptions during their trips are analyzed by constructing semantic trajectories. The place is the fundamental element of a semantic trajectory, and places are constructed by clustering Foursquare check-ins. The property of the place is defined by three dimensions: location (represented by borough names), locale (represented by place categories), and sense of place (represented by topics generated in topic modeling based on Flickr tags). Semantic trajectories are then clustered based on their semantic dimensions, and typical trajectories are mined for each cluster. The distribution of trajectories and their semantic dimensions are compared between locals and tourists at different time spans to explore how London’s impressions evolve over time. The results suggest distinct visiting behaviors and city perceptions over time for locals and tourists. Both groups primarily concentrate in the city center, with small hotspots around the airport. However, locals tend to visit more suburban areas than tourists. Locals show higher preferences for business districts during the daytime and on weekdays, while tourists consistently show interest in shopping in the city center. In terms of city perceptions, the city center is associated with descriptions of cityscapes and transport during the daytime. At night, people tend to associate the same area with nightlife activities. Furthermore, locals are interested in leisure activities and fitness, while tourists tend to focus on tourist attractions and the Olympics

    Multiple-Aspect Analysis of Semantic Trajectories

    Get PDF
    This open access book constitutes the refereed post-conference proceedings of the First International Workshop on Multiple-Aspect Analysis of Semantic Trajectories, MASTER 2019, held in conjunction with the 19th European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2019, in WΓΌrzburg, Germany, in September 2019. The 8 full papers presented were carefully reviewed and selected from 12 submissions. They represent an interesting mix of techniques to solve recurrent as well as new problems in the semantic trajectory domain, such as data representation models, data management systems, machine learning approaches for anomaly detection, and common pathways identification

    Movement Analytics: Current Status, Application to Manufacturing, and Future Prospects from an AI Perspective

    Full text link
    Data-driven decision making is becoming an integral part of manufacturing companies. Data is collected and commonly used to improve efficiency and produce high quality items for the customers. IoT-based and other forms of object tracking are an emerging tool for collecting movement data of objects/entities (e.g. human workers, moving vehicles, trolleys etc.) over space and time. Movement data can provide valuable insights like process bottlenecks, resource utilization, effective working time etc. that can be used for decision making and improving efficiency. Turning movement data into valuable information for industrial management and decision making requires analysis methods. We refer to this process as movement analytics. The purpose of this document is to review the current state of work for movement analytics both in manufacturing and more broadly. We survey relevant work from both a theoretical perspective and an application perspective. From the theoretical perspective, we put an emphasis on useful methods from two research areas: machine learning, and logic-based knowledge representation. We also review their combinations in view of movement analytics, and we discuss promising areas for future development and application. Furthermore, we touch on constraint optimization. From an application perspective, we review applications of these methods to movement analytics in a general sense and across various industries. We also describe currently available commercial off-the-shelf products for tracking in manufacturing, and we overview main concepts of digital twins and their applications
    • …
    corecore