182,777 research outputs found

    Safe model-based design of experiments using Gaussian processes

    Get PDF
    The construction of kinetic models has become an indispensable step in developing and scale-up of processes in the industry. Model-based design of experiments (MBDoE) has been widely used to improve parameter precision in nonlinear dynamic systems. Such a framework needs to account for both parametric and structural uncertainty, as the physical or safety constraints imposed on the system may well turn out to be violated, leading to unsafe experimental conditions when an optimally designed experiment is performed. In this work, Gaussian processes are utilized in a two-fold manner: 1) to quantify the uncertainty realization of the physical system and calculate the plant-model mismatch, 2) to compute the optimal experimental design while accounting for the parametric uncertainty. TheOur proposed method, Gaussian process-based MBDoE (GP-MBDoE), guarantees the probabilistic satisfaction of the constraints in the context of the model-based design of experiments. GP-MBDoE is assisted with the use of adaptive trust regions to facilitate a satisfactory local approximation. The proposed method can allow the design of optimal experiments starting from limited preliminary knowledge of the parameter set, leading to a safe exploration of the parameter space. This method’s performance is demonstrated through illustrative case studies regarding the parameter identification of kinetic models in flow reactors

    Learning nonparametric Volterra kernels with Gaussian processes

    Get PDF
    This paper introduces a method for the nonparametric Bayesian learning of nonlinear operators, through the use of the Volterra series with kernels represented using Gaussian processes (GPs), which we term the nonparametric Volterra kernels model (NVKM). When the input function to the operator is unobserved and has a GP prior, the NVKM constitutes a powerful method for both single and multiple output regression, and can be viewed as a nonlinear and nonparametric latent force model. When the input function is observed, the NVKM can be used to perform Bayesian system identification. We use recent advances in efficient sampling of explicit functions from GPs to map process realisations through the Volterra series without resorting to numerical integration, allowing scalability through doubly stochastic variational inference, and avoiding the need for Gaussian approximations of the output processes. We demonstrate the performance of the model for both multiple output regression and system identification using standard benchmarks

    Integrated Pre-Processing for Bayesian Nonlinear System Identification with Gaussian Processes

    Full text link
    We introduce GP-FNARX: a new model for nonlinear system identification based on a nonlinear autoregressive exogenous model (NARX) with filtered regressors (F) where the nonlinear regression problem is tackled using sparse Gaussian processes (GP). We integrate data pre-processing with system identification into a fully automated procedure that goes from raw data to an identified model. Both pre-processing parameters and GP hyper-parameters are tuned by maximizing the marginal likelihood of the probabilistic model. We obtain a Bayesian model of the system's dynamics which is able to report its uncertainty in regions where the data is scarce. The automated approach, the modeling of uncertainty and its relatively low computational cost make of GP-FNARX a good candidate for applications in robotics and adaptive control.Comment: Proceedings of the 52th IEEE International Conference on Decision and Control (CDC), Firenze, Italy, December 201

    Gaussian process model based predictive control

    Get PDF
    Gaussian process models provide a probabilistic non-parametric modelling approach for black-box identification of non-linear dynamic systems. The Gaussian processes can highlight areas of the input space where prediction quality is poor, due to the lack of data or its complexity, by indicating the higher variance around the predicted mean. Gaussian process models contain noticeably less coefficients to be optimized. This paper illustrates possible application of Gaussian process models within model-based predictive control. The extra information provided within Gaussian process model is used in predictive control, where optimization of control signal takes the variance information into account. The predictive control principle is demonstrated on control of pH process benchmark
    • 

    corecore