30,644 research outputs found

    Three-phase primary control for unbalance sharing between distributed generation units in a microgrid

    Get PDF
    For islanded microgrids, droop-based control concepts have been developed both in single and three-phase variants. The three-phase controllers often assume a balanced network, hence, unbalance sharing and/or mitigation remains a challenging issue. Therefore, in this paper, unbalance is considered in a three-phase islanded microgrid where the distributed generation (DG) units are operated by the voltage-based droop (VBD) control. For this purpose, the VBD control, which has been developed for single-phase systems, is extended for three phase application and an additional control loop is added for unbalance mitigation and sharing. The method is based on an unbalance mitigation scheme by DG units in grid-connected systems, which is altered for usage in grid-forming DG units with droop control. The reaction of the DG units to unbalance is determined by the main parameter of the additional control loop, viz, the distortion damping resistance Rd. The effect of Rd on the unbalance mitigation is studied in this paper, i.e., dependent on Rd, the DG units can be resistive for unbalance (RU) or they can contribute in the weakest phase (CW). The paper shows that the RU method decreases the line losses in the system and achieves better power equalization between the DG unit's phases. However, it leads to a larger voltage unbalance near the loads. The CW method leads to a more uneven power between the DG unit's phases and larger line losses, but a better voltage quality near the load. However, it can negatively affect the stability of the system. In microgrids with multiple DG units, the distortion damping resistance is set such that the unbalanced load can be shared between multiple DG units in an actively controlled manner rather than being determined by the microgrid configuration solely. The unit with the lowest distortion resistance provides relatively more of the unbalanced currents

    Dynamic analysis of flexible rotor-bearing systems using a modal approach

    Get PDF
    The generalized dynamic equations of motion were obtained by the direct stiffness method for multimass flexible rotor-bearing systems. The direct solution of the equations of motion is illustrated on a simple 3-mass system. For complex rotor-bearing systems, the direct solution of the equations becomes very difficult. The transformation of the equations of motion into modal coordinates can greatly simplify the computation for the solution. The use of undamped and damped system mode shapes in the transformation are discussed. A set of undamped critical speed modes is used to transform the equations of motion into a set of coupled modal equations of motion. A rapid procedure for computing stability, steady state unbalance response, and transient response of the rotor-bearing system is presented. Examples of the application of this modal approach are presented. The dynamics of the system is further investigated with frequency spectrum analysis of the transient response

    Battery storage integration in voltage unbalance and overvoltage mitigation control strategies and its impact on the power quality

    Get PDF
    The increased utilisation of distributed renewable energy sources in low voltage grids leads to power quality problems such as overvoltages and voltage unbalance. This imposes challenges to the distribution system operators to maintain the power quality in their grids. To overcome these issues, energy storage systems could be integrated together with the distributed energy resources and the stored energy could be used when needed to better improve power quality and achieve better grid performance. However, integrating an energy storage system introduces additional cost, therefore, determining the right capacity is essential. In this article, an energy storage system is combined with the classical positive-sequence control strategy and the three-phase damping control strategy. The three-phase damping control strategy is able to mitigate the voltage unbalance by emulating a resistive behaviour towards the zero- and negative-sequence voltage components. This resistive behaviour can be set on different values such that the desired voltage unbalance mitigation is achieved. Hence, the three-phase damping control strategy, equipped with the energy storage system is investigated under different values of the resistive behaviour. Both control strategies are investigated under the same conditions and the impact of the different capacities of the energy storage systems is investigated

    Tradeoffs between AC power quality and DC bus ripple for 3-phase 3-wire inverter-connected devices within microgrids

    Get PDF
    Visions of future power systems contain high penetrations of inverters which are used to convert power from dc (direct current) to ac (alternating current) or vice versa. The behavior of these devices is dependent upon the choice and implementation of the control algorithms. In particular, there is a tradeoff between dc bus ripple and ac power quality. This study examines the tradeoffs. Four control modes are examined. Mathematical derivations are used to predict the key implications of each control mode. Then, an inverter is studied both in simulation and in hardware at the 10 kVA scale, in different microgrid environments of grid impedance and power quality. It is found that voltage-drive mode provides the best ac power quality, but at the expense of high dc bus ripple. Sinusoidal current generation and dual-sequence controllers provide relatively low dc bus ripple and relatively small effects on power quality. High-bandwidth dc bus ripple minimization mode works well in environments of low grid impedance, but is highly unsuitable within higher impedance microgrid environments and/or at low switching frequencies. The findings also suggest that the certification procedures given by G5/4, P29 and IEEE 1547 are potentially not adequate to cover all applications and scenarios

    Improving the Performance of Low Voltage Networks by an Optimized Unbalance Operation of Three-Phase Distributed Generators

    Get PDF
    This work focuses on using the full potential of PV inverters in order to improve the efficiency of low voltage networks. More specifically, the independent per-phase control capability of PV three-phase four-wire inverters, which are able to inject different active and reactive powers in each phase, in order to reduce the system phase unbalance is considered. This new operational procedure is analyzed by raising an optimization problem which uses a very accurate modelling of European low voltage networks. The paper includes a comprehensive quantitative comparison of the proposed strategy with two state-of-the-art methodologies to highlight the obtained benefits. The achieved results evidence that the proposed independent per-phase control of three-phase PV inverters improves considerably the network performance contributing to increase the penetration of renewable energy sources.Ministerio de EconomĂ­a y Competitividad ENE2017-84813-R, ENE2014-54115-

    Piezoceramics-based Devices for Active Balancing of Flexible Shafts

    Get PDF
    This paper focuses on vibration control of flexible shafts by means of rotorfixed piezoelectric materials. The target is to realize compact solutions for the suppression of problematic resonant vibration at so-called flexural critical speeds. For analysis, parametric finite element models of flexible rotors with piezoceramic sheets and strain or displacement sensors are developed, where the number of degrees of freedom is kept low. Several mechanisms which can destabilize flexible rotors are quantisized, such as rotor material damping, dissipation of currents induced in rotor-fixed piezoceramics and active feedback control proportional to rotor strain rates. The effectiveness of low frequency feedback and feedforward control for the suppression of the unbalance response is demonstrated using analytic and experimental results. Emphasis is on the interaction between the dynamics of the rotor and that of the connected electronic circuits. The experimental setup which is used for validation is a flexible shaft equipped with piezoceramic sheets and strain sensors. A slipring assembly is used to simplify measurements with, and control of, the sensors and actuators on the shaft and to facilitate the development of compact drive electronics

    Enhanced Electric Vehicle Integration in the UK Low Voltage Networks with Distributed Phase Shifting Control

    Get PDF
    Electric vehicles (EV) have gained global attention due to increasing oil prices and rising concerns about transportation-related urban air pollution and climate change. While mass adoption of EVs has several economic and environmental benefits, large-scale deployment of EVs on the low-voltage (LV) urban distribution networks will also result in technical challenges. This paper proposes a simple and easy to implement single-phase EV charging coordination strategy with three-phase network supply, in which chargers connect EVs to the less loaded phase of their feeder at the beginning of the charging process. Hence, network unbalance is mitigated and, as a result, EV hosting capacity is increased. A new concept, called Maximum EV Hosting Capacity (HC max) of low voltage distribution networks, is introduced to objectively assess and quantify the enhancement that the proposed phase-shifting strategy could bring to distribution networks. The resulting performance improvement has been demonstrated over three real UK residential networks through a comprehensive Monte Carlo simulation study using Matlab and OpenDSS tools. With the same EV penetration level, the under-voltage probability was reduced in the first network from 100% to 54% and in the second network from 100% to 48%. Furthermore, percentage voltage unbalance factors in the networks were successfully restored to their original values before any EV connection.Peer reviewedFinal Accepted Versio

    An application of decision trees method for fault diagnosis of induction motors

    Get PDF
    Decision tree is one of the most effective and widely used methods for building classification model. Researchers from various disciplines such as statistics, machine learning, pattern recognition, and data mining have considered the decision tree method as an effective solution to their field problems. In this paper, an application of decision tree method to classify the faults of induction motors is proposed. The original data from experiment is dealt with feature calculation to get the useful information as attributes. These data are then assigned the classes which are based on our experience before becoming data inputs for decision tree. The total 9 classes are defined. An implementation of decision tree written in Matlab is used for these data

    Dynamics of piezoceramics-based mass and force actuators for rotating machines

    Get PDF
    In the past decade, it has become more and more common to install active vibration control devices on rotating systems like grinding machines, tooling centers, industrial fans and drive shafts. In the present research, two innovative actuation concepts for such devices are evaluated. The first device is a force actuator based on piezoceramic fibers, which has a low power consumption and high dynamic range. The second device is a mass redistribution actuator based on two piezoelectric ultrasonic motors, which is smaller and faster than conventional electromagnetic devices. At the basis of the analysis are rotor dynamic finite element models including actuators, sensors and feedback controllers. In simulations and experiments with device one, feedback control and scheduled feedforward control are considered. It is shown experimentally that the unbalance response at a critical speed can be reduced by some 97%. In experiments with device two, the positioning speed is determined
    • …
    corecore