1,578 research outputs found

    ROLAND : a tool for the realistic optimisation of local access network design

    Get PDF
    Bibliography: p. 141-147.Investment in the local access network represents between 50% and 70% of capital investment of a telecommunications company. This thesis investigates algorithms that can be used to design economical access networks and presents ROLAND: a tool that incorporates several of these algorithms into an interactive environment. The software allows a network designer to explore different approaches to solving the problem, before adopting a particular one. The family of problems that are tackled by the algorithms included in ROLAND involve determining the most economical way of installing concentrators in an access network and connecting demand nodes such as distribution points to these concentrators. The Centre-of-Mass (COM) Algorithm identifies clusters of demand in the network and suggests good locations for concentrators to be installed. The problem of determining which concentrators in a set of potential sites to install is known as the concentrator location problem (CPL) and is an instance of the classical capacitated plant location problem. Linear programming techniques such as branch-and-bound can be used to find an optimal solution to this problem, but soon becomes infeasible as the network size increases. Some form of heuristic approach is needed, and ROLAND includes two such heuristics, namely the Add and Drop Heuristic. Determining the layout of multi-drop lines, which allow a number of demand nodes to share the same connection to a concentrator, is analogous to finding minimal spanning trees in a graph. Greedy approaches such as Kruskal's algorithm are not ideal however, and heuristics such as Esau-William's algorithm achieve better results. Kruskal's algorithm and Kershenbaum's Unified Algorithm (which encapsulates a number of heuristics) have been implemented and come bundled with ROLAND. ROLAND also includes an optimal terminal assignment algorithm for associating distribution points to concentrators. A description of ROLAND's architecture and GUI are provided. The graphical elements are kept separate from the algorithm implementations, and an interface class provides common data structures and routines for use by new algorithm implementations. A test data generator, able to create random or localized data, is also included. A new hybrid concentrator location algorithm, known as the Cluster-Add Heuristic is presented. The implementation of this algorithm is included in ROLAND, and demonstrates the ease with which new solution methods can be integrated into the tool's framework. Experimentation with the concentrator location algorithms is conducted to show the Cluster-Add Heuristic's relative performance

    Algorithms and Data Structures for In-Memory Text Search Engines

    Get PDF

    Gunrock: GPU Graph Analytics

    Full text link
    For large-scale graph analytics on the GPU, the irregularity of data access and control flow, and the complexity of programming GPUs, have presented two significant challenges to developing a programmable high-performance graph library. "Gunrock", our graph-processing system designed specifically for the GPU, uses a high-level, bulk-synchronous, data-centric abstraction focused on operations on a vertex or edge frontier. Gunrock achieves a balance between performance and expressiveness by coupling high performance GPU computing primitives and optimization strategies with a high-level programming model that allows programmers to quickly develop new graph primitives with small code size and minimal GPU programming knowledge. We characterize the performance of various optimization strategies and evaluate Gunrock's overall performance on different GPU architectures on a wide range of graph primitives that span from traversal-based algorithms and ranking algorithms, to triangle counting and bipartite-graph-based algorithms. The results show that on a single GPU, Gunrock has on average at least an order of magnitude speedup over Boost and PowerGraph, comparable performance to the fastest GPU hardwired primitives and CPU shared-memory graph libraries such as Ligra and Galois, and better performance than any other GPU high-level graph library.Comment: 52 pages, invited paper to ACM Transactions on Parallel Computing (TOPC), an extended version of PPoPP'16 paper "Gunrock: A High-Performance Graph Processing Library on the GPU

    On the Practice and Application of Context-Free Language Reachability

    Get PDF
    The Context-Free Language Reachability (CFL-R) formalism relates to some of the most important computational problems facing researchers and industry practitioners. CFL-R is a generalisation of graph reachability and language recognition, such that pairs in a labelled graph are reachable if and only if there is a path between them whose labels, joined together in the order they were encountered, spell a word in a given context-free language. The formalism finds particular use as a vehicle for phrasing and reasoning about program analysis, since complex relationships within the data, logic or structure of computer programs are easily expressed and discovered in CFL-R. Unfortunately, The potential of CFL-R can not be met by state of the art solvers. Current algorithms have scalability and expressibility issues that prevent them from being used on large graph instances or complex grammars. This work outlines our efforts in understanding the practical concerns surrounding CFL-R, and applying this knowledge to improve the performance of CFL-R applications. We examine the major difficulties with solving CFL-R-based analyses at-scale, via a case-study of points-to analysis as a CFL-R problem. Points-to analysis is fundamentally important to many modern research and industry efforts, and is relevant to optimisation, bug-checking and security technologies. Our understanding of the scalability challenge motivates work in developing practical CFL-R techniques. We present improved evaluation algorithms and declarative optimisation techniques for CFL-R, capitalising on the simplicity of CFL-R to creating fully automatic methodologies. The culmination of our work is a general-purpose and high-performance tool called Cauliflower, a solver-generator for CFL-R problems. We describe Cauliflower and evaluate its performance experimentally, showing significant improvement over alternative general techniques

    A Survey on the Integration of NAND Flash Storage in the Design of File Systems and the Host Storage Software Stack

    Full text link
    With the ever-increasing amount of data generate in the world, estimated to reach over 200 Zettabytes by 2025, pressure on efficient data storage systems is intensifying. The shift from HDD to flash-based SSD provides one of the most fundamental shifts in storage technology, increasing performance capabilities significantly. However, flash storage comes with different characteristics than prior HDD storage technology. Therefore, storage software was unsuitable for leveraging the capabilities of flash storage. As a result, a plethora of storage applications have been design to better integrate with flash storage and align with flash characteristics. In this literature study we evaluate the effect the introduction of flash storage has had on the design of file systems, which providing one of the most essential mechanisms for managing persistent storage. We analyze the mechanisms for effectively managing flash storage, managing overheads of introduced design requirements, and leverage the capabilities of flash storage. Numerous methods have been adopted in file systems, however prominently revolve around similar design decisions, adhering to the flash hardware constrains, and limiting software intervention. Future design of storage software remains prominent with the constant growth in flash-based storage devices and interfaces, providing an increasing possibility to enhance flash integration in the host storage software stack

    A Survey on the Integration of NAND Flash Storage in the Design of File Systems and the Host Storage Software Stack

    Get PDF
    With the ever-increasing amount of data generate in the world, estimated to reach over 200 Zettabytes by 2025, pressure on efficient data storage systems is intensifying. The shift from HDD to flash-based SSD provides one of the most fundamental shifts in storage technology, increasing performance capabilities significantly. However, flash storage comes with different characteristics than prior HDD storage technology. Therefore, storage software was unsuitable for leveraging the capabilities of flash storage. As a result, a plethora of storage applications have been design to better integrate with flash storage and align with flash characteristics. In this literature study we evaluate the effect the introduction of flash storage has had on the design of file systems, which providing one of the most essential mechanisms for managing persistent storage. We analyze the mechanisms for effectively managing flash storage, managing overheads of introduced design requirements, and leverage the capabilities of flash storage. Numerous methods have been adopted in file systems, however prominently revolve around similar design decisions, adhering to the flash hardware constrains, and limiting software intervention. Future design of storage software remains prominent with the constant growth in flash-based storage devices and interfaces, providing an increasing possibility to enhance flash integration in the host storage software stack

    Archiving scientific data

    Get PDF
    We present an archiving technique for hierarchical data with key structure. Our approach is based on the notion of timestamps whereby an element appearing in multiple versions of the database is stored only once along with a compact description of versions in which it appears. The basic idea of timestamping was discovered by Driscoll et. al. in the context of persistent data structures where one wishes to track the sequences of changes made to a data structure. We extend this idea to develop an archiving tool for XML data that is capable of providing meaningful change descriptions and can also efficiently support a variety of basic functions concerning the evolution of data such as retrieval of any specific version from the archive and querying the temporal history of any element. This is in contrast to diff-based approaches where such operations may require undoing a large number of changes or significant reasoning with the deltas. Surprisingly, our archiving technique does not incur any significant space overhead when contrasted with other approaches. Our experimental results support this and also show that the compacted archive file interacts well with other compression techniques. Finally, another useful property of our approach is that the resulting archive is also in XML and hence can directly leverage existing XML tools
    • …
    corecore