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Abstract

The Context-Free Language Reachability (CFL-R) formalism relates to some
of the most important computational problems facing researchers and industry
practitioners. CFL-R is a generalisation of graph reachability and language
recognition, such that pairs in a labelled graph are reachable if and only if there
is a path between them whose labels, joined together in the order they were
encountered, spell a word in a given context-free language. The formalism finds
particular use as a vehicle for phrasing and reasoning about program analy-
sis, since complex relationships within the data, logic or structure of computer
programs are easily expressed and discovered in CFL-R. Unfortunately, The po-
tential of CFL-R can not be met by state of the art solvers. Current algorithms
have scalability and expressibility issues that prevent them from being used on
large graph instances or complex grammars.

This work outlines our efforts in understanding the practical concerns sur-
rounding CFL-R, and applying this knowledge to improve the performance of
CFL-R applications. We examine the major difficulties with solving CFL-R-
based analyses at-scale, via a case-study of points-to analysis as a CFL-R prob-
lem. Points-to analysis is fundamentally important to many modern research
and industry efforts, and is relevant to optimisation, bug-checking and security
technologies. Our understanding of the scalability challenge motivates work in
developing practical CFL-R techniques. We present improved evaluation algo-
rithms and declarative optimisation techniques for CFL-R, capitalising on the
simplicity of CFL-R to creating fully automatic methodologies. The culmination
of our work is a general-purpose and high-performance tool called Cauliflower, a
solver-generator for CFL-R problems. We describe Cauliflower and evaluate its
performance experimentally, showing significant improvement over alternative
general techniques.
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Chapter 1

Introduction

Of the many formalisms that have been developed or adopted in the pursuit of
software analysis, few manage to balance both generality and practicality. Some
formalisms become highly specialised tools, suited for reasoning about specific,
well-understood, and inflexible problem areas. Yet others sacrifice their accu-
racy, or how closely they model their given problem, in an attempt to empower
software analysers with very general, and hopefully therefore also useful, reason-
ing techniques. In this tradeoff between powerful one-off formalisms, and weaker
general models, computer scientists are additionally burdened with the practi-
cal realities of pursuing research or development in the area of such analyses.
In this case, some useful compromise is needed between those frameworks with
more expressiveness, which can encode hard problems, and those with better
practical characteristics, which can solve large problems.

No single component of the above four-factor tradeoff can be truly ignored
in the pursuit of an effective formalism. Consider the need for general frame-
works. Software analysis encompasses a vast realm of reasoning/understanding
techniques that must be applied to computer programs in an attempt to glean
arbitrary information. Without generality, a framework can not even concieve
of or express the concepts that it needs to analyse, let alone actually find it.
The natural opposition to general approaches is that they lack the specificity
needed to target problems in a fitting manner, i.e. a manner that is sufficiently
close to the given problem that the two are conceptually similar, and an expert
in the problem would immediately understand the significance of the formalism.
Overly general formulations tend to lack the kind of crucial details which are
needed to understand the nature of a problem. Without the right tools to reason
about a problem, software analysers are stuck ignoring fundamental components
of their analyses or attempting to adapt unwieldy general principles to the task,
which hampers understanding.

Parallel to the theoretical concerns of generality and specificity are the prac-
tical concerns of expressibility and performance. Software analysis is not a
pursuit solely limited to research, and the artefacts and systems generated in
this field underpin many modern advances in computing, from performance op-

4



timisations to system security. On the one hand, these technologies depend on
details of arbitrary programs, and therefore require techniques with enough ex-
pressive power to sufficiently capture their semantics. On the other hand, the
arbitrary programs are also large and complex, meaning that in order to gain
practical advances, scalability is needed, i.e. the ability to continue to produce
results on increasingly large problem instances

In designing or adopting a formalism suited to research or develop program
analyses, a choice is made which weighs the four factors: specificity, generality,
expressibility and scalability. Thus, to manage the conflicting requirements of
software analysis, we turn to a mathematical problem which balances practi-
cal performance, reasonable expressiveness, conceptual closeness and generality.
That problem is known as Context-Free Language Reachability (CFL-R).

1.1 The CFL-R Problem

CFL-R is relevant to understanding and reasoning about computer programs, as
it is a generalisation of two fundamental computational problems. Historically,
the problem was identified as important by Yannakakis [86], called “L-transitive
closure” in that work, the transitive closure over some language. It should be
noted, given the relevance of the problem to computer scientists, that even
earlier examples can be found in the research literature [28].

Yannakakis was primarily concerned with speeding up a class of common
queries in graph databases, known as chain queries. A chain query has the
following form (as a Horn clause):

H(v0, vk)← B1(v0, v1), B2(v1, v2), . . . , Bk(vk−1, vk).

I.e. the “chain” of body predicates whose variables connect left-to-right denotes
the head predicate with variables for the start and end of the chain. Note that
“adjacent” body terms join each other in a left-to-right fashion, and the head
result is composed of the first and last “links” in the chain. Chain rules occur
frequently in graph databases, as well as more general logic frameworks such as
Datalog, as they are used to encode arbitrary transitions of information across
intermediate nodes. Given that all rules are in a chain form, we already know
how the predicate variables (the vi arguments in the perdicates) will match up,
and we therefore only care about the order of predicates. Hence it is possible
to rewrite any chain rule into a simpler format, familiar as a grammar rule [8],
as follows:

H → B1 B2 . . . Bk

Based on this connection, Yannakakis recognised three variants of the gener-
alised reachability problem, dependant on the properties of the grammar pro-
duced by the chain rules in a given problem instance. The simpler variants,
which correspond to the regular grammars and the linear grammars (i.e. left- or
right-recursive context-free grammars), permit theoretically faster algorithms.
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On the other hand, these variants restrict the allowable grammars, which is
unacceptable for those analyses which depend on the full expressive power of
context-free languages to encode their chain rules. Hence, in this work, we focus
on the generalisation of transitive closure over context-free languages.

The usual presentation of CFL-R is as a constrained reachability problem
over edge-labelled graphs. For complete generality, we do not place any restric-
tions on the kinds of graph under examination, hence we assume cyclic directed
graphs are being examined. A graph vertex is reachable from another if there
exists any (directional) path from the other vertex to it. CFL-R is concerned
with reachable pairs, rather than actual paths, as it avoids the complication of
enumerating the infinite set of paths that arises in the presence of cycles.

Additionally, the graph in question is edge-labelled, thus any path in the
graph can be associated with a string of those labels. We generate the path’s
string simply by concatenating the labels on the path’s edges in order. Then
CFL-R should be thought of as the restriction of transitive closure to those
pairs whose connecting path forms a string which is a member of the context-
free language. The most general such restricted-reachability problem is the
all-pairs problem, namely the problem of enumerating all pairs of vertices that
are joined by a path spelling a word in the language, though in the research
context, CFL-R is often presented as having other variations:

• Source-Sink, where we only care if two given vertices have a CFL-R path
between them

• Source, where all end-points reachable from a given source are needed

• Sink, as above for all start-points to a given sink

The latter three problems can be answered by restricting the output set of
the All-Pairs solution, hence it generalises them. Since no algorithm currently
is known to make the restricted variants faster [86], this work focuses on the
All-Pairs problem exclusively.

1.1.1 Motivation

Whilst the historic purpose of CFL-R research may have been for the purpose
of optimising graph databases/logical deduction systems, in the modern con-
text CFL-R is most commonly associated with program analysis. Much of how
we deal with and reason about computer systems can be conceptually related
to graphs. Consider that most compiler technology relies on converting source
programs into one of several kinds of graph (abstract syntax trees, control-flow
graphs, call-graphs) simply for the purpose of generating source code. It is
unsurprising then that CFL-R lends itself well to the task of automatically in-
ferring complex relationships between different parts of computer programs. We
therefore see the increasing need for larger and more scalable software analyses
as the primary motivation for continued CFL-R research.

Over its relatively brief history, many analyses have been phrased as, or
associated with, CFL-R. Early work was carried out by Dolev et al. using
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CFL-R as a means of verifying the security of message passing protocols [28].
Much of the recent popularity of CFL-R can be attributed to Reps, together
with Horwitz and Sagiv. CFL-R was used to present an intuitive framework
for interprocedural dataflow problems [59]. This work was extended to provide
specialised (and more efficient) formulations of three common analysis problems:
interprocedural slicing, heap-shape analysis, and points-to analysis [57]. The
kinds of shape analysis solved by CFL-R are useful for lisp-like languages [55],
though other problems in functional languages have also been explored, such as
k-deep control-flow analysis [79]. In a modern context, CFL-R analyses have
been favoured because any problem encoded in CFL-R automatically allows
for solvers using demand-driven algorithms [85], incremental algorithms [46], or
interactive techniques [10].

Points-to analysis alone, as a very important problem which underpins many
optimisations and security analyses, comprises a large body of CFL-R research [91,
70, 90]. The need for scalability is paramount in points-to analysis, as codebases
continue to grow larger and security concerns mount for increasingly complicated
pieces of software. To gain a handle on very large problems even more restricted
subclasses of CFL-R have been explored, including the Dyck-Reachability prob-
lem (i.e. CFL-R restricted to bracket-matching languages) on graphs/trees with
the bi-directional property [88, 89]. We provide a more detailed survey of many
relevant analyses in Section 2.3.

Whilst the use of CFL-R is common as a means of phrasing and reasoning
about the above software analyses, it is far less common to depend on CFL-R
for its solvers. In most implementations, CFL-R problems are solved by custom-
made hand-optimised tools which are specially tailored to only one CFL-R prob-
lem class (i.e. it only solves demand-driven points-to analysis, or interprocedural
slicing [57]). This seems initially to be counterproductive: problems phrased in
a deductive database system such as Datalog usually use off-the-shelf solvers to
evaluate them, so why are CFL-R problems different?

The answer is two-fold, and has to do both with the performance of CFL-R
solvers and the limitations of the CFL-R formalism. The standard means of
solving CFL-R is a summarisation-based approach [47], which is known to have
complexity that is cubic in the size of the graph and grammar. Unfortunately,
CFL-R is usually adopted for analyses/tools where runtime performance is a
primary concern, in which case even cubic complexity is unacceptably slow.
By comparison, the approach usually taken is to hand tailor the evaluation of
the problem’s solution, which involves tweaking the algorithms in a way that
capitalises on domain-knowledge, such as skewed data or discrepancies in the
time spent exploring different parts of the graph. Further, even the CFL-R
formalism is often insufficient for capturing the semantics of a given problem
in an efficient way. Techniques for refining languages, such as those used by
Sridharan and Bod́ık [68], and techniques for disconnecting/negating paths, such
as those used by Xu et al. [84], are not easily phrased or captured by traditional
CFL-R. It is not surprising, then, that researchers in CFL-R-like problems often
pursue avenues which render their resulting problems unsolvable by traditional
CFL-R solvers alone.
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Thus the need for continued research is evident. Firstly, CFL-R is a modern
and ubiquitous formalism, which underpins technologies that have become com-
monplace in modern computing. Secondly, CFL-R solvers are unable to handle
the kinds of problems that occur in practice, either by being too inefficient to
solve them, or by lacking the kinds of semantics needed to phrase them.

1.1.2 Running Example

Since CFL-R is normally associated with software analysis, it is fitting to draw
our example from a very practical software analysis task such as points-to anal-
ysis, also known as alias-analysis, or simply points-to. Broadly, the analysis
attempts to determine a heap invariant for a given input source program. The
invariant can be thought of as an approximation of the program’s runtime mem-
ory configuration, i.e. it details which pointer/reference variables “point-to”
which memory locations.

Even in reasonably simple programs, points-to calculations can quickly be-
come infeasible. The number of heap objects that a program will create at
runtime is, unfortunately, undecidable, so typically some abstractions and ap-
proximations are employed to keep the analysis both decidable and feasible. An-
dersen’s abstraction [4] is commonly employed to finitise the number of memory
locations; instead of tracking individual runtime objects, we abstract them to
their allocation-site. As a result, all objects that are created at runtime from
a specific allocation-site will be treated identically (in fact, treated like a refer-
ence to some global “version” of that object). Maintaining an accurate memory
model, even an abstract one, is still difficult, so different kinds of points-to
formulations have been proposed with varying precision. Precision refers to
the degree of over-approximation, such that an imprecise analysis gives worse
upper-bounds on the memory configuration, where a precise one gives a tighter
bound. Usually points-to analyses return possibilities, rather than definite an-
swers (i.e. they say that a variable “may point to” a heap object), so the more
often an analysis returns the “maybe” answer instead of a definite “yes” or
“no”, the more imprecise the analysis is. Three common classes of technique
for improving the analysis’s precision at the expense of increased runtimes are:

• field-sensitivity, where the analysis treats each memory object as a col-
lection of disjoint fields. These fields could represent member variables of
a class, or array indices. Importantly, when different fields are accessed
the analysis is able to distinguish them, whereas a field-insensitive analysis
would simply assume all field accesses refer to the same heap location.

• context-sensitivity, where the analysis respects calling semantics. Context-
insensitive analyses tend to treat all calls to a specific method as though
they happen together. This allows for information to flow along impossible
call paths, such as entering a method at one call-site, then being returned
to a completely different part of the program. Understandably, tracking
context information can be very expensive, as a complete call hierarchy is

8



1 public class Obj{

2 public Object x;

3 public Object y;

4 public Obj copyIn(Obj other){

5 Object tx = this.x;

6 other.x = tx;

7 Object ty = this.y;

8 other.y = ty;

9 return other;

10 }

11 }

12 public static void

main(String [] args){

13 Obj a = new Obj();//H1

14 Object td=new Double (4.3);//H2

15 a.x = td;

16 Obj b = new Obj();//H3

17 Object ti=new Integer (7);//H4

18 b.y = ti;

19 Obj th5 = new Obj();//H5

20 Obj a2 = a.copyIn(th5);

21 Obj th6 = new Obj();//H6

22 Obj b2 = b.copyIn(th6);

23 assert(b2.x != a2.x);

24 assert(a2.y == null);

25 assert(b2.y != null);

26 }

Figure 1.1: A snippet of source code in a Java-like language. For simplicity,
statements in this language are restricted to avoid the use of temporary registers.

usually exponential in the size of the program, and can contain cycles due
to recursive calls.

• flow-sensitivity, where the analysis respects instruction ordering, pre-
venting information from flowing “backwards” through the program. Much
like context-sensitivity, flow-sensitivity introduces overheads in the analy-
sis (e.g. maintaining control dependencies between program points), and
it is unclear when such techniques hamper scalability..

Consider the source program depicted in Figure 1.1. This program contains
some key features of typical Java programs, such as the use of fields and member
methods. We may wish to perform some analyses which attempt to verify,
statically, that the assertions in the program hold. By inspection it is clear to
see that they do in fact hold, though in general we would prefer a more automatic
technique, as verifying assertions in larger codebases can become difficult. In
order to validate the assertions we require a sufficiently accurate analysis, which
has an understanding of the program’s memory and can determine, based on
what the heap contains, whether the individual assertions will pass.

Observe some of the difficulties this program presents to a points-to analysis.
Firstly, many assertions contain field loads/stores, implying that the analysis
has to at least be able to work in the presence of fields. Even if the assertions
themselves did not contain fields, then the analysis still needs to track field
information, in case dataflows exist through those fields to the variables in the
assertion statements. Hence, some degree of field sensitivity is important in this
case if the analysis is to remain precise.

In order for points-to analysis to properly reason about this program, we
also expect to require some notion of context sensitivity. The main method
makes two distinct calls to Obj.copyIn. Firstly, we need to handle Java’s re-
ceiver semantics, as this call is to a member method of some particular Obj

instances. Secondly, the two calls must be treated distinctly, in order to prevent
spurious information flows from entering at one method call and exiting at the
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other. With a typical context-insensitive analysis, both calls to copyIn would
be treated as calling the same code, so the th5 object, which enters other on
the call at Line 20, would flow to the return and be assigned to b2 on Line 22.
Hence, the points-to analysis will need to be context sensitive if it is to accu-
rately verify the assertions.

To perform points-to analysis on the above source program, we need to
understand how memory-information is created by the program, and how it
moves around. Rather than trying to follow the source code, we can visualise
the program as a series of variables and abstract heap locations from which we
will draw a vertex set. Given such vertices we can construct edges between them
according to the statements in the program. Note that, since the edge that is
created depends only on the semantics of its statement and not on the order, we
will lose flow information in this translation. For simplicity the example analysis
will be flow-insensitive, as translation schemes that preserve flow information
are more complicated than necessary for this example.

The graphical representation of the source code from Figure 1.1 is presented
in Figure 1.2. Heap objects are shown in rectangles, while program variables are
circles. Statements in the program are translated to one or more edges according
to their semantics. Allocation instructions arise from statements like a = new

B(), and produce an edge labelled alloc. Such an allocation must be assigned to
a variable, but variables can be assigned from multiple allocation instructions.
We create a unique abstract heap object at each allocation-site, which allows
us to distinguish between some different memory objects. Statements with as-
signment semantics, like a = b, produce assign-labelled edges. In our example
we also treat function returns and parameter passing (including the intrinsic
passing of the “this” parameter) as assignments. Hence, our analysis loses the
ability to distinguish between different calling contexts, and whilst this makes
our example simpler to present and solve, it is nonetheless a context-insensitive
formulation. The load and store edges mark edges arising from an object’s field
accesses, i.e. a = b.f and a.f = b respectively. The field-accessing instruc-
tions in our program use different fields, for example other.y = ty and a.x

= td, and so we would like to mark this difference somehow. In Figure 1.2 a
multiplicity of load/store are defined, subscripted by the specific field which is
being loaded or stored. For example, Line 18 stores ti into the y field of b,
hence an edge is created for (ti, b) labelled with storey.

From the graphical depiction of the source code, we can start to infer re-
lationships between distinct program variables by looking at certain paths in
the graph. We are interested in points-to information, so the first thing we
might note is that alloc edges immediately imply a points-to relationship, since
the variable that results from allocating a specific heap object must invariably
point to it. We formalise this base-case with a grammar rule:

points-to→ alloc

It is helpful to read this rule as “a points-to path exists wherever an allocation
path already exists”, but more accurately it means that the string “alloc” is in

10



H5 H6

th5 th6 H2 td

tx H1 a

other this

ty H3 b

a2 b2 H4 ti

alloc

alloc

alloc

alloc

a
ll

oc

a
ll

oc

a
ss

ig
n

as
si

gn

a
ss

ig
n assign

as
si

gn

assign

load
x

lo
ad
y

st
o
re
x

sto
re
y

st
or

e x

store
y

Figure 1.2: A graphical representation of the source code listing from Figure 1.1.
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the language of points-to. Next we note that assigning one variable to another
forces the target variable to point to all heap objects which the source variable
already pointed to. Since paths in the language points-to already track the
correct relationship, we simply extend them by one assignment-like statement
using the rule:

points-to→ assign points-to

Again, the interpretation of the above is that two paths, whose associated strings
are in the languages assign and points-to respectively, can be joined to form a
new path whose string will be in the language points-to. The logic of points-
to requires an additional rule in order to handle programs with field accesses.
It is possible to write variables into the fields of objects, i.e. into an abstract
memory location, and subsequently retrieve them into a new variable. This is
effectively an indirect assignment, and it occurs not simply when the fields of
the same variable are stored to and loaded from, but when the receiver of the
load instruction merely aliases the store’s receiver object, i.e. both receivers
may point to the same memory address. For example:

o1.f = x; o2 = o1; y = o2.f;

In the above, the o1 and o2 variables alias one another (i.e. they both refer to
the same memory location) as a result of the assignment statement. Therefore,
y also aliases x, as the former is indirectly assigned to the latter through the field
of the object which both o1 and o2 point-to. We re-use the CFL-R notion of
paths and languages in order to reason about aliasing variables in the following
way:

• Two program variables alias if there are paths from both of them to the
same heap object.

• Equivalently, there must be a path, spelling a word in points-to, from one
to the heap object, then backwards to the other.

• a backwards path can be constructed mechanically by looking for strings
in a reverse language over edges that have been flipped.

We detail the necessary mechanical transformations which allow for backwards
paths to be discovered in Section 6.2.1.1. For now we use overbar notation to
denote that a backwards path is required, which yields the rule:

points-to→ loadf points-to points-to storef points-to ∀f ∈ Fields

Firstly, the above is not strictly a rule, but works more like a template for
creating rules based on the fields that the points-to analysis cares about. For
Figure 1.2, two rules are needed, one for each field x and y.

With these four rules, allocation, assignment, and two versions of indirect
assignment, it is clear to see how paths in the graph relate to points-to rela-
tionships. The variable a points-to the heap object, called H1, that it allocates,
which is represented in the path 〈(a,H1)〉, whose associated string is 〈alloc〉.
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Later, a is conceptually assigned to the this variable when it is used as a re-
ceiver object of a call to copyIn. As expected, 〈(this, a), (a,H1)〉 is a path
whose labels concatenate to 〈assign, alloc〉, a word in points-to, and therefore
denotes that this points-to H1. We now have enough paths to infer a more
complicated indirect-assignment relationship. Since this and a both point-to
H1, they are said to alias. More specifically in CFL-R, the “backwards” path
〈(H1, a)〉 spells the word 〈alloc〉, which is in the reverse language points-to. As
such, the following path, together with its string, can be seen in the graph:

〈 (tx, this), (this, a), (a,H1), (H1, a), (a, td), (td,H2) 〉
〈 loadx, assign, alloc, alloc, storex, alloc 〉

The above string is in the language points-to, hence we verify that tx does
indeed point to H2, which occurs during the first call to copyIn with a as the
receiver variable.

Unfortunately, due to the relatively minimal translation scheme, the above
formulation of points-to analysis is overly simplified, and does not accurately
capture some program semantics. As we noted, the analysis is not call sensitive,
since it treats parameter passing and method returning as though they were
assignment statements. The variable th6 is passed as the parameter other to
copyIn at the call on line 22, but other is returned from copyIn to the variable
a2 on line 20. In a real execution, the points-to information can actually not flow
from th6 to a2, as this ignores call-return semantics and also moves backwards
in the control flow. Nonetheless, the path 〈(a2, other), (other, th6), (th6, H6)〉
exists in the graph, and its associated string, 〈assign, assign, alloc〉, is in the
language points-to. Therefore, the analysis incorrectly infers that a2 points to
H6, and aliases th6.

Incorrect results, such as the spurious points-to relationship described pre-
viously, are called over approximations, as the analysis is reporting the ex-
istence of results which can not, in fact, exist. Since the analysis can produce
over approximations, but never fails to report on results that actually do ex-
ist (at least, for the fragment of Java-like programs that only contain simple
statements and avoid features like reflection, native calls, and arrays), we say
the analysis is sound. Analyses that only report results that indeed exist but
sometimes fail to discover those results would instead be called precise.

1.1.3 Formal Definition

We formalise the notation used to refer to CFL-R problems in this work. Whilst
there are several equivalent notations that have been used to capture CFL-R,
we find this notation to be both concise and clear. Most of the definitions have
been adapted from Hopcroft et al. [38].

Definition 1. Given an alphabet Σ, which is an arbitrary set of symbols, then
a string is a, possibly empty, ordered sequence of symbols from the alphabet:
ω ∈ Σ∗.

A language is therefore a subset of the strings in its alphabet: L ⊆ Σ∗.
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Of course, the above definition of languages encompasses far more than we
need for this work. We are specifically interested in the context-free languages.
There are several equivalent ways of distinguishing the context-free languages
from the rest of the class, for example, as the languages which can be recognised
by a pushdown automata and not a deterministic finite-state automata. For
this work we will simply present them as the class of languages whose strings
can be enumerated by the transitive productions of a context-free grammar.

Definition 2. A context-free grammar is a 4-tuple (T ,N ,P, S) of:

• terminals, T , the subset of the alphabet Σ which is relevant to the lan-
guage (i.e. which appear in its strings).

• non-terminals, N , additional symbols which are not present in the al-
phabet (N∩Σ = ∅). These symbols are used as placeholders for sub-strings
in the language.

• productions, P, a set of substitution rules of the form A → α, where
A ∈ N and α ∈ (T ∪N )∗. When a production has an empty-string on the
right-hand-side, we use the special symbol ε.

• start-symbol, S ∈ N , a distinguished nonterminal which is a valid place-
holder for the entire language.

The context-free grammar defines a system by which strings of real (termi-
nal) and variable (non-terminal) symbols can be generated. The step of applying
a rule to a string in order to generate a new string is called derivation.

Definition 3. Given strings α, β, γ ∈ (T ∪N )∗. A string αNβ can be replaced
by a new string αγβ in the presence of a production rule N → γ. In this case
we say it derives the new string: αNβ ⇒ αγβ.

Given the definition of a context-free grammar, we define the context-free
languages as the set of all languages which can be enumerated via repeated
derivations of the grammar.

Definition 4. A transitive derivation (
∗

=⇒) refers to a string transformation
that requires zero-or-more single derivation steps. Given α, β, γ ∈ (T ∪N )∗, the
rules for transitive derivation are as follows:

• α ∗
=⇒ α, all strings reflexively produce themselves.

• If α ⇒ β and β
∗

=⇒ γ then α
∗

=⇒ γ, adding a new derivation step to a
transitive derivation is allowed.

Then the grammar (T ,N ,P, S) defines the language {ω | S ∗
=⇒ ω, ω ∈ T ∗}

For completeness, we note that the class of “all languages that can be de-
fined by deriving a context-free grammar” actually includes simpler classes of
language, such as the regular languages. The machinery of CFL-R is capable
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of handling such a regular-language reachability problem, in the event that the
grammar used defines a regular language (i.e. one that can be recognised by a
deterministic finite state automata [38]). As such, we simplify our presentation
in the sense that the CFL-R machinery is expected to handle any language that
a context-free grammar can define.

We now turn to the “reachability” component of CFL-R. In our context, we
are concerned with edge-labelled graphs. Since the problem searches for paths
whose labels concatenate to form strings in the language, it makes sense to label
the edges with members of the terminal set T .

Definition 5. Given an arbitrary set of vertices V , and a set of T -labelled edges
E ⊆ V × V × T , a graph is a pair of vertices and labelled edges, G = (V,E).

For convenience we assume that labelled edges are actually triples, drawn
from the endpoint vertices and a terminal label. An equivalent formalism would
be to define a labelling function which maps edges to sets of labels (since it is
possible to have multiple labels for a given edge pair). Notationally we write
B(a, c) as a short-hand to refer to a B-labelled edge from a to c. Sequences of
connected edges are called paths.

Definition 6. A path is a, possibly empty, ordered sequence of edges, such that
the source-vertex of each edge matches the sink vertex of the preceeding edge (if
there is one).

• The empty-sequence 〈〉 is a path.

• Every edge A(u, v) ∈ E forms a path 〈A(u, v)〉.

• ∀A,B ∈ T , w, u, v ∈ V , if A(w, u) is an edge, and 〈B(u, v), . . .〉 is a path,
then 〈A(w, u), B(u, v), . . .〉 is also a path.

Let Π represent the set of all paths.

The set of paths is infinite in the presence of cycles, though this will not be
a problem when calculating the solution to a CFL-R problem. Previously, we
have informally discussed the notion of a “path’s string” as the concatenation,
in order, of its labels. We formalise this notion now.

Definition 7. A path-word is the string formed by concatenating the labels of
each edge in a path. Given a path p = 〈T1(v0, v1), T2(v1, v2), . . . , Tk(vk−1, vk)〉
then its path-word is ω(p) = T1T2 . . . Tk. Also, ω(〈〉) = ε .

We now have enough to formally define the solution to an instance of the
CFL-R problem. Informally, the solution contains all the pairs of vertices in
the given graph that are reachable by a path whose word forms a string in the
given language.

Definition 8. Given a context-free language L defined by the grammar (T ,N ,P, S)
and a T -labelled graph G = (V,E) the solution of the CFL-R problem cfl-r(L,G)
is:

{(v0, vk) | p = 〈T1(v0, v1), . . . , Tk(vk−1, vk)〉 ∈ Π, ω(p) ∈ L}∪{(v, v) | ε ∈ L, v ∈ V }

15



At this stage it is not clear that the solution is computable, let alone effi-
cient to compute. Firstly, the path set is infinite in the presence of cycles, so
enumerating all the paths to see which ones have a path-word in the language is
not feasible. Secondly, the words in a language are also innumerable, which can
be seen from the rules for derivation. Each production rule potentially creates
more non-terminals in the right-hand-side of the derivation than were present
on the left. Given a cycle of recursive production rules, it is possible to gen-
erate terminal strings of arbitrary length, and hence impossible to enumerate
them all. Despite this, every instance of a CFL-R problem has a finite solution,
which can be computed in a reasonable amount of time [47]: in fact, there are
algorithms which have better than cubic time-complexity [17].

1.2 Open Issues in CFL-R Research

The CFL-R formalism is a promising avenue when exploring potential vehi-
cles for computing program analyses. In CFL-R, the phrasing of many anal-
ysis problems, particularly those involving constrained information transfer, is
straightforward. Several other advantages exist when the CFL-R framework is
being used, including composability and on-demandness. CFL-R problems are
inherantly composable, due to the fact that context-free languages are closed
under union [38]. In short, two languages can be composed by taking the start
symbol of each grammar, S′, S′′, and making a new start symbol for the union-
language S with two new productions S → S′, S → S′′. This allows us to
build more complicated analyses simply by re-using prior formulations as non-
terminals in the new analysis’ grammar. On-demandness results from the fact
that the search algorithm for CFL-R paths can be automatically rephrased into
a top-down version [57]. Top-down analyses are often called on-demand, as they
work by incrementally expanding on an input query as-needed in order to limit
the scope of their search for results. CFL-R problems can be automatically
re-phrased into their on-demand versions, therefore any analysis which can be
phrased in CFL-R can be adapted to contexts that favour top-down solutions.

However, whilst CFL-R is a useful framework, there are practical concerns
over its use, which limits the impact that CFL-R research can have. Whilst
the volume of research literature that is concerned with CFL-R is large, most
CFL-R systems are built on an as-needed basis. As such, they are custom
implementations which are usually designed to handle a single grammar, and
optimised for graph instances with particular well-known characteristics. A clear
example of this is the points-to solvers. As shown by the sample problem in
Figure 1.2, the points-to problem can be elegantly phrased as a CFL-R instance.
However, the need for high performance in points-to analysis solvers is so great
that production systems must significantly diverge from the CFL-R formalism
in order to maintain acceptable runtimes [27]. This raises several questions in
relation to the performance of CFL-R:

• How effectively do general-purpose CFL-R solvers compare to the hand-
tailored solvers which are designed for a smaller class of inputs?
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• Given that few improvements to the algorithms of CFL-R will likely be
found [56, 34], is it possible to trade theoretical complexity for practical
scalability?

• Are there data-structures or evaluation-strategies which would be more
suited to improve the performance of CFL-R solvers?

In addition to the limitations of practical CFL-R evaluation, there is a
paucity of tools available to solve CFL-R problems. CFL-R systems see limited
adoption, mostly because any general system is poorly adapted to the specific
problem context that it would be used in. When general tools are needed, the
only realistic approach is to co-opt a more general solving vehicle, such as Dat-
alog [1]. Given that it is always possible to recognise the context-free subset of
a Datalog problem [86], it is reasonable to ask whether, and under what cir-
cumstances, a CFL-R specific tool would be more useful than a more general
one.

Finally, it is not clear whether efficient solvers are enough to allow for effec-
tive CFL-R-based systems. Ultimately, the CFL-R framework can be seen as
a means of specifying program analyses declaratively. Declarative program-
ming systems are designed to alleviate the burden of specifying how a solution
should be derived, and focus instead on accurately representing what the solu-
tion is, i.e. as a logical program. Unfortunately, there are several limitations
in declarative programs which hamper their use in high-performance contexts.
Firstly, such frameworks must be seen as a layer of abstraction, meaning they
are likely to suffer inefficient code-generation when translated to an actual run-
ning system. Secondly, such frameworks lack the kind of expressive power to
encode domain-knowledge into the problem evaluation, where such knowledge
is necessary to yield performant systems. In the logical setting, it is difficult
to distinguish “core” components, i.e. the computations which account for the
most compute time, from less relevant “ancillary” computations, meaning it is
difficult to even decide which parts of the CFL-R problem to optimise. It is an
open question how best to deal with the inefficiencies of a declarative CFL-R
system in a way that achieves high performance.

1.3 Contributions

This work charts progress made towards the completion of a general-purpose,
high-performance, intuitive and freely available CFL-R solving framework. Over
the course of developing this system, we have examined several angles which con-
tribute to the lack of solvers currently available for CFL-R. Each chapter of this
work motivates and examines a specific limitation in the CFL-R context, and
details the potential approaches which a CFL-R system might use to cope with
them. For this thesis i have worked on the following peer-reviewed publications:

1. “Towards a Scalable Framework for Context-Free Language Reachability”,
published at the conference on Compiler Construction, 2015 [35].
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2. “Giga-Scale Exhaustive Points-To Analysis for Java in Under a Minute”,
published at the conference on Object Oriented Programming, Systems,
Languages and Applications, 2015 [27].

3. “Cauliflower: a Solver Generator for Context-Free Language Reachabil-
ity”, published at the conference on Logic for Artificial intelligence, Pro-
gramming and Reasoning, 2017 [36].

4. “Feedback Directed Optimisations for Context-Free Language Reachabil-
ity”, submitted for review to the Transactions on Architecture and Code
Optimisation, 2017 [37].

We begin our presentation with an overview of the research work that has
been done to-date concerning CFL-R. Chapter 2 consolidates the many impor-
tant developments in CFL-R research and practice, and presents some of the
many analyses which CFL-R is used to solve. Work on context-free language
recognition and graph reachability is also presented, as these problems are the
basis which we generalise to CFL-R.

In Chapter 3 we take an in-depth look at the practical application of CFL-R
analysis, through the use case of a high performance Java points-to analysis.
Points-to analysis, particularly for exceptionally large Java code-bases such as
the OpenJDK library, is exceedingly difficult to scale. We look into the charac-
teristics of this particular problem, i.e. biases in the input graphs and structural
differences in the evaluation mechanisms, and determine viable practical solu-
tions. As the solver that we derive is specifically catered towards Java points-to
analysis, we look at why the solver performs well with a parametric complexity
analysis, showing that whilst the theoretical complexity may be bad, in practice
the complexity is actually likely superior to a traditional CFL-R approach. Fi-
nally, we examine what opportunities there are for generalising these techniques,
with a particular focus on adopting better evaluation procedures, data struc-
tures, and logical transformations to improve a generic CFL-R engine. This
chapter is largely related to work undertaken with Dietrich et al. [27] on the
“Gigascale” Java points-to analysis.

Gaining from our insights into the practical realities of analyses based on
CFL-R, we explore the potential that improvements to (1) the evaluation strat-
egy and (2) data structures offer to CFL-R, in Chapter 4. Common general-
purpose algorithms for CFL-R are theoretically performant [47], however in
practice their evaluation strategy is ineffective. We assess the factors that
contribute to this inefficiency, including redundant computations, poor cache-
awareness, a lack of parallelism, and ineffective use of data structures. Many
solutions to these problems have been encountered in the context of Datalog
before, so as a first step we look at how effectively the technologies which power
Datalog can be applied to CFL-R. In addition to the Datalog technologies, suit-
able data structures are repurposed from the field of graphics processing. The
use of quadtrees forms a major improvement over simpler data-structures, and
they are uniquely useful for the kind of binary relational-join operations that
CFL-R problems depend on. An experimental analysis of this new CFL-R solver
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against the more standard CFL-R algorithms is performed, which verifies that
performance improvements can be made practically, despite a worse theoretical
time complexity. The bulk of our work on evaluation strategies and data struc-
tures has been published as a proceedings article at the conference on Compiler
Construction [35].

In a practical setting, phrasing a given analysis in CFL-R is still insufficient
to achieve desired performance. After expressing a problem within the CFL-R
framework, the tedious and mostly manual task of optimising the evaluation
strategies must be undertaken. For this reason, the potential of automatic op-
timisation of CFL-R specifications is examined in Chapter 5. We first look at
the kinds of optimisations which are performed in practice, determining what
they are for and how they work. We map this to CFL-R by phrasing these opti-
misations as linguistic transformations, which can be enumerated mechanically
and verified to be language preserving. To identify which optimisations will be
most useful, we develop an accurate model of execution inefficiency based on
wasted computations, or dead-ends in a graph-theoretic sense. The motivation
for this approach is that, ultimately, the same solution set will be generated in
the presence of a language-preserving transformation, and therefore only wasted
computations should impact runtime. The execution model is combined with a
feedback-directed compilation approach to incrementally improve a CFL-R spec-
ification. We examine the effectiveness of this feedback-directed optimisation
approach in an experimental case-study, and show that automatic techniques ri-
val hand-optimised efforts. The bulk of this chapter was submitted for a journal
publication to the Transactions on Architecture and Code Optimization [37].

The advances made towards understanding the algorithms, data structures
and optimisations needed for effective CFL-R are used to develop a general-
purpose solver, Cauliflower, in Chapter 6. The tool focuses on combining the
advances detailed in earlier chapters, and refining them in a re-usable frame-
work. Firstly, more expressive semantics for CFL-R are proposed formally and
we specify how to evaluate them practically. These semantics can be used to
phrase many of the CFL-R variations that appear in the research literature,
obviating the need to create custom systems to solve these problems. To as-
sist in achieving the kind of specialised high-performance that hand-optimised
tools achieve, Cauliflower uses a synthesis approach to develop specialised par-
allel solver code for a given CFL-R problem. The performance of Cauliflower
is evaluated both against Datalog, which is frequently used for solving CFL-R
problems generically, and against Gigascale, which represents an idealised high-
performance implementation. A concise presentation of the Cauliflower tool was
published in the conference on Logic for Programming, Artificial Intelligence and
Reasoning [36].

We conclude our work in Chapter 7 with a summary of our findings and an
overview of several promising avenues for future work.

19



Chapter 2

Literature Review

2.1 Foundational Work

The CFL-R formalism is a generalisation of two well-known computational prob-
lems, language recognition and graph reachability. We survey the impor-
tant historic works done for these fields, as a means of backgrounding our current
focus. Since CFL-R was first phrased in connection with Datalog, and many of
the advances we make come from or contrast with Datalog, we will also provide
an overview of that formalism.

2.1.1 Language Recognition

Context-free languages have been extensively researched as computational mod-
els since they were first formalised by Chomsky and Miller in [19]. Formal lan-
guages are defined in terms of the automata that is able to recognise them, in this
way the context-free languages are defined as those languages recognisable by
a nondeterministic automaton with a push-down stack. Context-free languages
are a superset of the regular languages, those that do not require the push-down
stack, and can not recognise the context-sensitive languages, those that require
a fixed-size Turing machine. The simplicity of their recognition algorithms,
combined with their expressivity, makes context-free languages suitable for en-
coding computer programs, hence the syntax of most programming languages
is defined by context-free grammars.

The properties of context-free languages have been established in the litera-
ture for some time. A sufficient summary of them, and related formalisms, can
be found in [38]. The most fundamental are language membership tests, for
deciding if a language is context-free. The Pumping Lemma is often used for
this task, and is stated in [38] as:

Lemma 1 (Context-free Pumping Lemma). There exists a constant n such that
all strings s = abcde in the context-free language L, with |s| ≥ n, |bcd| ≤ n,
|bd| > 0, imply that ∀i ≥ 0 : s′ = abicdie ∈ L.
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Informally we can read this as stating that sufficiently long strings in a context-
free language can be “pumped” by repeating two portions of the string an
arbitrary number of times. Deciding membership in this way is especially use-
ful, as we can use a similar regular language pumping lemma (which repeats
a single substring in the middle of the sentence) to exclude the subclass of
regular languages. Besides membership, the closure properties are also well
known. Context-free languages are closed under union, substitution, repetition
and concatenation, but not under intersection, complementation or difference.
We sketch the proofs from [38] here:

Proof. L1 = {anbncm | n,m ≥ 0} and L2 = {ambncn | n,m ≥ 0} are both
trivially context-free languages. Their intersection L1 ∩ L2 = {anbncn | n ≥ 0},
is not a context-free language due to the pumping lemma.

Consequently, complementation and difference must be disallowed:

L1 ∩ L2 = L1 ∪ L2

L1 = {xn | x ∈ {a, b, c}, n ≥ 0} \ L1

Recognition of context-free languages is a long-researched practical compu-
tational problem. The first efficient algorithms for recognition were proposed
independently by Cocke [22], Younger [87] and Kasami [41], and they are collec-
tively referred to as the CYK algorithms. We present the tabularisation based
algorithm here. Let L be the context-free language defined by the grammar P
in Chomsky normal-form [43] with start symbol S, and let w = w1w2w3...wn
be a sentence. Excluding the trivial case where |w| = 0 and S → ε ∈ P:

Tx,y =

{
{A | A→ wx ∈ P} : x = y

{A | A→ BC ∈ P,∃x ≤ k < y s.t. B ∈ Tx,k ∧ C ∈ Tk+1,y} : x < y

S ∈ T1,n ⇒ w ∈ L

It is interesting that this algorithm is known to have cubic runtime. The simple
explanation shows that the |w| = n string imposes n2 table elements to be filled,
and each element of this table requires up to n sub-elements to be read from the
table (since k ranges between x and y), hence O

(
n3
)

operations are required.
Note, also, that the algorithm requires Chomsky-normalisation, but this can be
relaxed with a modified algorithm due to Okhotin [54].

Valiant later presented a faster algorithm in [76]. The technique relies on re-
ducing recognition to matrix multiplication, which is known to be computable in
approximately O

(
n2.3

)
[23]. Interestingly this shows that context-free language

recognition is no harder than matrix multiplication, which grants it membership
in the complexity class N C .
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2.1.2 Graph Reachability

The problem of determining reachability in directed graphs is one of the most
fundamental and well-researched computational problems. Pairwise reachabil-
ity is also known as transitive closure (TC) (or more accurately, reflexive
transitive closure), and it deals with the problem of finding, for an input graph
G = (V,E), all the pairs of vertices (u, v) such that there exists a path which
begins at u and ends at v. Several factors are considered when designing efficient
TC algorithms.

The most theoretically efficient TC algorithms derive from matrix multipli-
cation [31]. We outline the procedure here. Given a directed graph we must
pre-process with (1) cycle elimination and (2) topological sorting, which can be
done in less than O

(
n2
)

time. Now, the adjacency matrix of the graph is of

the form

[
A C
0 B

]
, an upper-triangular matrix where A and B are also upper

triangular matrices. Let X∗ be shorthand for multiplying the n × n matrix X

by itself log n times. Then

[
A C
0 B

]∗
=

[
A∗ A∗CB∗

0 B∗

]
. Applying this argu-

ment recursively yields that the log n-th power of the adjacency matrix can be
calculated in O (BMM) operations, i.e. the number of operations needed by
the fastest boolean matrix multiplication algorithms. It can be shown that the
log n-th power of an adjacency matrix with all diagonal bits set corresponds to
the reflexive TC of that matrix. Hence, TC is no harder than boolean matrix
multiplication, which, at time of writing, can be solved in O

(
n2.31

)
[23].

Algorithm 1 Nuutila’s successor-set merging algorithm for transitive closure.

Require: (V,E) is acyclic
function Nuutila(V,E)

S ← ∅
while ∃v ∈ V s.t. v 6∈ S ∧ ∀(v, u) ∈ E : u ∈ S do

S ← S ∪
{
v 7→

⋃
(v,u)∈E{u} ∪ S(u)

}
The relationship with matrix multiplication indicates that TC can be com-

puted in a theoretically efficient manner. Unfortunately, the constant factors
associated with fast matrix multiplication algorithms, such as the one by Cop-
persmith and Winograd [23], are prohibitively large. Work by Nuutila [52] fo-
cuses instead on algorithms which are efficient in a practical setting. Nuutila’s
approach is reproduced in Algorithm 1. This algorithm constitutes a straight-
forward approach to computing transitive closure via successor-set merging.
Firstly, its runtime is theoretically worse than the matrix-multiplication ap-
proaches, having O

(
n3
)

time complexity. However, many practical optimisa-
tions can be made that improve the algorithm’s runtime, such as using concise
bit-sets to represent successors, ordering the merging steps to take advantage of
cache locality, or partitioning the graph into parallel executions.
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2.1.3 Datalog

Datalog is a language for expressing computational problems in a simple logi-
cal framework [1]. Datalog derives from a more expressive computational logic
called Prolog, which was an early example of the purely-declarative logic pro-
gramming languages. Importantly, Datalog differs from Prolog in that only a
subset of semantics are supported, which are necessary to guarantee that ev-
ery Datalog query terminates [63]. Despite guaranteeing termination, Datalog
is P-complete [63], implying it is powerful enough to encode and solve every
polynomial-time algorithm. Briefly, Datalog is given assertions in the form of
facts and rules:

F (foo, bar). B(x, y, z)← A(x, z), C(y, x).

Facts indicate that the given predicate is true for the arguments in its body,
whilst rules derive additional truth. If there exists a variable substitution of
the predicate arguments on the right-hand side, such that all the right-hand
predicates can be shown to be true, then the left-hand predicate (with the same
variables substituted) must also be true. The collection of true predicates given
by the asserted facts form a subset of the knowledge base called the existential
data-base, while the derived truths form the intensional data-base.

Importantly, CFL-R problems capture a certain sub-class of Datalog, specif-
ically the class of binary relations over chain-rules [86]. A relation is binary if its
predicates all have two arguments, and a rule is a chain rule if its right-hand side
contains relations that join with each other in sequence, and its left-hand pred-
icate’s arguments are the first and last elements of the sequence. The following
generalises a chain rule:

H(v0, vk)← B1(v0, v1), B2(v1, v2), . . . , Bk(vk−1, vk).

Yannakakis originally specified how to translate this subclass of datalog into
CFL-R [86], which allowed for the more performant CFL-R algorithms to be
used in solving it.

Datalog has recently become popular as a means of specifying program anal-
ysis problems. The first improvements came from Whaley et al. [82], in the use
of binary decision diagrams (BDD). A BDD is a sparse representation of a
strictly-ordered integer set, supporting membership queries in logarithmic time.
Given a mapping from predicate values to integers, any datalog relation can be
concisely stored in such a BDD. Many operations, such as relational joining and
membership testing, can be handled efficiently by BDDs, though their exact
performance is very sensitive to a factor called variable ordering, which spec-
ifies the order in which binary decisions are made in constructing the diagram.
Choosing a poor ordering can lead to large differences in the size of the deci-
sion diagram, which reduces the overall performance of diagram queries. Their
work culminated in the development of a Binary Decision Diagram-Based De-
ductive Data-Base, BDDBDDB, which performed well in practical experiments
and could solve large analysis problems.
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The sucess of declarative analysis approaches led to the development of the
DOOP framework [66]. Though program analysis was presented more as a use
case for BDDs, the DOOP framework was foremost an analysis system. The ad-
vantage of DOOP over previous approaches to program analysis is that the anal-
ysis logic could be specified in a relatively concise and flexible language, and the
intricacies of evaluating this logic could be deferred to a high-performance Dat-
alog solver. DOOP makes use of the proprietary Datalog system Logicblox [5],
which is an extension of pure Datalog with function symbols, limited function
programming, and some syntactic conveniences.

Some notable examples of freely available Datalog solvers also include the
engines Z3 [49] and Soufflé [64]. Z3 is actually a solver for the more expressive
class of Satisfiability Modulo Theories (SMT). In fact, the expressive power of
SMT means that Z3 is regularly used not merely for advanced forms of program
analysis, but also many synthesis and verification tasks. Due to the need for
high performance datalog systems, Z3 provides a specialised implementation of
its fixpoint logic solver, called µZ. Whilst Z3 is extensible and well-known, its
runtime performance is not as impressive as the more specialised Datalog system
Soufflé (see Chapter 6). Soufflé uses a synthesis approach to generate solvers
from an input specification. The added overhead of synthesising a solver is rea-
sonable in this use case, as the Datalog specification itself changes rarely, whilst
the existential data-base which it runs with changes frequently [64]. Statically
synthesised solvers have significant runtime advantages over runtime systems
(like Logicblox, Z3, and BDDBDDB), as they avoid the need for dynamic run-
time control mechanisms and can generate more cache-aware code. The synthe-
sis approach of Soufflé was very influential in the design choices made for the
Cauliflower solver.

2.2 Algorithms

The standard approach to solving general CFL-R problems (i.e problems where
the grammar itself is an input) is commonly attributed to Melski and Reps [47].
Whilst this is one of the first complete and explicit presentations of the algo-
rithm, it should be noted that cubic-time solvers were known for special cases
much earlier [28], and general cases not long afterwards [86]. The algorithm has
cubic time-complexity. An intuitive explanation is that it can create at most
|V |2 results, and finding each result may require searching |V | vertices for an
end-point. Since the grammar is itself variable, a more accurate time-complexity
is parameterised by the size of the grammar k, which yields O

(
n3k2

)
The Melski-Reps algorithm was considered optimal [34] for most of its his-

tory, and was only improved upon relatively recently. A sub-cubic algorithm was

developed by Chaudhuri [17], which improved the runtime to O
(

n3

logn

)
. This

improvement relies on the “four russians’ trick” [6], a generic means of perform-
ing set-operations in aggregate. Informally, if A and B are two sets, they can be
represented as a bitvector in O (n) space, then for a machine to be able to ad-
dress its ram, which is surely larger than n, it must have log n < w-sized words,

24



Algorithm 2 The summarisation-based algorithm due to Melski and Reps [47]

Require: P is in binary normal-form [43]
1: function MelskiReps(T ,N ,P, S, V,E)
2: R← E
3: for all A→ ε ∈ P do
4: R← {A(v, v) | v ∈ V } ∪R
5: W ← R
6: while W 6= ∅ do
7: X(u, v)← dequeue an edge from W
8: for all w s.t. H → Y X ∈ P ∧ Y (w, u) ∈ R ∧H(w, v) 6∈ R do
9: W,R← insert H(w, v)

10: for all w s.t. H → XY ∈ P ∧ Y (v, w) ∈ R ∧H(u,w) 6∈ R do
11: W,R← insert H(u,w)

return R

thus A ∪ B and A ∩ B can be computed in O
(

n
logn

)
time, using word-length

bitwise operations. The trick also applies to Turing machines, since it is possible
to pre-compute a lookup table for the word-sized operations in O (n) time and
space. Chaudhuri applied this approach to the matrix-multiplication-like dy-
namic transitive closure needed fro CFL-R (though he was specifically dealing
with a related problem known as recursive state-machine/pushdown automata
reachability). Unfortunately, the trick relies on a dense representation of the
input problem. Whereas Melski-Reps can use a sparse representation, which is
only O

(
kn3

)
, the Chaudhuri algorithm is actually Θ(kn3). We perform statis-

tical analyses of some common CFL-R problems in Chapter 4, which indicate
that Chaudhuri’s approach would be prohibitively space-intensive to solve.

2.3 Applications

One of the earliest applications of CFL-R research was in the verification of
network security protocols. Dolev, Even and Karp identified an important class
of network protocols called “ping-pong” protocols [28], which worked by sending
messages in a strictly back-and-forth pattern between participants. The primary
concern is that such a protocol could be subverted in a way that would allow
malicious parties to trick other users into decrypting messages on their behalf.
The authors represented a given message protocol as a graph, where transitions
were labelled with operations (encrypt, append a username, remove padding,
etc.). Clearly combinations of operations (encrypt with kpub and decrypt with
kpriv, appending a username and removing a username) yielded the same text
afterwards as before. The task then was to find a path in the graph which, in
combination with the operations performed first by an honest participant, could
yield the plaintext of their message. At the time, the best known algorithms for
this verification problem were O

(
n8
)

in the number of operations, so translating
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to the CFL-R context automatically gave a cubic-time algorithm.
Much of the popularity of CFL-R can be attributed to Reps et al., who

presented CFL-R as a vehicle for performing program analyses, particularly
dataflow analyses [57, 59]. Dataflow problems track the state of a particular
dataflow fact as it flows through the program. To convert this to CFL-R, we
begin by computing the control-flow graph of a program. Each control node
v is represented by a series of vertices v0, . . . vs, each of which represents a
potential state of the dataflow fact. If there is a transition between two nodes
(v, u) in the control flow graph, then we make a subgraph such that (vi, uj)
is an edge in the expanded graph when state i can transition to j during the
control-flow transition (v, u). Clearly this model of dataflow is generic, but it is
also readily solvable via TC algorithms, as the edges do not have labels. CFL-R
is used to ensure context-sensitivity : instead of using unlabeled transitions, we
label method calls/returns with an open/closed parenthesis for their callsite,
and intra-procedural transitions with an arbitrary symbol n. Then, given the
language:

S → ε | n | SS | (iS)i ∀i ∈ call-sites

We have that S(vi, uj) in the CFL-R solution implies that the dataflow fact in
state i at point v in the program can reach point u in state j, and that this
transition will not violate call/return semantics.

Shape analysis is a technique particularly relevant to imperative and func-
tional programs. The analysis attempts to understand the heap-shape of dif-
ferent data structures, i.e. to determine whether they are cyclic, or behave like
trees, or lists [60]. In this way, a heap-shape analysis can be used to recognise
data-structures by their structural properties, which would allow the compiler
to substitute more efficient structures where it sees fit. Heap-shape analyses
are also used in termination analyses, for example a loop over a cyclic list
may not terminate. Reps formulated the shape analysis problem as a CFL-R
instance [55, 57], which automatically presented a (nearly) cubic runtime com-
plexity for shape-analysers and allowed a demand-version of the analysis to be
phrased (i.e. a top-down solver, see Section 1.2).

Another important component of accurate program analyses is the issue of
control flow. Many formulations of flow analyses are not context sensitive, in
that they do not accurately deal with the flow between function calls and re-
turns. This problem is not limited to imperative programs, but is also visible
in functional programs, where call/return is the most predominant flow me-
chanic [79]. It is desirable, therefore, to ensure that functional control-flow
analyses are actually context sensitive. Vardoulakis and Shivers present the
first truly context-sensitive flow analysis, CFA2, as a CFL-R problem [79]. The
analysis uses call/return parenthesis-matching, similar to the way that Sagiv
et al. formulate the matching callsite problem for dataflow [62]. In a prelimi-
nary analysis of Scheme programs, the CFA2 analysis is shown to be far more
accurate than tradidional depth-bounded flow analysis frameworks like k-CFA.

Returning to the security context, CFL-R has seen recent attention as a
vehicle for performing taint analysis. Taint analysis is a style of information-
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flow analysis, particularly relevant to internet and smartphone applications [7],
which focuses specifically on whether so-called “secure” program data (such
as phone contacts, secret keys or session information) is able to flow from a
taint source to a publicly readable sink. These systems are heavily optimised
for speed and precision on typical use cases, so they differ greatly from the
underlying logic. Nonetheless, many taint analyses can be phrased as CFL-R
problems. Bastani et al. develop an extension to a taint analysis problem, which
relies on CFL-R to infer specifications for their input programs. Normally, an
analysis framework which is unable to reason about some specification logic will
over-approximate it (such as conservatively assuming that after a reflective call,
every method has been invoked), however, greater accuracy is possible if we
try to infer specifications around these “invisible” portions. Given an unknown
code portion, the tool mechanically generates several likely CFL-R subproblems,
posing these to a human auditor to select the best candidate. This is uniquely
possible for CFL-R, as problem instances are simple enough to mechanically
generate and reason about, yet remain appreciable to humans for understanding
and verifying.

2.3.1 Points-to Analysis

The points-to problem is a very common analysis problem, which is central to
many optimisation passes and often forms the base of more complicated anal-
yses like taint analysis. Given an input computer program, points-to analysis
attempts to determine a memory invariant, i.e. a sound over-approximation of
the program’s runtime memory configuration. Specifically, the analysis tracks
pointer variables in the source code, and determines which memory locations
(usually abstract locations, since even the number of memory locations is unde-
cidable in general) are pointed-to by which pointer variables. Points-to analysis
was presented as our running example in Section 1.1.2. Traditionally, a common
way to phrase points-to analysis was via an inclusion-based constraint system [4]:

x = &y; ⇒ {y} ⊆ pt(x) a = b; ⇒ pt(b) ⊆ pt(a)

v = *l; ⇒
⋃

i∈pt(l)

pt(i) ⊆ pt(v) *s = u; ⇒ ∀i ∈ pt(s) : pt(u) ⊆ pt(i)

The subset-based approach is slower but more precise than so-called “equality-
based” analyses [71], which equivocate points-to sets into disjoint groupings.

Points-to analysis is arguably one of the most fundamental program analyses,
which forms the basis from which to answer most reasonable analysis questions,
such as dataflow [62], and information-flow [61]. Further, points-to information
is used to provide static over-approximations of a program’s call-graph, known
as call-graph construction, which allows subsequent analyses to reason about
the likely landing methods of a given call, which may involve function pointers
or virtual dispatch. For this reason the body of literature on points to analysis
is large [67, 45, 33, 32, 15, 25, 18, 48]. We give a brief overview here of several
important factors that pertain specifically to points-to analysis:
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• Context-sensitivity refers to the ability of a program analysis to distin-
guish between analysis results based on different calling contexts. There
are several approaches to achieving context sensitivity in a given analy-
sis. Summarisation is where the analysis is performed for a given context,
and its results are inline at different callsites [53]. Cloning is where the
analysis is performed multiply, once for each callsite [83]. Note that these
approaches are not absolute, scalability is often difficult to guarantee given
arbitrary cloning/summarisation [67], so often the analysis only appliex
context-knowledge selectively, possibly based on heuristics about impor-
tant parts of the source code. For the purposes of our discussion, we will
include heap-sensitivity and object-sensitivity as kinds of context-
sensitivity, in the sense that “context” refers only to a restriction of anal-
ysis results based on some program factor(usually callsites, but in this case
heap-states and callee-objects respectively). Heap-sensitivity attempts to
reduce pollution of the analysis’ abstract heap by differentiating between
memory objects allocated by the same source level instruction, which we
discussed earlier was a key simplification made by Andersen’s analysis [4].
Object sensitivity is similar to the above callsite-based context-sensitivity,
though context is derived from a call’s receiver object, instead of the call
instruction. Using receiver objects can be beneficial, particularly for lan-
guages like Java which make heavy use of virtual dispatch.

• Flow-sensitivity is relevant where analysis results encode temporal re-
lationships between results. For simplicity, it is common to develop an
analysis which does not track the order of instruction executions, in which
case the program semantics are to execute any in struction at any time.
Flow-insensitivity is an over-approximation which may conclude, for ex-
ample, that data is shared between given variables even if one did not
hold the data at the time it was copied to the other. A popular way
to cheaply provide partial flow-sensitivity is to rely on an intermediate
representation based on static single-assignment [44] (SSA). Programs in
SSA treat all variables as constant valued, by creating artificial variables
at program points where source-level variables would need to be modi-
fied, or where several values reach the same program point via different
control-flow paths (using special phi instructions). SSA is usually strictly
a register-level construct, and does not provide the same flow-sensitive
guarantees to heap objects. For this reason, analyses which leverage SSA
in LLVM, for example, only provide partial flow-sensitivity, for variables
that are not stored-to/loaded-from the heap.

Early work by Reps phrased the inclusion-based analysis as a CFL-R prob-
lem [57] which allows for a simple presentation of a points-to solver (based on
the summarisation algorithm). Importantly, CFL-R formulations make explicit
that operations like set merging and iteration over points-to sets are not actually
necessary to the analysis (though in performant implementations of Andersen’s
analysis, such operations were avoided by relying on lazy evaluation techniques).
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Owing to the difficulties of evaluating the general case of CFL-R, researchers
have turned to more restricted classes of CFL-R in pursuit of better evaluation
techniques. One important sub-class is the Dyck-reachability problem, which
is believed to cover a large portion of practical CFL-R analyses [42]. Dyck-
reachability formalises the notion of parenthesis-matching in CFL-R. Given a
set of brackets, this reachability subclass restricts the grammar to exactly:

S → SS | ε | (iS)i ∀i ∈ brackets

In truth, despite the restriction, there are no algorithms known to solve the Dyck
language problem over general graphs any faster than for arbitrary context-free
languages. To make algorithmic progress, researchers also restrict the class of
graph under consideration. Initial progress was made by Yuan and Eugster
for bi-directional trees [88]. The bi-directional property requires that for every
terminal-labelled edge (i(s, t), there exists a matched reverse-edge )i(t, s). Simi-
larly, closing parentheses should match opening ones in reverse. Trees with this
property actually occur naturally in some object-flow problems (i.e. analyses
involving flow of information between types) specifically for type heirarchies. By
exploiting symmetry properties in the paths that are found by Dyck-reachability
on bi-directional trees, Yuan and Eugster were able to formulate a fast online
algorithm with O (n log n log k) pre-computation for queries in O (1) time. This
work was subsequently extended to bi-directional graphs, and an algorithm with
superior runtime on trees and good runtime on graphs was devised, by Zhang
et al. [89]. Those authors noticed that the reachability relation was actually an
equality relation in bi-directional graphs which allowed them to use disjoint-set
structures to record co-reachable classes of nodes. Their presented algorithm
runs in O (n) time on trees, and O (n+m logm) on graphs.

An important consideration for alias analyses is the size of the result sets.
Typical CFL-R analyses assume a bottom-up approach, owing in part to the
fact that the standard algorithms (Both Belski-Reps and Chaudhuri’s, see Sec-
tion 2.2) compute the all-pairs solution to the CFL-R problem. For perfor-
mance reasons, computing every pair of language-reachable vertices may be
prohibitively expensive, as over-approximations in the points-to formalism, cou-
pled with the sheer size of the input program, significantly increase the size of
the CFL-R solution. However, CFL-R problems also permit top-down solvers,
i.e. solvers which only derive the minimal number of pairs needed to verify
a particular pair, called the query. Such solvers can be automatically derived
simply by converting the CFL-R problem back to Datalog and using exist-
ing top-down solvers from that technology, or using a transformation logic like
Magic Sets or Subsumptive Tabling [75]. However, more efficient solvers can
be made by examining the specific evaluation logic for CFL-R based points-
to and adapting machinery. One early approach was described by Sridharan
et al. [70], and described a demand-driven analysis for Java points-to analysis.
Subsequently, a version of a CFL-R-based demand analysis for C programs was
developed by Zheng and Rugina [91]. Importantly, though their implementa-
tion of the demand algorithm is time-bounded (so the analysis conservatively
reports “maybe” when it runs out of time), they are able to achieve very high
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precision with a relatively short timeout of 0.5ms on the SPEC2006 benchmarks.
Finally, the demand analyses were extended to facilitate context sensitivity by
Yan et al. [85]. The search algorithm is complicated by the need to ensure
context sensitivity, meaning that timeouts are needed to prevent infinite recur-
sions. Nonetheless, their results give precision improvements on average over
two state-of-the-art points-to analyses for Java.

The need for precision in points-to analysis has led some researchers to exam-
ine the linguistics of CFL-R closely. Sridharan and Bod́ık developed a technique
for feasibly managing context-sensitivity by language refinement [68]. One in-
teresting property of context-free languages is their intersection; it is known that
the intersection of two context-free languages is not necessarily itself context-
free, despite that the intersection of two regular languages is itself regular [38].
A direct result of this is that it is impossible to phrase an analysis which is both
completely field sensitive and completely context-sensitive [58], one or both of
these mechanisms must be weakened. Interestingly, though, the intersection of
a regular language and a context-free language is context-free. Sridharan and
Bod́ık describe how to approximate context sensitivity (i.e. accurate for a c-deep
call-stack) with a regular language, and therefore gain context sensitivity with
this approximation. Further, the accuracy of the analysis could be iteratively
improved, simply by increasing the precision of the context-sensitive compo-
nent, hence this is a refinement technique. Their analysis was incorporated into
a cast-safety checker for Java programs, and was able to verify the safety of more
casts than a context-insensitive analysis and a competing sensitive analysis.

Related to the notion of demand-driven analyses is the concept of incre-
mental analyses. In some contexts, such as IDEs, the analysis’s code base
changes frequently in small ways. Where this happens it would be computa-
tionally wasteful to throw out previously computed results and start again from
scratch for every minor change. A better solution would be to somehow update
a partially-completed analysis with new information. Incremental approaches
to transitive closure have been examined by researchers for a long time [3], as
they are necessary for many data-processing applications. Lu et al. propose an
adaptation of the CFL-R algorithm for incremental evaluation [46]. The trans-
formation is fairly straight-forward, as new terminals can be simply added to
the graph and Melski-Reps’ worklist (see Algorithm 2), which will derive any
new edges. The removal of terminal edges introduces some complications to
this technique, where the authors suggest partial re-evaluation of the graph by
looking at the subgraph connected to the edge being removed.
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Chapter 3

Applications

This chapter examines the practical intricacies of CFL-R based analyses on
realistic benchmarks. The majority of this work was published to OOPSLA,
2015, in the paper “Giga-Scale Exhaustive Points-To Analysis for Java in Under
a Minute” [27].

3.1 Java Analysis

Java is a common programming language which features in many high-performance
settings, particularly on web servers and smartphone applications. Indeed, the
ubiquity of Java programs is itself enough to justify study into effective anal-
yses, as the security and performance of the Java language is one of the more
important issues facing computing practice. However, part and parcel with be-
ing ubiquitous, Java applications are the focus of significant security attacks [21]
which cover a diverse range of attack vectors, meaning that effective security
analyses must deal with as many features of the Java language as attackers can.
Aside from being prime targets, Java applications are uniquely vulnerable by
virtue of incorporating large and readily pluggable libraries. Attacks are possi-
ble from two directions, then: there are opportunities for users of an untrusted
library to have their program act maliciously when supposedly safe operations
are used, but there is also the chance that library code might be subverted by
malicious applications. The latter of these concerns is of great concern for the
OpenJDK library, sometimes called the standard/runtime library, as its code
forms the basis of all Java programs, and is expected to manage very privileged
data such as Java’s security model [21].

The immediate question becomes, how can we analyse such a program as
the OpenJDK. Any analysis must deal with (1) a very large codebase, with
millions of variables/instructions and hundreds of thousands of methods, (2) a
library, meaning that actual application code is missing, and must be conser-
vatively approximated, and (3) a feature-rich problem, which makes use of all
Java semantics (after all, it defines those semantics). Security exploits present
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an intricate interplay of all three components in their attacks, where they make
use of diverse parts of the library (which developers never expected to be used
together), contrive perverse application code whose execution patterns are diffi-
cult to predict, and exploit multiple features of the Java language, particularly
reflection and native methods. The complications imposed by this use case are
therefore interesting not only for the OpenJDK, but in the development of any
scalable and accurate analysis.

In this chapter we focus on the particular use-case of points-to analysis for
large Java libraries. The points-to analysis problem is one of the most funda-
mental program analyses, and it underpins many compiler optimisations and
automated security verifiers, which production systems rely on. Given a Java
program, we must compute an approximation of the program’s memory con-
figuration, in which the potential heap objects that a given reference variable
may “point to” at runtime are discovered. Since this problem would be unde-
cidable in the face of the unbounded memory requirements of most non-trivial
programs, we desire two properties to make the analysis feasible and useful:
the heap locations should be abstracted (in our case by the instruction which
allocated them [4]), and the analysis must over-approximate the true result (i.e.
it must be sound). The first requirement is needed to keep the analysis decid-
able, and is one of the most common abstractions used in points-to analysis,
though another recently-popular method of abstraction is the access-path ab-
straction [18], which treats concatenations of field accesses as abstracted heap
objects. We desire a sound over-approximation simply because this is neces-
sary if we want to make use of an analysis’ results; if the tool returns spurious
answers and does not return some valid results then far more manual effort is
needed to verify its output.

One particular feature of Java which we must deal with at this point is the
virtual dispatch mechanism. Give a variable v with statically declared type T ,
calls to the instance method m (i.e. T v;...v.m();) will not necessarily land
in the declaration of m in the class T , even if there is such a method, but
may in fact land in any sub-class of T, T ′, that overrides m. Immediately we
have two potential abstractions of the virtual dispatch mechanism, a simpler
one based on the conservative Class Hierarchy Analysis [26] (CHA), and one
using approximations of runtime type information, called Rapid Type Analysis
(RTA). For CHA, we take the conservative assumption that a variable can be
every overriding subclass of its statically declared type (with the unfortunate
corollary that Object variables are every type). The call graph can be statically
wired up, but each call-site will lead to multiple overriding methods For RTA,
we look at the declared types of the heap objects that are pointed-to by reference
variables. Since heap objects are abstractions of allocation instructions (i.e. a
call to new X();) we know their static type. Some additional runtime logic is
needed to “wire up” the virtual calls on-the-fly, such that if we discover that v
points-to a heap object of type T ′′, then only the version of m which T ′′ invokes
can actually be the landing of a call v.m().. It is of interest which of these
techniques is actually faster in practice: since CHA is more precise, it reduces
the computations needed to derive solutions, but it also requires the call-graph
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to be regenerated dynamically, adding to the runtime overhead.

3.1.1 Library Support

One issue that is rarely dealt with in the normal points-to analysis literature
is the so-called “open world” assumption inherent to static analysis of dynami-
cally linked objects, like Java libraries. Typically, points-to analysis deals with
applications, e.g. in the context of optimisation or security verification. In this
context the class hierarchy, and therefore the virtual dispatch tables, are fixed
and known statically. When examining libraries in a stand-alone manner, par-
ticularly Java libraries, we can make few guarantees about the client program’s
runtime behaviour, and therefore we must make conservative assumptions when
analysing the library.

Consider a Java library call like DateFormat.format(Date d). Users are
free to override java.util.Date in arbitrary ways, so it is not accurate to
assume that invoking something like d.getTime() will actually result in a call
to the method java.util.Date.getTime(). Few safe assumptions can be made
when invoking methods on objects which were given as a parameter in a publicly
accessible method, though program constructs like final objects or constness may
help.

Unfortunately, a true conservative over-approximation for application be-
haviour would be the union of all possible behaviours. As stated before, calling
any method on a user-provided object, can lead to arbitrary behaviour. In fact,
such a call may result in every publicly accessible library method being invoked,
regardless of the return types or calling requirements of those methods. Such
a case is unlikely, nonetheless it must be dealt with semantically. Importantly
for the analysis, though, we can avoid this pitfall. Firstly, since this is a library
analysis, we must do away with the notion of a single entry-point, and consider
that any public method of a public class might be the entry point. This being
the case, however, it does not matter if methods called on user-given objects
call every public method, since the analysis already assumes that those meth-
ods might be the original entry-point of the application code. In this way, any
change to the state of the library that might occur as a result of calling the user-
defined method, is already handled by the parts of the analysis that assumed a
different entry point. To summarise, it is sufficient to treat every public method
as a program entry point, and ignore the fact that user defined methods might
call into them.

3.1.2 Limitations

Unfortunately, given the scale of the OpenJDK library, some important analysis
features will be ignored in this presentation. Most prominently, this analysis
will make no attempt to address context sensitivity. In principle, any context
insensitive analysis can simulate context sensitivity by techniques that inline
function calls (though no actual inlining will take place, things will appear
to be inlined in the call graph). This technique does not work for recursive
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methods, for which a suitable approximation must be used, but it is otherwise
sound and improves the precision compared to a context insensitive approach.
However, two factors significantly degrade the runtime performance (which we
foresaw would be insufficient for analysing the OpenJDK). Primarily, inlining
methods leads to an exponential expansion in the apparent size of the code
base. Each method is cloned potentially at every call-site, and this cloning
occurs inside those clones, and so on. The resulting exponential expansion
in the size of the CFL-R graph would lead to an unsolvably large problem.
Further, though context sensitive analyses are more precise, so the intuition
is that they should be faster [67], actually they typically exhibit much larger
points-to sets. Though context information improves accuracy and reduces the
number of points-to relations compared with insensitive analyses, this reduction
is only visible when context information is elided from the points-to sets. During
the analysis’ execution, a given variable (which has been duplicated over every
valid context) may point to fewer heap objects, but those it does point to will be
duplicated over several contexts. Hence, the size of its points-to set may in fact
be larger. Ultimately, the significant increase in computational load associated
with context sensitivity renders this technique infeasible for large Java library
analysis without further improvements to the technology.

Whilst our analysis does reason about virtual dispatch mechanisms, this does
not extend to a precise treatment of types in all factors of the analysis. Notably,
we treat the casting operations as semantically equivalent to an assignment. In
a normal analysis, the static knowledge that x = (Foo)y; would allow us to
selectively propagate points-to information to x. Not every heap object that y
points-to can be reached from x after this operation, as any object with type
T which is not a subtype of Foo would cause that statement to throw a class
cast exception. Casting should therefore be treated as a points-to propagation
filter. In the CFL-R setting, designing semantics for this kind of cast is trivial,
and uses the same trick as matching field accesses. First, let every heap-object’s
vertex v be associated with self-loops Tx(v, v) for every reflexive supertype x of
the allocated type of v. This assumption simplifies the presentation, but it is
also possible to compute the necessary loops given only the allocated type and
an inheritance tree as part of the input CFL-R problem. Then, the rules:

points-to→ castx points-to Tx ∀x ∈ Types

conditionally propagate points-to paths when the allocated type is a subclass
of the cast’s type. Unfortunately, computing this information on-the-fly during
analysis of the OpenJDK is prohibitively expensive. As we shall see, there are
significant advantages to be made by exploiting symmetries in the propagation of
information by assignment [33]. Ultimately, the precision advantage that would
be gained by accurate treatment of casts was deemed less important than the
performance advantages of simplifying this language feature.

Finally, due to the overriding need for performance, particularly on the target
library of the OpenJDK, our presentation focuses on one specific formulation
of points-to analysis, to the exclusion of more general approaches. We need to
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make significant modification to the traditional Melski-Reps algorithm in order
to meet performance requirements. Primarily, the summarisation approach is
limited by the need to update and, ultimately, exhaust a worklist. The number
of points-to relations in the OpenJDK library is large (on the order of billions),
especially when compared with the number of terminal-labelled edges (less than
two million). As a result, the worklist grows quickly, and dequeuing edges for
checking becomes prohibitively expensive. Further, the worklist is, essentially,
non-deterministically ordered, and so no guarantees can be made that queued
items will be dequeued in a useful order. Considerations, like the need for cache
locality, are paramount in ensuring high performance targets are met. For this
reason, we fix the evaluation logic with the intention of examining closely where
the opportunities are for speeding up that logic specifically. The formalism we
will use closely models the simple example formulation given in Section 1.1.2.
When effective means of improving the evaluation are discovered, we can then
look into generalising our results.

3.2 Gigascale Analysis

The Gigascale analysis [27] examines the points-to problem in an attempt to
understand how a specific logic can be intricately optimised. The overriding
concern in the development of this analysis is scalability, that is, the ability
to run on extremely large data sets. To this end, we ignore concerns for the-
oretically efficient algorithms, especially where these algorithms do not yield
acceptably fast implementations. It should be noted that, although scalability
is an overriding concern, we do not ignore the need to produce a reasonably
precise result as output. In regard to this, we fix the minimum acceptable
precision as equivalent to the points-to formulation presented in our running
example (Section 1.1.2).

For example, Chaudhuri’s CFL-R algorithm is the fastest known solver for
points-to problems with at least this level of precision (though faster algorithms
exist for imprecise/restricted formulations). Unfortunately, the subcubic algo-
rithm specifies that edge-relations be represented densely (so that set operations
may be performed in aggregate). There are ≈ 1.4 million vertices in the Open-
JDK graph, meaning that every input relation would be ≈ 230GB. Clearly,
then, the space-complexity of the subcubic algorithm renders it unusable in our
context.

3.2.1 Opportunities in Points-To

The most important modification to the evaluation strategy which underpins
Gigascale’s performance is the change that it makes to how the analysis pro-
gresses, which we will call the driver. Consider the influence that the worklist
has on runtime in the Melski-Reps algorithm (Algorithm 2). The stated com-
plexity of this algorithm is O

(
n3
)
, but assume instead that the maximum size

of the output was parameterised with w, in which case the algorithm’s para-
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metric complexity is O (wn). Technically, since every worklist member must be
dequeued and checked against the rest of the graph, that complexity is closer to
a lower bound. The specifics of the OpenJDK problem, and the reason that the
analysis is called “Giga”-scale, is that there are ≈ 1.5 billion points-to pairs in
the result. Since the runtime of the worklist algorithm scales linearly with the
output size, it is unusably slow when executed on this reasonably dense prob-
lem. In contrast, the Gigascale analysis is driven by a refinement technique.
Instead of incrementally expanding on the result-set by applying points-to rules
to newly discovered edges (as per the summarisation approach), Gigascale ini-
tially over-approximates a crucial component of those new relations, called the
bridge set, then iteratively validates bridges. Given that, in practice, the size of
the bridge set is relatively small (≈ 64 thousand bridges), this yields significant
performance improvements.

Bridges are an informal notion that captures the indirect assignment of vari-
ables via field loads/stores, and hence the propagation of points-to sets. In the
presentation in Section 1.1.2, the points-to language had an indirect assignment
rule given as:

points-to→ loadf points-to points-to storef points-to

It is the need to match fields, as captured in this rule, that causes the points-to
analysis to be a CFL-R problem. We can use simple linguistic transformations
to separate field matching into a separate rule:

bridge→ loadf points-to points-to storef points-to→ bridge points-to

Without the bridge rule, the rest of the points-to language is actually regular,
and can be specified by the rule points-to→ (assign|bridge)∗alloc. It is relatively
easy to solve the bridge-free problem, and we can avoid the complex gadget
proposed by Yannakakis [86] for regular-language reachability. In fact, we need
only calculate:

points-to = TC(bridge ∪ assign) ./ alloc

Though the bridge-free component can be solved via normal transitive clo-
sure, we now require a means of calculating the bridges. Instead of incrementally
building a valid bridge set, in the style of the Melski-Reps algorithm, instead
assume that we can over-approximate the set with an oracle Obridge. It is always
possible to generate such an oracle, since we can simply use the trivial all-pairs
approximation:

Obridge = {(u, v)(p,q) | ∃f, g : loadf (u, p), storeg(q, v) ∈ E}

Choosing a good oracle is a matter relevant to fine tuning the algorithm’s run-
time, and is discussed further in Section 3.2.2.1. At this stage, we simply point
out that, given an oracle, it is possible to construct a different evaluation strat-
egy. Given an initially empty set of true bridges, it is possible to confirm, from
the points-to relations in the graph, that some of Obridge is indeed valid, while
some remains unconfirmed. This works iteratively, where the bridges of set i

36



Algorithm 3 Gigascale points-to analysis [27]

1: function Gigascale(alloc, assign, load, store)
2: Obridge ← Generate Oracles(load, store)
3: t← assign
4: while ∞ do
5: p← TC(t) ◦ alloc
6: v ← {(u, v) | (u, v)(bu,bv) ∈ Obridge, p(bu) ∩ p(bv) 6= ∅}
7: if v = ∅ then return p
8: else
9: t← t ∪ v

10: Obridge ← Obridge \ v

can be confirmed by any of the bridges in sets j < i. Given a bridge between u
and v, which is noted to depend on p and q, then:

(u, v)(p,q) ∈ bridgei ⇔ ∃h : (p, h), (q, h) ∈ TC(assign ∪
⋃
j<i

bridgej) ./ alloc

The above strategy has some interesting properties which we shall note
here. As an algorithm, it must iteratively attempt to validate Obridge relations,
and add them to a running transitive closure. Running this until a fixpoint is
reached, we perform a transitive closure each iteration, and we may only validate
one bridge per iteration, where there are at most n2 bridges. The time complex-
ity is therefore O

(
n2 TC(n)

)
[27], so algorithmically it seems worse than the

Melski-Reps approach. Indeed, one can construct pathological cases where this
is in fact the runtime, but in practice it may be far better. The actual number
of iterations is determined by the depth of the field-access stack: fields used in
indirect assignment which alias via direct assignments only will be validated in
the first iteration, and doubly-indirected bridges will be validated in the second
iteration. The intuition is that programmers can not over-burden themselves by
conceptualising arbitrarily deep field accesses, so the actual indirection depth
will be quite small. On a benchmark study, the depth is a small constant around
5, with the deepest codebase having 9 levels of indirection [27]. So, since the
number of bridges is very small, and they will be validated in an effectively
constant number of iterations, the runtime of Gigascale-style evaluation will
actually outperform the worklist approach on realistic problems.

3.2.2 Implementation Optimisations

Implementing the Gigascale analysis requires much effort in understanding and
tweaking the optimisations. Given that the analysis is designed for solving the
OpenJDK, we are not at this stage concerned about whether these techniques
apply generally.

Pseudocode for the Gigascale analysis is reproduced in Algorithm 3. We
leave Generate Oracles and TC as black-boxes for the time being. As we
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shall see, there are interesting tradeoffs that occur when choosing different bridge
oracle generation techniques. The verification of bridges occurs on line 6, on
the assumption that the bridge between u and v was created by a load-store
pair with base variables bu and bv respectively. Clearly if p(bu) and p(bv) have
a non-empty intersection, then there exists some h for which (bu, h), (bv, h) ∈
points-to, in which case 〈load(u, bu), points-to(bu, h), points-to(h, bv), store(bv, v)〉
is a path in the graph, implying an indirect assignment between u and v, thus the
Gigascale analysis computes the same points-to relation as the running example
of Section 1.1.2.

3.2.2.1 Oracle Generation

This section refers to the technique used to over-approximate the bridges, re-
quired in Algorithm 3 line 2. There are two easy optimisations which improve
the practical runtime of certification without changing its theoretical complex-
ity. In the certifier direction, a given pair of base variables (whose non-empty
points-to intersection implies that a bridge is valid) can actually be used to
validate several bridges at once. In fact, this use case occurs in practice regu-
larly. Firstly, via a multiplicity of fields, m.f = a; m.g = b; ... x = n.f;

y = n.g;, then if m aliases n this would certify both the f -field bridge and the
g-field bridge. Secondly, via a multiplicity of uses, m.f = a; ...x = n.f; y

= n.f;, so if m aliases n this would certify both the (x, a) and (y, a) bridges.
In the certified direction, there may be several base pairs which could validate
a given bridge, but if any one of them succeeds the others can be ignored in fu-
ture iterations (since they would only confirm a bridge already known to exist).
Again this occurs in practice, particularly where there are several control-flow
paths between the field store/load. To capitalise on these redundant cases, the
Gigascale implementation uses high-performance map and set implementations
to track which base pairs validate which bridges, and also which validations
obviate which base pairs.

The näıve all-pairs oracle is only intended to demonstrate that it is always
possible to generate an over-approximation. From Algorithm 3, clearly the vali-
dation step on line 6 becomes more complex with a coarser over-approximation.
Thus it would seem desirable to compute a precise oracle set. Alternatively,
the certification step can be made very fast (particularly when using the com-
pressed sparse bit-sets discussed in Section 3.2.2.2), so it might be better to save
computation in Generate Oracles. On one end of the spectrum we have the
very fast but less precise same-field oracle, used by Sridharan and Bod́ık [68]:

Obridge = {(u, v)(p,q) | ∃f : loadf (u, p), storef (q, v) ∈ E}

This oracle is simply a restriction of the all-pairs approximation to bridges
over the same field. Field sensitivity can be enabled or disabled by swapping
between the all-pairs and the same-field oracles in the Gigascale analysis. Note,
though, since its runtime is largely determined by the size of the oracle set, field-
sensitive points-to is actually faster to compute using the Gigascale analysis.
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1 Foo x = new Foo();

2 Object o = x;

3 Bar y = new Bar();

4 o = y;

(a) Source code
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(b) CFL-R graph

Figure 3.1: Case showing how the aliasing relationship is not transitive.

On the OpenJDK, the number of all-pairs oracles is ≈ 7.4 × 109, as compared
to ≈ 5.3× 105 using the same-field oracle.

Computing all pairs of variables which load and store the same field is a
significant improvement in precision, but techniques with even higher preci-
sion may be more viable. Zhang et al. present a technique for computing the
bi-directional Dyck reachability problem for points-to [89]. Their points-to lan-
guage over-approximates the native CFL-R formulation in two ways. Firstly it
treats assignment statements as bi-directional, in the sense that a = b forces
the variable classes for a and b to equivocate. Secondly, it treats variable aliases
as transitive, which is not the case. Consider the example in Figure 3.1. Using
the points-to formulation from Section 1.1.2 we have that x and o point to foo,
and y and o point to bar, meaning that o aliases x and y. Despite this, x does
not alias y, as those two variables do not point to a common heap object. In the
Zhang et al. formulation, variables are stored in a disjoint-set data structure,
which causes a Steensgaard style transitive propagation of points-to informa-
tion [71]. The x and o groups are unioned, then the o and y groups, meaning
that y and x finish in the same class (which the analysis interprets as an alias).
Hence, bi-directional Dyck-reachability is a fast means of over-approximating
the alias sets, and is therefore useful as a bridge oracle. Let d store the result
of the Zhang et al. analysis, such that d(v) is the class of aliasing variables
associated with v. Then the Generate Oracles returns the following set,
called the bi-Dyck oracle:

{(u, v)(p,q) | ∃f : loadf (u, p), storef (q, v) ∈ E, d(p) = d(q)}

Bi-Dyck is a restriction of the same-field oracle to those pairs which also have
aliasing base variables in the Zhang et al. analysis. On the OpenJDK, bi-Dyck
exhibits significantly more precision than the same-field approximation, having
only ≈ 84 thousand bridges, less than 1

6 th of the same-field pairs, and very close
to the true number of ≈ 64 thousand valid bridges.

Whilst the generation of oracles is an important factor in Gigascale’s overall
runtime, their validation is also important. The technique used in the analysis
is comparable to a bottom-up approach, since it begins assuming none of the
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1 Object a, x;

2 Object b = new H1();

3 Object y = new H2();

4 y.f = b;

5 b.f = y;

6 x = a.f;

7 a = x.f;

8 b = a;

(a) Source code
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Figure 3.2: Case showing self-supporting bridges. Dotted edges show bridges
inferred by the bi-Dyck stage. The (a, b) and (x, y) bridges mutually support
each other.

bridges are valid, and iteratively tries to validate more of them. An alternative
approach is to iteratively shrink the bridge oracles in a top-down approach.
In the top-down case, a bridge which can not be confirmed to be valid when
assuming the validity of all the bridges will be evicted from the set. The top-
down version of Gigascale is presented here:

1: function Gigascale TopDown(alloc, assign, load, store)
2: Obridge ← Generate Oracles(load, store)
3: while ∞ do
4: p← TC(assign ∪Obridge) ◦ alloc
5: o← {(u, v)(bu,bv) | (u, v)(bu,bv) ∈ Obridge, p(bu) ∩ p(bv) = ∅}
6: if o = Obridge then return p
7: else
8: Obridge ← o

The top-down approach has some advantages in comparison with the chosen
bottom-up technique. Each iteration of the analysis only removes edges, allow-
ing us to use knowledge about dominance and connectivity to maintain a faster
incremental transitive-closure structure, whilst the bottom-up approach gains
little benefit by not simply re-computing the entire relation each time. The p
variable is always an over-approximation of the points-to set, so we are able to
terminate the analysis early (possibly in a time-critical context) and be confident
that no points-to sets will be missed. Unfortunately, the top-down approach
does not yield a fully precise answer, as some bridges may be self-supporting,
despite the fact that they would never be validated in the bottom-up approach.
A self-supporting bridge is such a pair that depends (possibly indirectly) on
itself in order to pass validation. Figure 3.2 shows some bridges which can not
be invalidated by the top-down strategy. The same-field oracle would create
the (a, b) and (x, y) bridge edges, since they are load/store bases for the same
field f . Also, the bi-dyck oracle makes the same bridges since a and b are in
the same aliasing class (due to the assignment b = a), and therefore x and y
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are in the same class (as bases of the a and b load/stores). After which we can
not invalidate the bridges, as the analysis assumes x and y both point to H2,
since their base variables a and b both point to H1, since their base variables x
and y both point to H2, etc. On most benchmarks, the imprecision caused by
self-supporting bridges was usually small, either they did not occur, or they led
to over-approximation by ≈ 0.01% compared with bottom-up. Notably though,
for the hsqldb benchmark of the DaCapo suite [13], precision was significantly
worse (≈ 44%), as the self-supporting bridges occurred in critical and frequently
used sections of the code. Ultimately, bottom-up evaluation was preferred as we
could not make guarantees about the likelihood of running into these adverse
cases with well-connected self-supporting bridges.

3.2.2.2 Data Structures

The size of the OpenJDK is a key factor in many of the design choices for the
Gigascale analysis. The characteristics of the points-to solution are very differ-
ent for this large library, when compared to typical benchmark applications. In
an evaluation of the DaCapo benchmarks we determined that, for the simple
points-to problem, program variables on-average pointed to between 0.5 and
2.9 abstract heap locations. Further, the average points-to set sizes did not
correlate with the size of the input program, as the larger benchmarks had on
average 1.6 heap objects per variable, whereas the relatively small H2 case had
2.03. In comparison, the OpenJDK has an average of ≈ 969 heap locations
per variable [27], three orders of magnitude more than the smaller benchmarks.
The difference is understandable, and is partly due to the compounding effects
of imprecision on this large benchmark, but also, being Java’s runtime library,
the OpenJDK is more interconnected than a typical application, and deals with
simpler classes (like Object) than those defined in application code.

Ultimately, the foremost concern, when evaluating large problems at the
scale of the OpenJDK, is data movement. Shipping large volumes of data to
and from main memory in an unstructured manner causes significant delays,
potentially rendering the analysis unusable. The most important factor is ideal
cache utilisation, which can be achieved in several ways for the points-to anal-
ysis. In Algorithm 3, variables are associated with their points-to information,
which need to be frequently examined both for calculating the partial points-to
data (line 5) and for certifying bridges (line 6). To maximise cache utilisa-
tion, we need to make sure that (1) the points-to set for a variable is kept in
a cache-friendly way (i.e. that it does not exceed a cache line), and (2) that
the order in which variables are accessed does not excessively miss the cache or
evict soon-to-be-used blocks.

One idea for improving the cache friendliness of the points-to sets is to
use space-efficient data structures, like bitsets. The bitset data structure is
designed for representing lists of boolean data. In connection with points-to
analysis the boolean data is a true/false flag for each heap object if the given
variable points-to that object. From Figure 3.1, given an integer mapping for
the heap objects foo and bar based on their order of appearance in the code,
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the bitset associated with x is 〈10〉, whereas o has 〈11〉. An important practical
characteristic of these bitsets is that they are sparse in practice. The average
points-to bitset has between 0.5 and 2.9 set-bits in the DaCapo benchmarks,
while there are 3000 to 70000 heap objects in those benchmarks. Even the
OpenJDK, despite being much denser than DaCapo applications, is still sparse,
having ≈ 970/347000 set-bits per variable. It is this property of the points-
to sets, which Van Schaik and De Moor observed more generally in transitive
closure problems [78], that prompted the use of bitsets which were both sparse
and compressed.

Compressed Sparse Bitsets (CSBs) are data structures which provide the
functionality of a bitset in a more memory efficient form. Firstly, instead of a
dense representation, large chains of unset bits are ignored. The set is divided
into blocks, each of which stores a fixed number of set-bits, but only blocks with
at least one set-bit are retained, noting their offset from the whole set, while zero-
blocks are not tracked at all. Further, since individual blocks have low entropy
(i.e. they typically only set one or two bits), we can further compress them
using simple run-length encoding techniques or similar [78]. CSBs are mostly
useful where memory bottlenecks are the greatest limitation to the program’s
runtime, as they impose additional computation over a normal bitset in terms
of accessing set bits and decompressing the blocks. The result is a concise data
structure, which can be used to track points-to information with significantly
improved cache utilisation.

3.2.2.3 Transitive Closure

Together with validating bridge edges, a significant portion of Gigascale’s run-
time is spent performing TC iteratively. Whilst there are TC algorithms with
a time-complexity that is equivalent to boolean matrix multiplication [31], i.e.
O
(
n2.3

)
, in practice these algorithms do not perform well, due to their signifi-

cant constant overheads. To compute TC efficiently, Gigascale favours the more
practical approach of successor-set merging developed by Nuutila [52]. The
practical advantages of Nuutila’s approach were discussed in Section 2.1.2, and
the technique shown in Algorithm 1.

In the points-to analysis context, we can make additional improvements
to Nuutila’s algorithm due to the problem’s restrictions. Gigascale’s running
points-to set is given to be TC(t)◦alloc on line 5. In other words, the transitive
closure of the carrier relation t is computed in full, then this is composed (via
relational join) to the alloc edges. Firstly, since alloc relates vertices to heap
objects, we can guarantee that the heap objects are all leaves, implying that
TC(t∪alloc) will compute the same result. Secondly, only some of the variables
will have their points-to sets queried in each iteration of Gigascale. Specifically,
until we return the complete points-to set, only those variables that appear as
the base variables of the bridges need to be queried for aliasing. As such, a
demand-driven approach, incorporating lazy evaluation, is desirable. Note that
this refers only to returning points-to queries on demand, whereas computation
of the transitive closure it still performed in advance. Thirdly, the points-to
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sets themselves should be propagated, rather than the successor sets, as we
only care what heap objects a given variable points to, and not which variables
were directly/indirectly assigned to it in order for that to be the case. And
finally, we can capitalise on some equivalence properties of points-to graphs [33],
allowing us to compress the graph in a result-preserving way before performing
transitive closure. Combining these optimisations yields a fast algorithm for
computing points-to sets. Gigascale’s implementation features successor sets
of heap objects only (i.e. we do not record intermediate variables) stored in
compressed sets. Further, successor sets are only propagated in a demand driven
way, hence lazily, in the event that a variables is queried. Since only a very small
subset of program variables actually form base pairs of the bridge oracle, this
results in significantly fewer set propagations.

An important consideration when applying our specific TC approach to
Gigascale’s points-to analysis came from the interplay between the successor-set
merging idea, and the CSBs. The memory footprint of each variable’s succes-
sor set is largely determined by the number of blocks it uses, rather than the
number of set-bits. Without some effort, we would expect the set bits to dis-
tributed uniformly at random over the range of heap objects. Further, as each
variable is associated with such a set, those sets must all be kept in an array
in memory, meaning that merging or intersecting two sets would on average
require looking up two random entries in the array of variables. Both of these
factors adversely impact cache utilisation. Instead, suppose that we numbered
variables and heap objects topologically, i.e. they are represented by an integer
from a depth-first pre-order. Now the points-to set for a given variable is very
likely to bunch together over a small part of the range of heap objects, since all
those heap objects are likely to receive numbers after the depth-first traversal
of the variable’s node. Further, since the integer representation of the variables
are related to their successors/predecessors, merge operations between them in
the propagation will frequently use nearby or adjacent blocks in the array of
points-to sets. The result of which is that as CSB representation of the suc-
cessor set will be both very local (by virtue of the numbering) and small (by
virtue of the co-location of adjacent blocks, which implies that the adjacency
data has low entropy and compresses easily). Thus, by pre-computing the map-
ping between variables/heap objects to integers in a depth-first traversal, we
significantly improve the cache utilisation of the Gigascale analysis.

3.3 Effectiveness

We implement the Gigascale points-to analysis as a Java program, for verifying
its effectiveness on very large problem cases. The analysis is made publicly
available1 for download and testing purposes.

1via Bitbucket https://bitbucket.org/jensdietrich/gigascale-pointsto-oopsla2015
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Table 3.1: Breakdown of the Benchmarks used in our evaluation, showing the
sizes of the vertex and edge sets, as well as statistics on the result sets. This is
a reproduction of a dataset published by Dietrich et al. [27]

Bench |V | |E| |points-to| Avg. Max
sunflow 15,464 15,957 16,354 1.06 140
lusearch 15,774 14,994 9,242 0.59 35
luindex 18,532 17,375 9,677 0.52 35
avrora 24,690 25,196 21,532 0.87 342
eclipse 41,383 40,200 21,830 0.53 88
h2 44,717 56,683 92,038 2.06 457
pmd 54,444 59,329 60,518 1.11 221
xalan 58,476 62,758 52,382 0.90 221
batik 60,175 63,089 45,968 0.76 681
fop 86,183 83,016 76,615 0.89 285
tomcat 111,327 110,884 82,424 0.74 325
jython 191,895 260,034 561,720 2.93 1,878
tradebeans 439,693 466,969 696,316 1.58 581
tradesoap 440,680 468,263 698,567 1.59 581
openjdk 1,621,634 1,964,146 1,570,820,597 968.67 82,665

3.3.1 Experimental Performance

We verify the practical advantages of Gigascale-style analysis on real-world
benchmarks drawn from the DaCapo suite [13], and the OpenJDK. The Da-
Capo programs are a collection of real-world Java codebases which represent
the typical behaviour of Java, and are useful for cross-comparing results and
insights gained in other research fields. Specifically, we present results related
to the “bach” version of DaCapo (aka the 2009 version), though previous ver-
sions of Gigascale were tested on the 2006 version. The OpenJDK is a publicly
available open-source implementation of Java’s runtime support library. Unfor-
tunately, due to the size of the problem, specialised (and proprietary) tools were
used to convert the codebase into a CFL-R problem, amenable for solving by
Gigascale.

A breakdown of the experimental benchmarks, together with some of the
statistics about their solution set, is presented in Table 3.1. Entries in this table
are ordered by the size of the vertex set (i.e. n in their order-theoretic notation).
The datasets have some interesting properties, specifically related to differences
between the sizes of input and output edges. For all benchmarks, the number
of edges (i.e. Java statements) roughly correlates with the number of variables.
The largest difference is found in the jython benchmark, with 36% more edges.
This verifies our assumption that points-to graphs are typically sparse (and
hence that sparse bitsets will be useful for representing them). The size of
the points-to sets correlates less with the sizes of the vertex or edge sets. The
eclipse and luindex cases have significantly fewer points-to results than input
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Table 3.2: Oracle generation, precision and certification statistics. The number
of same-field (SF) and bi-Dyck (BD) oracles generated, as compared to the true
size of the bridge set. The precision of the top-down refinement approach both
initially (Init) and when no more bridge edges can be invalidated (Fin). The
number of iterations needed in top down (TD) and bottom up (BU) refinement
strategies. The OpenJDK problem is too large to calculate its precision. This
is a reproduction of a dataset published by Dietrich et al. [27].

Benchmark SF BD |bridge| Init Fin TD BU
sunflow 3,934 886 747 0.9857 1.0000 2 4
lusearch 5,037 793 770 0.9909 1.0000 3 4
luindex 8,722 1,228 1,212 0.9978 0.9998 2 5
avrora 4,630 756 722 0.9949 0.9953 2 6
eclipse 6,444 1,430 1,096 0.9460 0.9606 4 5
h2 12,174 3,492 3,281 0.8844 1.0000 3 5
pmd 65,849 1,908 1,752 0.9736 1.0000 3 6
xalan 31,041 2,233 2,104 0.9755 0.9998 2 6
batik 19,405 2,397 1,948 0.9857 1.0000 3 4
fop 12,551 1,962 1,744 0.9908 1.0000 4 8
tomcat 30,863 8,052 7,700 0.9830 1.0000 4 5
jython 55,776 8,646 8,082 0.8155 0.9997 3 7
tradebeans 149,642 30,863 29,155 0.9661 0.9988 4 6
tradesoap 149,724 30,894 29,173 0.9662 0.9988 4 6
openjdk 538,274 84,415 64,716 * * 5 6

edges, while h2 has substantially more. Importantly, the OpenJDK is itself
an outlier here, having several orders of magnitude more points-to edges than
input edges. Table 3.1 also shows the average and maximal points-to set sizes
per variable. Interestingly, the averages and maximums show little relationship

with some intuitive metric like |points-to|
|V | ; batik has an unusually low average

(for its size), despite that its most connected variable has an abnormally large
points-to set. Note that not every CFL-R vertex is a variable, as some represent
heap objects.

Turning to the issues surrounding the generation and validation of bridge
oracles, we have tabulated the important statistics in Table 3.2. The number of
true bridges (i.e. indirect assignments via field loads/stores) is recorded in the
column |bridge|, which we can contrast with the same-field and bi-Dyck oracles.
Sridharan and Bod́ık’s oracle [68] is fast to compute, but over-approximates
the true number of bridges by a factor of 5× to 10× (calling pmd an outlier,
with 37×). The alternative oracle, computed with the technique by Zhang et
al. [89], is much more accurate, where the worst approximation is by about
1.3× in eclipse. This table also compares the Gigascale bottom-up evaluation
strategy with the top-down version discussed in Section 3.2.2.1. Init and Fin
measure the precision of the results of using the top-down evaluation, which
can be imprecise due to self-supporting bridges. Precision is calculated here as
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the size of the points-to result (according to the formulation from Section 1.1.2)
as a fraction of the result assuming all bi-Dyck oracles are true. Unfortunately,
the OpenJDK benchmark is so large that a “correct” points-to set could not
be calculated, hence we omit precision for this case. We see that the top-down
strategy invalidates most spurious oracles. Half of the DaCapo benchmarks
completed with equal precision to the “true” result, and of the half that did
not, the worst case was only wrong 0.5% of the time. Further, the number of
iterations that Gigascale needed to invalidate the incorrect oracles (in a top-
down approach) is typically much smaller than the number needed to validate
the correct ones (in a bottom up approach). The number of iterations signifi-
cantly affects the runtime of Gigascale, i.e. it makes up 40%-70% of execution
time. If not for the unpredictable imprecision, which we have only observed in
the hsqldb benchmark from DaCapo 2006, top-down refinement would be the
superior approach.

We verify our claims about the runtime performance of the Gigascale (GS)
approach by comparing it to alternative implementations. The baseline com-
parison is an implementation of the Melski-Reps worklist algorithm (WL) as
presented in Algorithm 2. Our implementation of WL is tailored specifically
to the points-to grammar used by this analysis, so it avoids some of the over-
heads associated with dynamically selecting and evaluating the rules (i.e. lines 8
and 10). The Difference Propagation algorithm (DP) [69], is used to make a
comparison against effective techniques in the research literature. DP uses a
similar working-set based approach to WL, but instead propagates whole sets
in an intelligent way, which improves the cache locality. The high performance
LogicBlox (LB) system [5], which has seen recent use as a program analysis en-
gine, is the nearest comparison available for high performance analyses. The LB
solver requires a custom logic script to emulate the behaviour of the Gigascale
analysis, which we have optimised manually. Though the DOOP framework has
a field-sensitive analysis [16], which is similar to Gigascale’s, their logic is more
complicated and incompatible, so we could not fairly use it for comparison.

All implementations were run on an Intel R© i7-4790 processor, with 32GB
RAM, under Lubuntu 14.10. The DaCapo benchmarks come from the “bach”
version (i.e. DaCapo 2009), and the 1.7.0 b147 version of the OpenJDK was
used for the very large benchmark. We use a combination of the Soot tool [77],
version 2.5.0, and the DOOP framework [16], version r-160113, to convert the
Java programs into .csv files, which Gigascale uses. The very large OpenJDK
library was converted to its .csv dataset using proprietary tools, which are not
freely available. A timeout of two hours was applied to each experimental run.

The runtime of the various implementations on each benchmark is presented
in Figure 3.3. The WL and DP implementations exhibit a roughly quadratic
growth rate according to problem size. Whilst both approaches are expected to
run in roughly cubic time, this only occurs for pathological inputs, whereas these
benchmarks are drawn from realistic problems. Neither of these approaches were
designed for the extremely large OpenJDK dataset, so they unsurprisingly timed
out for this case. The LB implementation performs well for the DaCapo bench-
mark, but is unsuited for handling very large problems. Firstly, LB has some
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Figure 3.3: Runtimes for the competing implementations of the points-to anal-
ysis. All analyses compute the same points-to set (using different strategies),
their correctness is confirmed offline by checking their outputs against each
other. This is a reproduction of a dataset published by Dietrich et al. [27].

large constant overheads (it is designed more like an SQL server, using inter-
process communication), which cause it to under perform on smaller bench-
marks, but these overheads are amortised quickly as the problem sizes grow.
LB also performs well on the larger DaCapo problems, as its internal data-
structures are very efficient. The larger DaCapo problems are still much sparser
than Gigascale is designed for, hence LB actually outperforms it. Importantly,
only Gigascale copes well with the very large OpenJDK dataset, outperform-
ing LB by almost two orders of magnitude. We attribute much of Gigascale’s
superior performance to the use of cache-aware data structures and an intelli-
gent evaluation mechanism. LogicBlox uses a bottom-up approach common in
Datalog, meaning that, like WL and DP, its runtime is influenced by the size of
the output. Gigascale’s evaluation depends mostly on the number of iterations
needed to validate bridges, as well as the size of the transitive closure, so it
avoids processing the extremely large output dataset.

Figure 3.4 shows the memory requirements for the competing points-to anal-
ysis implementations. We see similar growth in memory amongst the WL, DP
and GS implementations on the DaCapo benchmarks. The former two imple-
mentations do not have any specific memory advantages, and simply represent
points-to sets and input relations in flat memory structures, whereas Gigascale’s
compression features do not exhibit much advantage on these less dense bench-
marks. LB has some constant overheads (similar to the overheads associated
with runtimes), which mean it performs poorly on smaller benchmarks but then
quite well on the larger DaCapo problems. The advantages of Gigascale are seen
on the OpenJDK problem, where the compression techniques significantly re-

47



su
n

lu
s

lu
i

av
r

ec
l

h2
pm

d
xa

l
ba

t
fo

p
to

m jy
t

tr
b tr

s
jd

k

102

103

104

M
em

o
ry

(M
B

)
WL DP LB GS

Figure 3.4: Memory usage for the competing implementations of the points-to
analysis. This is a reproduction of a dataset published by Dietrich et al. [27].

duce its memory requirements as compared with LB. To our knowledge, LB does
not use in-memory compression techniques, but only compresses when writing
to disk.

3.3.2 Parametric Analysis

In order to account for the superior performance of Gigascale, we formulate a
parametric complexity analysis. In essence, the complexity analysis presented
in Section 3.2.1 is very coarse, and does not illustrate how realistic practical
assumptions that we make about the input graphs can significantly influence
performance. We compare how these parameters contribute to the runtime of
the worklist algorithm as a means of pointing out the difference.

Let the input problem be characterised as having v input variables and h
heap objects. There are still e edges in the graph (i.e. statements), but let the
number of valid bridge edges (i.e. matching load-store pairs with aliasing base
variables) be b. Assume also that the depth of the bridges, is no more than
d, i.e. that a valid bridge will transitively depend on at most d other bridges.
Finally, assume that each variable points to p heap objects.

Looking at Algorithm 2, we see that from an initial size of h, the worklist will
always grow to contain max(vp, e) items, and each one must be dequeued to find
edges which match the rule. Extending a pt-edge by one vertex involves looking
up max(v, e) potential endpoints of an assignment, or b endpoints of a bridge. In
total the Melski-Reps algorithm, as characterised by these parameters, should
run in O (max(vp, e)(max(v, e) + b)) time.

Looking at Gigascale, we gain a new understanding of the major compo-
nents of its runtime. The bi-Dyck reachability component is known to run
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in O (n+ e log e) time [89], but this is needed only to determine a bridge ap-
proximation in advance. Subsequently, Gigascale iterates d times, where each
iteration requires a modified TC procedure and a validation step. The modified
TC first requires topological ordering, which is done in at most e + b steps,
and then the points-to set propagation. In a näıve implementation, propaga-
tion would take vp steps to propagate a p-sized set to v vertices, but we lazily
propagate to the oracle’s base variables as-needed, hence merely bp steps are
used. The oracle-validation step uses bp operations, checking the points to set
of each bridge. Thus the total time complexity is actually:

O (e log e+ d(bp+ bp+ b+ e)) = O (e log e+ d(bp+ e))

Note that the parametric complexities are even coarser than the stated time
complexities, given pessimistic assumptions about how they relate to n. Firstly,
v and p are both O (n), the former by definition and the latter by the argument
that the number of distinct heap objects that a variable points-to can not exceed
the number of vertices in the graph problem. On the other hand e, d and b are
all O

(
n2
)
, e and b may contain every pair of vertices, and the bridge pairs

can be adversely constructed such that each one depends on exactly one other
bridge, hence the height d would be equal to b. Then the parametric complexity
of the Melski-Reps algorithm is equivalent to O

(
n4
)
, which we know to be worse

than the actual worst-case bounds. Gigascale’s is still O
(
n5
)
, though this may

be a coincidence. The intuitive explanation for this is that truly pessimistic
assumptions about all the parameters can not coincide, for example p ≤ h, but
n = v + h, so vp < n2.

Importantly, though, the parametric analysis gives us insight into why Giga-
scale’s evaluation style is effective on extremely large problems. One major
component of the Melski-Reps runtime is vp, the size of the points-to set. Ev-
ery points-to edge must be added to the worklist, and thus be processed at
some point by the algorithm. On the other hand, Gigascale has no vp term,
and instead verifies bridges themselves in bp steps. In practice, the number of
bridges b is significantly smaller than the number of vertices: in the OpenJDK,
85 thousand as compared to 1.4 million. The p factor here comes from the size
of the points-to sets, either when verifying bridges (i.e. intersecting two points-
to sets) or propagating the sets in the transitive closure (i.e. unioning them).
But Gigascale uses an intelligent compression technique, and numbers heap ob-
jects depth-first, which makes them more likely to be co-located, so the literal
blocks in the CSB are dense, rendering p much smaller in practice. Combining
these factors, the bp term, whilst it could be on O

(
n3
)
, in practice is closer

to O (n), and it exhibits linear behaviour. Further, Gigascale performs exactly
d iterations (i.e. the number needed to verify all the bridges), which we have
found to be a small constant < 10 in all benchmarks. Interestingly, the depth
is not strongly correlated with the problem size, the greatest depth is for fop’s
8, a middle-sized problem, whilst the very large OpenJDK is equal with the
very small avrora problem, having 6. These observations about the relatively
small sizes of b p and d marry with the fact that e is actually close to |V | (i.e.
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n, see Table 3.1), meaning that the bi-Dyck oracle is only slightly worse than
linear time. We therefore expect that, for extremely large practical problems,
Gigascale scales better than a quadratic algorithm.

3.3.3 Generalising

The Gigascale case study is intended to demonstrate and explore the kinds of
techniques/approaches which are used in practice to develop performant anal-
yses. Whilst the Gigascale analysis is very efficient, compared with state of
the art approaches, significant manual effort was needed simply to develop a
single analysis, predominantly for a single use case. Ideally, we desire general
techniques, which we can apply automatically to future problems. We exam-
ine the important performance considerations here and develop techniques for
generalising them.

The most fundamental change to the Gigascale analysis was the observation
that bridge edges could be over-approximated in an initial phase, and subse-
quently verified. This observation came from examining the language rule for
indirect assignment:

points-to→ loadf points-to points-to storef points-to

This rule is amenable to being over-approximated by the bi-Dyck oracle as it
is mostly a Dyck rule, where loadf matches with storef and points-to matches
points-to. It is difficult to contrive a general mechanical procedure for identifying
Dyck-subrules. Such a procedure would have to reason about (1) what the
matching pairs of relations are, either by verifying that they always appear in
mirrored pairs in the rules, or by using heuristics, and (2) how to formulate
the bi-Dyck problem based on the matching pairs and the other rules in the
problem.

On the other hand, instead of looking for bi-Dyck oracles, it may be more
feasible to find same-field oracles automatically. A same-field oracle exists when-
ever a pair of fields appears in a mirror around some (possibly empty) middle
string. In the case of the indirect assignment rule, the mirrored pairs are loadf
and storef , with points-to points-to as the middle string. Depending on the
size of the input grammar, it may be feasible to simply enumerate all the po-
tential pairings and middle-strings in a brute-force manner, though deciding
which combination to develop an oracle for may be impractical, especially if it
is difficult to judge how effective the oracle will be.

Another important factor in the points-to analysis is that, on the assumption
that bridges can be approximated, the rest of the language becomes regular (as
mentioned in Section 3.2.1). It is of general research interest to automatically
discover the regular subset of a context-free language. Coarse approximations of
the context-free subset of the language can be made by applying the pumping
lemma [38], observing that recursive derivations may lead to strings with mutu-
ally dependant substrings (and hence, necessitate memory for their recognition).
Of the three rules needed for the simple points-to analysis from Section 1.1.2,
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only the indirect assignment rule is recursive, hence only one rule actually de-
mands the full power of CFL-R, while the other rules can be solved with a
simpler formalism like regular-language reachability (or even TC, as was the
case for Gigascale). In general, though, we can not guarantee that a language
will be presented in a way that is amenable for recognising context-free sub-
problems, though this may be an interesting avenue of future work. For these
reasons we do not expect that large-scale changes to the evaluation strategy
can be feasibly generalised, though it may be possible to develop heuristics for
certain cases.

Gigascale makes use of CSBs to significantly improve both its memory effi-
ciency and its cache utilisation. A CSB is a naturally portable data-structure,
and we might devise means of applying it to arbitrary CFL-R problems. One
option is to represent the CFL-R graph using a sparse representation based on
CSBs. Whilst this is an appealing memory saving feature, computationally it
may be ineffective. Gigascale could improve the performance of points-to using
CSBs because it performed operations on them in aggregate (like merging and
intersecting). Applying the CSB structures to the Melski-Reps worklist algo-
rithm (Algorithm 2), for example, allows for some aggregate operations, such
as extending the paths from lines 8 and 10, but also requires some “member-
ship query” style operations (line 7). To capitalise on the advantages of CSB
structures, an evaluation approach which favours aggregate operations (such as
Chaudhuri’s [17]) would need to be adopted. In general though, using CSBs
is a secondary consideration; the actual advantage that Gigascale has over the
worklist approach is that it uses data structures which are cache-aware. Any
relatively concise data structure, such as representations that use contiguous
memory blocks, or structures that are compressed, would be sufficient to main-
tain good cache performance.

Gigascale makes particularly efficient use of its CSBs by deriving its variable
numbering scheme from a depth-first search. The worklist algorithm does not
specify the need for a numbering, though for performance reasons numbering
techniques may be used [14]. Numbering vertices according to the depth-first
search significantly increased the likelihood that most descendant vertices (i.e.
the heap objects that the variables might point to, which are always leaves)
would be grouped into the same CSB blocks. For Gigascale, this was a good
idea based on the specific language chosen, and the fact that only the points-
to relation was needed (i.e. all leaves reachable from a vertex), rather than
a more complex successor relation. In General, the CFL-R problem may not
present such an ideal case. For example, even in the simple points-to language,
the bridge relation (bridge→ loadf points-to points-to storef ) would be unlikely
to receive any benefit, as pairs in this relation occur between paths which in-
volve backtracking, and hence their endpoints will have potentially very distant
numberings.

On the other hand, intelligent vertex numbering schemes can be considered
in many cases. Looking at the logic of the simple points-to analysis, we can
devise at least a partition between vertices and heap objects mechanically. Using
disjoint sets, and starting with a unique class representing the sources and sinks
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of each relation (e.g. loadsrc), we traverse the grammar and unify two classes if
they are adjacent in a rule (e.g. points-to→ assign points-to causes points-tosrc
to unify with assignsnk). Also, we unify a relation’s source in the rule’s head
with the first label’s source and the head’s sink with the last label’s sink (e.g.
points-to → assign causes points-tosnk to unify with assignsnk). In the case of
the reverse relation points-to, simply flip the source and sink classes. Applying
this procedure to the whole grammar we can mechanically derive two distinct
classes, one for the sinks of assign and points-to (i.e. the heap objects) and a
second for the rest of the endpoints (i.e. variables). Endpoints from different
classes are never joined to form a path, meaning that if the variables were
grouped by endpoint classes, then only a contiguous subset of those vertices
would need to be searched when extending paths. Thus, this simple vertex
numbering technique may improve the cache utilisation of adjacency lookups
and path construction for CFL-R problems.
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Chapter 4

Algorithmic Improvements

This chapter demonstrates a practical and scalable approach to solving CFL-R
problems. Much of this work was published to CC, 2015, in the paper “Towards
a Scalable Framework for Context-Free Language Reachability” [35].

4.1 Opportunities

The CFL-R formalism is fundamentally important in the study and practice
of program analysis. Some of the most important problems facing computer
scientists today are captured by this class of problem, including formal security
verification [28, 10], constraint solving [47], shape analysis [57], data- [59] and
control-flow [79], set-constraints [42, 47], and alias analysis [89, 46, 91, 70, 85].
Although there is demand for effective CFL-R algorithms/solvers, which are
able to solve the above problems, unfortunately the state of the art techniques
fall short of this goal. The CFL-R problem is known to be difficult [56, 34],
implying that it is difficult to devise scalable approaches for CFL-R.

Since general techniques can not handle large real-world problem instances,
a one-off approach is often adopted on a per problem basis. In Chapter 3 we
examined a simple field-insensitive points-to analysis. This kind of close exami-
nation demonstrates a typical problem facing CFL-R practitioners, namely that
a lack of sophisticated and effective tools for solving CFL-R mean that significant
manual effort is needed to develop scalable solvers. Further, the techniques that
are effective for one problem may not be generalisable to all CFL-R instances;
Section 3.3.3 discusses the specific techniques needed for the Gigascale analysis,
and notes how these could be generalised. Indeed many CFL-R analyses can
only be made scalable by adopting approaches which do not generalise [85, 90],
meaning that much of the progress made by CFL-R researchers is not applicable
to the formalism itself. To facilitate the study and use of CFL-R as a solving
vehicle, we develop approaches which are both scalable and general.

The first area of weakness regarding the scalability of CFL-R is its algo-
rithms. There are two well-known general approaches to solving arbitrary CFL-
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R problems. Melski and Reps developed an algorithm based on dynamic pro-
gramming [47], which is widely used in practice, but has cubic time-complexity.
Further, the algorithm performs many wasteful computations, specifically re-
lated to rediscovering reachable paths that it already knows, and frequently
searching through its grammar to find applicable rules for a given worklist edge.

An improved algorithm, due to Chaudhuri [17], performs only O
(

n3

logn

)
work.

Chaudhuri’s faster approach adapts the Four Russians’ Trick, increasing mem-
ory requirements significantly for a less noticeable speedup. Both algorithms
are summarised in Section 2.2. Learning from Gigascale, we eschew these algo-
rithms, which have superior theoretical time or space complexities, in favour of
practical approaches, which capitalise on domain knowledge which the problem
may exhibit.

A more effective approach exists for Datalog problems, known as the semi-
näıve strategy [1]. The similarities between Datalog and CFL-R are well-
known [86], meaning the application of Datalog evaluation to CFL-R is straight-
forward. Näıvely, it is possible to evaluate a Datalog problem simply by examin-
ing every combination of rules and facts until no new facts can be derived. This
evaluation strategy is simple, but there are two observations which critically
reduce the number of combinations that need to be examined:

• At any given time in the evaluation, potentially only a subset of the rules
should be examined. For a rule like A(x,y) :- B(y,z), C(x,z)., it is
clear that the A relation depends on B and C, thus it is only necessary to
evaluate this rule when B and C are finished being evaluated. Note that
rules in cycles need to be iteratively re-evaluated. We call the sequence
for evaluating rules the evaluation ordering.

• When a rule is evaluated, only recently discovered information can possibly
yield new results. Given A(x,y) :- B(y,z), C(x,z)., we only need to
search for new A pairs if either a B or C pair was added since the last time
we expanded this rule. We call the propagation of recent information to
new data delta expansion, which is similar to the difference propagation
strategy [69].

The second area of weakness in CFL-R’s scalability lies in how data is used
in the algorithms. The worklist algorithm (Algorithm 2) processes individual
items from a worklist, and attempts to extend a path directly adjacent to this
item. Using the data in this way does not capitalise on either spatial or tempo-
ral locality; we have no guarantees that the edges we need to search through are
contiguous or local in memory, and we have no idea when a given worklist item
or edge will be needed in the future, since the worklist is populated essentially at
random during the search. For very high-performance applications, such as the
Gigascale analysis [27], improving the cache utilisation yields significantly bet-
ter performance than devising ways of minimising algorithmic complexity. Part
of the data locality issues can be solved by adopting an evaluation which per-
forms operations in aggregate (as opposed to individually), but better structures
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are needed if general CFL-R evaluation is to scale as well as problem-specific
alternatives.

To represent and operate on data in a cache-efficient way, we adapt the
quadtree data structure [30] to CFL-R. Quadtrees are common in computer
geometry and graphical applications as a means of representing data spatially.
Quadtrees represent geometric data in a multi-dimensional fashion (quad- re-
ferring to the four quadrants of the 2D plane), where each “level” of the tree
halves the range of values in the dimension, until a leaf node is reached which
represents that an item exists spatially in that region. A quadtree is similar to
the kd-tree data structure, though the former is flatter, by virtue of splitting
on all dimensions at once, whilst the latter splits on a different dimension at
every level. In the CFL-R context, we represent the input graph’s adjacency
matrix as a Cartesian plane, noting that quadtrees present an elegant means
of evaluating matrix multiplication, which is necessary for finding paths in the
graph.

We implement semi-näıve evaluation for CFL-R as an algorithmic template,
which is agnostic to an abstract datatype (ADT) encoding for binary relations.
Abstracting here facilitates several high-performance data-structures, includ-
ing efficient and cache-aware quadtrees, as well as B-trees, which are used
in commercial and research database implementations. Clients of the CFL-R
analysis can even tailor their choice of data-structure to capitalise on problem-
specific knowledge. Compared with Algorithm 2, the new evaluation template
and data-structures exhibit better memory utilisation, improve the practical
runtime performance, especially for sparse problems, and obviate the need for
an expensive grammar-normalisation operation, which is required as a pre-step
to the worklist approach.

We outline our contributions as follows:

• We develop a new algorithm template for CFL-R by specialising the semi-
näıve Datalog evaluation strategy. The algorithm performs fewer redun-
dant computations, avoids normalising the input grammar, and allows
different relational ADTs to be implemented.

• We survey several data-structures to facilitate the semi-näıve template,
specifically quadtrees. Quadtrees have efficient memory utilisation, espe-
cially for sparse problems, further improving its applicability.

• We analyse the algorithm’s performance experimentally on Java points-
to analysis and taint-analysis benchmarks, showing up to 11x speedup
and 91% memory reduction. The use of differing benchmarks verifies the
generality of our CFL-R template.
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4.2 Algorithms

4.2.1 Preamble

Since we are developing a new evaluation strategy for CFL-R, we endeavour
to show that this is indeed sound and precise with respect to the definition of
the CFL-R problem (Definition 8). The important formal concepts concerning
CFL-R were presented in Section 1.1.3, though a few additional ones are needed
here. We first show that the CFL-R solution is equivalent to the fixpoint of a
certain function, which incrementally summarises CFL-R paths from an initial
graph. In traditional presentations of the CFL-R algorithm (and indeed of
context-free languages), an assumption is made that the grammar is in Chomsky
normal-form [20]. Whilst this form is useful for reasoning (since the number of
derivation steps for recognising strings of length n is always O (n), in practice
the algorithms are designed to handle arbitrary grammars, so we prove the
stronger notion of their correctness for any context-free grammar. In Chomsky
normal-form the number of steps needed to derive a string from the start symbol
is based on the length of the string, but for our proofs we need a notion of the
number of steps in that derivation.

Definition 9. The derivation length between two strings is the number of
derivations used to transform the initial string into the final string:

γ ∈ Σ∗ implies: γ
0

=⇒ γ

B → β ∈ P ∧ αβγ i
=⇒ δ implies: αBγ

i+1
==⇒ δ

It is important to note that if a string can be derived, it can be derived in a
finite number of steps.

Lemma 2. If α
∗

=⇒ β then there must be an i such that α
i

=⇒ β.

Proof. There are two cases from Definition 4: If α = β, then we have i = 0
immediately. Otherwise, ∃γ : α⇒ γ∧γ ∗=⇒ β. From Definition 3, α⇒ γ implies
that: α = αhAαt, γ = αhγmαt, and A → γm ∈ P. So from the inductive

hypothesis, αhγmαt
j

=⇒ β gives us i = j + 1.

Corollary 1. There is always a shortest derivation. If α
∗

=⇒ β then ∃i such that

α
i

=⇒ β ∧ ∀α j
=⇒ β : i ≤ j.

We intend to induct on the derivation steps, but this is impossible when a
derivation is cyclic. To deal with cycles, we point out an important property of
the shortest derivation: that the shortest chain of derivations must be acyclic.

Lemma 3. If α
i

=⇒ β is the shortest derivation, then 6 ∃j > 0 having the property

that α
k

=⇒ γ
j

=⇒ γ
i−j−k
====⇒ β, k ≥ 0.

Proof. i is the smallest, but α
k

=⇒ γ
i−j−k
====⇒ β has derivation length i − j < i, a

contradiction.
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The solution to the CFL-R problem is itself defined as all pairs that can be
reached by a (possibly empty) path spelling a word in L. In a more general sense,
we may need all paths that can be reached by any non-terminal in L’s grammar.
Fortunately, a Language can be broken up into arbitrary sub-languages.

Definition 10. Given a language L with grammar (T ,N ,P, S), i.e. ω ∈ L

implies that S
∗

=⇒ ω, there is a sub-language LN ∀N ∈ N , defined by the
grammar (T ,N ,P, N).

4.2.2 Fixpoint Solution

The Definition of the CFL-R solution (Definition 8) gives us exactly the “all-
pairs” solution of the CFL-R problem, which we treat as the most general
solution. However, since the definition of the CFL-R solution depends on infinite
sets (like Π and L), it is unclear if (or how) it can be computed; it is simply
stated that the CFL-R problem has a finite, computable solution [47].

We now desire to show formally that the solution is both finite and de-
cidable. We require these properties in order to show that a given algorithm
(such as Melski and Reps’, or our own) indeed computes the correct solution.
Decidability follows from demonstrating that CFL-R solutions have a fixpoint
calculation, where the solution is the least fixpoint. To this end we show a
bijection between the solution space and a configuration lattice. The intuition
is that non-terminal edges in a configuration can summarise the existence of
paths in the language of that non-terminal. Let L = T ∪ N refer agnostically
to terminals or nonterminals.

Definition 11. A configuration c ∈ 2L×V×V , is a member of the complete
lattice of configurations, ordered by ⊆, with ⊥ = ∅ and > = L × V × V . We
reuse the shorthand notation A(u, v) ∈ c⇒ u, v ∈ V,A ∈ L.

Additionally, new non-terminal edges can be derived from an input configura-
tion, when a path labelled with the right-hand-side of its production exists. The
configuration-expansion function is used to extend a partial solution in this way:

Definition 12. Given a CFL-R problem for the language L with grammar
(T ,N ,P, S) and the graph G = (V,E), there exists a configuration expan-
sion function F : 2L×V×V → 2L×V×V defined as:

F(c) =c ∪ {A(u, u) | u ∈ V,A→ ε ∈ P}∪
{A(v0, vk) | A→ B1 . . . Bk ∈ P, B1(v0, v1) ∈ c, . . . , Bk(vk−1, vk) ∈ c}

According to the Tarski-Knaster theorem [74], repeated applications of F
will lead to a fixpoint solution if and only if the fixpoint function is monotonically
increasing over a complete, finite domain. The monotonicity of F is shown here:

Lemma 4. c ⊆ c′ ⇒ F(c) ⊆ F(c′).

Proof. Assume e = A(u, v) ∈ F(c), structurally either e ∈ {A(u, u) | u ∈ V,A→
ε ∈ P} ⊆ F(c′), or A → B1 . . . Bk ∈ P, and ∀0 < i ≤ k : Bi(vi−1, vi) ∈ c ⊆ c′,
then A(v0, vk) = A(u, v) ∈ F(c′).
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Thus the least-fixpoint solution can be computed by Kleene’s iteration on the
monotonic function. We term the fixpoint lfpF = F ◦ . . . ◦ F(E). Then equiv-
alence between the least-fixpoint lfpF and the CFL-R solution is sufficient to
prove that CFL-R is decidable.

Lemma 5. (u, v) ∈ cfl-r(L,G) if and only if S(u, v) ∈ lfpF

Proof. In the “if” direction we induct on the applications of F .

• The base case has S(u, v) ∈ F(E). Possibly S → ε ∈ P and u = v, hence
(u, v) ∈ {(v, v) | ε ∈ L, v ∈ V }. Otherwise S → T1, . . . , Tk ∈ P, ∀i ∈
[1, k] : Ti(wi−1, wi) ∈ E and u = w0, v = wk, hence 〈T1(w0, w1), . . . , Tk(wk−1, wk)〉 ∈
Π and S

∗
=⇒ T1 . . . Tk.

• Inductively, S(u, v) ∈ F i(E) \ F i−1(E), i > 1. Thus, A → B1 . . . Bk ∈ P
with ∀j ∈ [1, k] : Bj(wj−1, wj) ∈ F i−1(E) (the ε case would have occurred
in the base case it can not occur now). Using Definition 10 and the
inductive hypothesis, we know (wj−1, wj) ∈ cfl-r(LBj , G), so let pj be
the path having ω(pj) ∈ LBj . Then with p = p1 • . . . • pk, we have p ∈ Π

and S ⇒ B1 . . . Bk
∗

=⇒ ω(p), hence (w0, wk) = (u, v) ∈ cfl-r(L,G).

In the “only if” direction, (u, v) ∈ cfl-r(L,G) implies that there is some p ∈ Π

having S
d

=⇒ ω(p), with d the smallest number of derivations. Induct on d.

• d = 0 is impossible, since it implies ω(p) = S even though S(u, v) 6∈ E.

• When d = 1 there are two options, possibly S ⇒ ε, but then u = v, p = 〈〉
and S → ε ∈ P, hence S(v, v) ∈ F(E). Otherwise S ⇒ T1 . . . Tk and
p = 〈T1(w0, w1), . . . , Tk(wk−1, wk)〉, hence ∀j ∈ [1, k] : Tj(wj−1, wj) ∈ E
which causes S(w0, wk) = S(u, v) ∈ F(E).

• Inductively, given d > 1, there must be a S → B1 . . . Bk ∈ P, which grants

that S ⇒ B1 . . . Bk
d−1
==⇒ ω(p). Partition p into p1, . . . , pk such that ∀j ∈

[1, k] : Bj
∗

=⇒ pj . Using Definition 10 we have that Bj(wj−1, wj) ∈ lfpF ,
which completes that S(w0, wk) = S(u, v) ∈ lfpF

This establishes the correctness of solutions computed via some configura-
tion expansion fixpoint. The equivalence between lfpF and the Melski-Reps
algorithm [47] was discussed informally in their work, and since our contribu-
tion is a different algorithm, we will present only the equivalence of the fixpoint
calculation to our novel formulation.

4.2.3 CFL-R Semi-näıve

We design our algorithm by using Datalog semi-näıve evaluation [1] as a scaf-
fold. The principal idea is to avoid redundant computations by tracking recently
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Algorithm 4 Näıve Relational CFL-R.

1: procedure näıve(L, G)
2: for all A ∈ L do
3: G(A)← {(u, v) | A(u, v) ∈ E}
4: if A→ ε ∈ P then
5: G(A)← {(u, u) | u ∈ V }
6: while G is growing do
7: for all A→ B1 . . . Bk ∈ P do
8: G(A)← G(A) ∪ G(B1) ◦ . . . ◦ G(Bk)

discovered knowledge, called delta-sets ∆, and propagating these deltas to dis-
cover new Datalog facts. The algorithm we present is a template which abstracts
the implementation of some relational abstract datatype (ADT). The contract
of the ADT is a binary relation, encoding the operations of a Boolean lattice
(union, intersection, complement) as well as difference and composition, de-
fined as:

(a, b) ∈ R, (b, c) ∈ S⇒ (a, c) ∈ R ◦ S

The correctness of semi-näıve is shown by first proving the correctness of an in-
termediate approach, a näıve fixpoint computation shown in Algorithm 4, then
extending that proof to the completed semi-näıve formulation shown in Algo-
rithm 5. Note that näıve evaluation is only a proof vehicle, we do not experiment
with such an algorithm, on the intuition that its unfavourable performance will
be as true of CFL-R as it was of Datalog [1].

Algorithm 4 closely emulates the configuration expansion function from Def-
inition 12. The algorithm initially discovers the input and epsilon relations,
before the while loop on Line 6. Subsequently, new relations are discovered
by iteratively composing known ones, according to the production chosen by
Line 7.

We demonstrate its execution on the example in Figure 1.2. Current knowl-
edge G is seeded with input relations, so that e.g.:

G(assign) = {(this, a), (this, b), (a2, other), (b2, other), (other, th5), (other, th6)}

Note that non-terminals can only have ε-relations at this stage, which the points-
to analysis’ grammar does not produce, hence G(points-to) = ∅. After Line 6 is
reached, we iterate over productions. Let points-to→ alloc be chosen first, then
Line 8 becomes:

G(points-to)← G(points-to) ∪ G(alloc)

i.e. variables that allocate their heap objects must point-to them Next, let
points-to → assign points-to be chosen, such that (this,H1) ∈ G(points-to)
since (this, a) ∈ G(assign) and (a,H1) ∈ G(points-to). The iterations continue
until no new points-to paths can be discovered.
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Algorithm 5 Semi-näıve Relational CFL-R.

1: procedure semi näıve(L, G)
2: for all A ∈ L do
3: G(A)← {(u, v) | A(u, v) ∈ E}
4: if A→ ε ∈ P then
5: G(A)← {(u, u) | u ∈ V }
6: ∆A ← G(A)

7: for all [C] ∈ rtdg(P) do
8: while ∃D ∈ [C],∆D 6= ∅ do
9: ∆cur ← ∆D

10: ∆D ← ∅
11: for all A→ B1 . . . D . . . Bk ∈ P do
12: ∆A ← ∆A ∪ (G(B1) ◦ . . . ◦∆cur ◦ . . . ◦ G(Bk) \ G(A))
13: G(A)← G(A) ∪∆A

Lemma 6 (Näıve correctness). A(u, v) ∈ lfpF ⇔ (u, v) ∈ G(A).

Proof. Inducting on the number of iterations of the While-loop (Line 6), noted
Gi, against the number of applications of F .

In the base case (u, v) ∈ G0(A) ⇔ A(u, v) ∈ E ∪ {A(u, u) | u ∈ V,A → ε ∈
P} ⇔ F0(E) ∪ {A(u, u) | u ∈ V,A→ ε ∈ P} ⊆ F1(E), from Lines 3 and 5.

Then inductively (u, v) ∈ Gi+1(A) \ Gi(A)⇔ A→ B1 . . . Bk ∈ P ∧ (u,w1) ∈
Gi(B1) ∧ . . . ∧ (wk−1, v) ∈ Gi(Bk) ⇔ A(u, v) ∈ {A(v0, vk) | A → B1 . . . Bk ∈
P, B1(v0, v1) ∈ F i+1(∅), . . . , Bk(vk−1, vk) ∈ F i+1(∅)} ⊆ F i+2(∅), from Line 81.

Our Semi-näıve evaluation strategy is presented in Algorithm 5. Left infor-
mally here is the reverse-topological-dependency-grouping rtdg(P) function,
similar to the precedence graph from semi-näıve evaluation [1]. rtdg(P) can be
pre-computed in time linear to the size of the grammar.

Definition 13 (Reverse Topological Dependency Grouping).

A ≥ B ⇔ A→ . . . B . . . ∈ P
rtdg(P) = [C1], [C2], . . . such that i ≤ j ⇔ ∀A ∈ [Ci], B ∈ [Cj ] : A 6≥ B

Algorithm 5 extends Algorithm 4 with the notion of difference sets, labelled
∆. Instead of finding new relations by examining all prior knowledge, we require
one of the ∆-relations be used. The ∆ sets are initially identical to the input
edges, Line 6.

1There is a slight misalignment here, potentially Bj(wj−1, wj) was discovered this iteration,
not last iteration. We have elided this case for brevity, its effect on the proof is to reduce i by
1.
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For the running example from Figure 1.2 we observe the evaluation of points-
to by the semi-näıve algorithm. At line 7, assume the reverse topological de-
pendency ordering has:

〈{assign, load, alloc, store}, {points-to}〉

as the ordered groups, and ∆assign is not empty, so we have ∆cur = ∆assign =
assign. For this iteration, only points-to→ assign points-to is used, i.e. ∆points-to ←
∆assign ◦ ∅, so no new relations are added. Only ∆alloc will add relations to
points-to for [C1], so when [C2] = {points-to} is chosen, ∆points-to is not empty.
Assume the load-store rule was chosen, then since points-to appears three times
in this rule, there will be three evaluations:

∆points-to ← ∆points-to ∪ G(load) ◦∆cur ◦ G(points-to) ◦ G(store) ◦ G(points-to)

∆points-to ← ∆points-to ∪ G(load) ◦ G(points-to) ◦∆cur ◦ G(store) ◦ G(points-to)

∆points-to ← ∆points-to ∪ G(load) ◦ G(points-to) ◦ G(points-to) ◦ G(store) ◦∆cur

as well as a single evaluation for the points-to → assign points-to. Some new
∆points-to edges have been discovered by these evaluations, so another round
with ∆cur = points-to will occur. As we shall see, the semi-näıve evaluation
strategy is equivalent to the naive formulation from Algorithm 4.

Lemma 7. With G referring to Algorithm 5, and Ĝ referring to Algorithm 4:
(u, v) ∈ G(A)⇔ (u, v) ∈ Ĝ(A)

Proof. We induct ⇒ on the ith iteration of Algorithm 5 Line 12. We induct ⇐
on the jth iteration of Algorithm 4 Line 6. The base cases for both inductions
arises from: G0(A) = Ĝ0(A) = {(u, v) | A(u, v) ∈ E} ∪ {(u, u) | A→ ε, u ∈ V }.

For soundness (⇒), (u, v) ∈ ∆i
A ⇔ A→ B1 . . . Bd . . . Bk∧(u,w1) ∈ Gi−1(B1)∧

. . . ∧ (wd−1, wd) ∈ ∆i−1(Bd) ∧ . . . ∧ (wk−1, v) ∈ Gi−1(Bk). Then the inductive
hypothesis gives us (u,w1) ∈ Ĝ(B1) ∧ . . . ∧ (wk−1, v) ∈ Ĝ(Bk)⇒ (u, v) ∈ Ĝ(A).

For completeness (⇐), (u, v) ∈ Ĝj(A)⇔ (u,w1) ∈ Ĝj−1(B1), . . . , (wk−1, v) ∈
Ĝj−1(Bk), so inductively, (u,w1) ∈ G(B1), . . . , (wk−1, v) ∈ G(Bk). But, A →
B1 . . . Bk ∈ P ⇒ A ≥ B1, . . . , Bk, and ∃d ∈ [1, k] : ∀h ∈ [1, k] : Bd 6< Bh,
i.e. all the B labels are less than or equal to A, and at least one of them is no
less than all the others. So ∃i such that (u,w1) ∈ Gi−1(B1), . . . , (wd−1, wd) ∈
∆i
Bd
, . . . , (u,w1) ∈ Gi−1(Bk)⇔ (u, v) ∈ Gi+1(A).

We now discuss the complexity of our template by assuming known time-
complexities for the ADT’s operations. This produces a parametric complexity
function, which gives the true complexity after specifying a concrete datatype.
A sketch of the proof is shown below.

Lemma 8 (Semi-näıve complexity). For problems with k labels and n vertices,
and where ∪, \ and ◦ have unknown time-complexity, semi näıve terminates in
O
(
k2n2(∪+ \+ k◦)

)
time.
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Proof sketch. The entire work of the For-loop (Line 2) is completed inO
(
kn+ kn2

)
time, since it writes at most each edge once, and every vertex’s epsilon-edge for
at most all labels.

The loops on Lines 7 and 8 loop while there is a non-empty ∆. Deltas are
updated on one of k iterations of the for-loop on Line 11, by the composition
on Line 12. In the worst case, only one new pair will be added to the ∆,
so kn2 iterations in total. Each iteration in-turn causes k loops of Line 11,
and in each iteration, one \, two ∪, and k ◦ operations take place, totalling:
O
(
kn+ kn2 + kn2(k(∪+ \+ k◦))

)
= O

(
k2n2(∪+ \+ k◦)

)
4.3 Data Structures

The semi-näıve CFL-R algorithm from Section 4.2.3 is dependant on a user-
chosen relational abstract data-type (ADT). In practice, the chosen ADT de-
pends on properties of the input. Our templated semi-näıve solver is designed
around the idea of facilitating arbitrary relational ADTs.

Our main relational ADT contribution in this paper is the quadtree for-
mulation of Boolean matrices. With suitable operations, quadtrees are efficient
both in space and computational cost, especially for the sparse problems en-
countered in our taint-analysis and points-to experiments (Section 4.4). We
show the theoretical advantages of quadtrees, and detail the implementation
and optimisations necessary for high performance.

The quadtrees are compared against standard implementations of relations
via neighbourhood maps. A neighbourhood map is a kind of lookup table
that lists, for a given element x of the relational domain, all the elements that
x relates to (the successor neighbourhood) or that relate to x (the predecessor
neighbourhood). The neighbourhood maps in our evaluation are implemented
via red-black trees [12], hash-tables, and B-trees [11]. A summarisation of the
theoretical space and time bounds for the different relational ADT implemen-
tations is presented in the following table:

ADT Space Complexity Time Complexity (composition)
Quadtrees O

(
min(n2,m log n)

)
O
(
min(n3,m2n log n)

)
Concise quadtrees O

(
min(n2,m log n)

)
O
(
min(n3,m2n log n)

)
Red-black trees O (m) O

(
m2 log n+ n log n

)
Hash maps O (m) expected O

(
m2 + n

)
B-trees O (m) O

(
m2 log n+ n log n

)
4.3.1 Quadtrees

The primary data-structure of interest in this discussion is an adaptation of
quadtrees to the semi-näıve evaluation. The adaptation forms one of the
contributions of this thesis, as we studied the intricacies of quadtrees in re-
lation to CFL-R and made tradeoffs in their design choices relevant to this field.
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Figure 4.1: Depiction of how a Boolean matrix (left) is encoded in a
quadtree(right).

Quadtrees are well-known for computational geometry applications, where spa-
tial information is useful [30]. We first present Boolean matrices as a relational
structure, and later encode these matrices as quadtrees.

Given a mapping between the relational domain and the integers, we can
encode a relation A as a Boolean matrix Â via:

Âij =

{
1, (i, j) ∈ A

0, otherwise

which leads to the definitions A ∪B = Â ∨ B̂, A \B = Â ∧ ¬B̂ and A ◦B =

Â · B̂. If we use Boolean matrices for the relational structure, composition
would take O

(
n2.3

)
time [23], and union and difference would take O

(
n2
)

time.
Furthermore we desire better storage than the Θ(n2) space requirements of a
dense Boolean matrix.

Instead, we store the Boolean matrix in a quadtree structure, as shown in
Figure 4.1. The motivating factor behind quadtrees is their superior perfor-
mance for sparse datasets. For the relation alloc from Figure 1.2, which has
few elements element, a binary matrix representation requires O

(
n2
)

memory,
whereas a quadtree representation has only O (log n) tree-nodes. Indeed, for the
points-to analysis, all load and store relations have very few elements, so the
advantages of quadtrees become more obvious. The sparsity bound is shown
below:

Lemma 9. The quadtree requires O
(
min(n2,m log n)

)
space to store.

Proof. Consider the complete matrix with side-length n, its quadtree has n2

leaves, each representing a single 1 element, with the parent layer having 1
4 as

many nodes as its child layer. The total number of nodes is at most:

∞∑
f=0

n2
1

4f
=

n2

1− 1
4

=
4n2

3

Sparser matrices strictly remove nodes, hence 4n2

3 is an upper bound. For a more
practical bound, we say that m < n2 bits are set. In this case, it takes at most
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log n nodes to join each of its m set bits to the root of the tree. This count is
bounded above by the known n2 limit, requiring min(n2,m log n) constant-sized
nodes.

Corollary 2. The time complexity of union, intersection, set-difference, and
copy operations is also O

(
min(n2,m log n)

)
.

(
A11 A12

A21 A22

)(
B11 B12

B21 B22

)
=

(
A11B11 ∪A12B21 A11B12 ∪A12B22

A21B11 ∪A22B21 A21B12 ∪A22B22

)
(4.1)

Equation 4.1 shows the recursive procedure for quadtree multiplication. This
formulation allows us to determine both an upper-bound and average-case com-
plexity for the composition operation.

Lemma 10. Multiplication of two quadtrees requires O
(
min(n3,m2n log n)

)
time.

Proof. We enumerate the work at each level of recursion (i.e. the multiplications
for all trees at height 1 ≤ i < log n) similar to the master theorem. The work
of multiplication at level i is Mi = 8Mi−1 + 4Ui−1 + 1, 8 recursive calls to
multiplication, 4 unions and a constant amount. The key observation is that
the work of four unions at level i can not exceed the work of one union at
i+1, since at worst it must create the quadtree that is used in the upper-layer’s
union. From Corollary 2 we have that the uppermost unions for the complete
and average cases are n2 and m2 log n respectively, since the multiplication of
two m-dense matrices can not create one denser than m2. The complete case
and the average case appear side-by side.

n2 + 1 m2 log n+ 1
8(n/2)2 + 8 = 2n2 + 8 2m2 log n+ 8

64(n/4)2 + 64 = 4n2 + 64 4m2 log n+ 64
. . . . . .

8logn(n/2logn)2 + 8logn = n(n2) + n3 m2 +m2

Summing over all terms, the complete case yields n3 as expected. For the
average case, note that the lowest level requires m2 +m2 work. Since we know
each input matrix has at most m leaves, we can not expect to reach the bottom
level of recursion more than m2 times (every pair of leaves), then no more
than m2 1-high unions and constant operations can occur. Summing over all
terms, the average case yields m2n log n+m2 log n. Hence the time required is
O
(
min(n3,m2n log n)

)
.

The normal implementation of quadtrees makes use of heap-allocated tree-
nodes with pointer references to sub-quadtrees. On a RAM, this retains the
theoretical performance characteristics shown above. Using a recursive data
structure presents several advantageous properties.
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(2 0 3 5) (0 1 0 0) () (1 0 1 0) () () (1 1 1 1) () () () ()

Figure 4.2: A concise representation of the quadtree in Figure 4.1. Each group
of 4 integers is a node in the concise tree, the value records how many nodes are
in the sub-quadrants of this node, in the order top-left, top-right, bottom-left,
bottom-right. () represents a leaf node, whose value is irrelevant.

In certain cases, the union of two quadtrees subsequently disposes of one.
Such an absorbing-union occurs in Algorithm 5, Line 12, between the tempo-
rary composed term and the ∆-term. Empty subtrees in the absorbing quadtree
adopt the node from the absorbed quadtree (and all of its children), which avoids
excessive memory allocation/deallocation. Similar tricks can be applied to the
set-minus operation.

Beyond the basic implementation strategy, there are some optimisations
which can be employed. These optimisations present a tradeoff in time/space
complexity, but due to the practical advantages of cache locality, look-ahead,
and memory-bandwidth, they usually provide significant advantages.

4.3.1.1 Concise Representation

The most glaring deficiency of the pointer-based implementation of quadtrees is
its unpredictable memory behaviour. Look-ahead caching can not occur for the
pointers, resulting in frequent cache-misses and a saturated memory bus. The
efficiency limitations of pointer-structures, such as linked lists and trees, is well
known [2].

To facilitate the simple cache heuristics which modern processors employ, we
store quadtrees in contiguous memory regions with a concise representation.
Concise representations are derived from a long-known bijection between rooted
trees and properly-balanced parenthesis structures [29], they are also called suc-
cinct data structures [51]. Each quadtree node is represented by a tuple of four
integers, where tuple elements 1,2,3 and 4 refer to the number of nodes in the
quadtree rooted at this node’s top-left, top-right, bottom-left and bottom-right
quadrants respectively. Leaf nodes (i.e set bits in the matrix) have an arbi-
trary value, as only their presence or absence is significant. The representation
uses more memory than necessary (only the presence of a subtree needs to be
recorded), in order to facilitate skipping over subtrees that are irrelevant to the
current computation (i.e. for faster membership checks). A concise encoding
of the quadtree in Figure 4.1 is shown in Figure 4.2. Since the top-left subtree
has two nodes (the node itself and its top-right leaf), the first node records this
with a 2 in tuple position 1.

Concise representations have significant practical advantages. The tree is
represented in a contiguous block, so copy operations such as Algorithm 5 line 6
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0b1 0b1 0b1 0b1 0b1 0b1 0b1

+

0b0100 0b1010 0b1111

0b0100000010111011

Figure 4.3: The Figure 4.1 matrix encoded with leaf bitmaps of 1-bit (i.e. as
normal), 4-bits and 16-bits.

can be performed by fast low-level memcpy operations. Union and set-minus
operations access the tree in a left-to-right manner, which makes cache pre-
fetching possible. Conversely, concise trees are not easily mutable. Leaves must
be inserted in order (leaf a is inserted before leaf b if it would appear to the
left of b in the concise representation), to prevent shuffling the array. Further-
more, union, set-minus and composition can not occur “in-place”, demanding
additional data copying. In practice, cache locality justifies the tradeoff, as we
show in Section 4.4.

Note that the additional cost of maintaining the concise representation does
not change the order-theoretic properties of quadtree operations. Consider the
union of two concise-trees. An inefficient implementation involves utilising a
stack to walk the two inputs first-to-last. When a “leaf” node is encountered
in either, inserting it is at most an O (log n) operation, since it will always be
inserted in the last position of the output, with no more than log n new nodes
being required and log n updates to current nodes to account for the new subtree.
The total work is therefore bounded by O (m log n), the same as the previous
result, though the initial allocation of the output list must conservatively be as
large as both inputs. Since the complexity of multiplication is derived from
union, the same argument holds in this case.

4.3.1.2 Leaf Bitmaps

As depicted in Figure 4.1, leaf nodes are represented with a full tree-node (whose
child pointers become irrelevant). In a practical implementation, this implies
using 4×64-bit pointers to encode 1 bit of information (the presence or absence
of a leaf). For example, assuming leaf nodes have the same memory size as non-
leaves (i.e. 4× 64-bit pointers) one node can encode the presence-or-absence of
all the leaves in a 16×16 subtree.

Figure 4.3 compares leaf-bitmap encodings for 1 × 1, 2 × 2 and 4 × 4 leaf-
matrices. This optimisation is strictly advantageous for a pointer-based imple-
mentation. We no longer require nodes for 4 levels above a leaf, all of which
are encoded in the bitmap of the 5th-lowest node. In the most advantageous
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32

32 32 32

32 32 32 32 32 32 32

128

128 128 128 128 128 128 128

Figure 4.4: Side-by-side comparison of the nodes in a quadtree and a 16-tree,
both representing the matrix in Figure 4.1. Nodes are labelled with their size
(in bytes).

case, a complete subtree with 340 nodes (10 KB), is represented by a single
node (32 B). In practice, problem instances are highly sparse, which reduces
the saved-memory substantially. Using a scheme with 256-bit leaf matrices, the
Figure 4.1 matrix is encoded in a single node.

When applied to a concise representation (Section 4.3.1.1), this optimisa-
tion is not so straightforward. For the subtree-sizes concise-representation, a
concise-node is only 128-bits, which is too small for a 16×16 tree, and larger
than the next possible 8×8 subtree. If we used 64-bit integers, the larger tree
could be represented in a single concise-node (similar to the pointer-based im-
plementation), but this increases the size of parent nodes. For the subtree-
presence concise-representation, leaf bitmaps are worse for sparse graphs. Us-
ing a similar argument to Lemma 9, it can be shown that the subtree-presence
encoding is smaller than a leaf bitmap when the number of set bits is less than
4 log(bitmap-side-length). Furthermore, in both cases the size of the bitmap can
be larger or smaller than the “node size”. It is easy to track the depth of the
tree walk, and switch to bitmap evaluation when necessary. A 128×128 bitmap
causes the switch to occur log 128 = 7 levels above the normal “leaf-level”.

Efficient multiplication of the leaf bitmaps is outside the scope of this work.
A comparison of existing techniques for multiplying dense-bitmap representa-
tions is discussed in [9].

4.3.1.3 Node Squashing

The cache-locality issues of the pointer representation can be alleviated by using
larger nodes, in the style of a B-tree. Nodes in this style that squash n layers
contain 4n pointers to subtree nodes. Traversing the pointer-tree causes a lookup
for every node, hence using fewer large-nodes has a clear advantage. Just as for
B-trees, the size of the node is chosen to optimise the cache-locality properties.
On a normal desktop machine, the 512 B 64-tree nodes pose a good tradeoff,
whereas for servers (with larger caches) the 2 KB 256-tree nodes are superior.

The disadvantage of this mechanism lies in the over-provision of pointers in
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I = (A11 +A22)(B11 +B22)
II = (A21 +A22)B11

III = A11(B12 −B22)
IV = A22(B21 −B11)

V = (A11 +A12)B22

VI = (A21 −A11)(B11 +B12)
VII = (A12 −A22)(B21 +B22)(

A11 A12

A21 A22

)(
B11 B12

B21 B22

)
=

(
I + IV−V + VII III + V

II + IV I− II + III + VI

)

Figure 4.5: Strassen’s matrix multiplication strategy [72].

the sparse case, i.e. when a tree node has mostly null pointers. In practice this
arises often, due to the sparse nature of most input instances. A 4-level chain
requires 128 B in the quadtree case (4 256-bit nodes), and 2 KB in the 256-tree
case. The tradeoff between node-count and node-size is visualised in Figure 4.4.

We can combine this squashing technique with the leaf bitmaps presented
previously, to negate the costs of long leaf-chains. The size of the bitmap is
significantly increased, such that a 64-tree and 256-tree leaf bitmaps encode
64×64 and 128×128 matrices respectively.

4.3.1.4 Strassen’s Multiplication

Section 4.3.1 presented binary matrix multiplication as a vehicle for relational
composition, and used the standard recursive-submatrix multiplication. In-
stead of this cubic technique, an improved multiplication algorithm, such as
Strassen’s algorithm [72], could be used. Figure 4.5 shows Strassen’s technique
for matrix multiplication, which performs fewer recursive multiplications than
the recursive procedure of Equation 4.1, leading to a better time-complexity of
O
(
nlog2 7 ≈ n2.81

)
, and is particularly suited to quadtrees, since it uses the four

sub-matrices to compute the coefficient terms. More complex techniques [23]
are impractical both for quadtrees and multiplications in general.

In connection with combinatorial multiplication techniques, we have per-
formed a numerical analysis of quadtrees and the effects of Strassen’s multi-
plication. Firstly, quadtrees encode zero-quadrants, which immediately allows
some recursive submultiplications to be avoided, i.e. if A11 is the zero matrix,
the recursive procedure can avoid two multiplications and two unions, whereas
Strassen’s algorithm can only avoid two additions (I and V), a subtraction (IV)
and a multiplication(III). Enumerating all combinations, only when neither A
nor B has a zero-quadrant does Strassen’s algorithm perform fewer multiplica-
tions.

We can characterise the saturation of quadtree quadrants by enumerating all
binary matrices. Each internal (i.e. non-leaf) quadtree node has a given number
of children i between 0 and 4. Counting the number of such nodes in a 5-tuple,
the Quadtree in Figure 4.1 has counts 〈0, 1, 1, 1, 1〉, since it has four internal
nodes with one, two, three and four children in them. Let the pairwise sum
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]
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][
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][
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]
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]
[
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][
0 1
1 1

] [
1 1
1 1

]

Figure 4.6: Representations of all 2 × 2 matrices, grouped according to their
configuration count.

for all possible matrices of height i be its configuration ci. For example, all
matrices with a 1-high quadtree are depicted in Figure 4.6, so c1 = 〈1, 4, 6, 4, 1〉.
Intuitively, configurations relate to the binomial coefficients, since an internal
node chosen at random will have

(
4
c

)
ways of configuring c child nodes. Let

hi = 22
2i−2 − 1 record both the number of non-zero matrices with side-length

2i−1 and the number of non-zero quadtrees of height i. It can be shown via
recurrence that the configurations for height i are:

c0 = 〈1, 0, 0, 0, 0〉
ci = 〈1, 4hi, 6h2i , 4h3i , h4i 〉+ (4 + 12hi + 12h2i + 4h3i )(ci − c0)

This number allows us to reason about matrix multiplication. In large random
matrices, the h4i term grows significantly larger than any other term. Since the
number of 4-child nodes dominates any other kind of node, we expect Strassen’s
multiplication to perform fewer multiplications. For our purposes, unfortu-
nately, the input graphs are typically sparse, which implies Strassen’s approach
may slow down multiplication.

The input problems we use in our evaluation, far from being unknown, are
mostly sparse. Unfortunately, Strassen’s multiplication is pathologically bad in
the case of sparse matrices. Consider the VI submatrix in Strassen’s formulation,
(−A11 +A21)(B11 +B12), which potentially doubles the density of its operands.
Though there are fewer multiplications at this stage of the recursion, lower stages
will have more saturated nodes (due to their increased density), and recursively
more multiplications will be required. Experimental evaluation of the breadth of
the recursion reveals that Strassen’s algorithm calls its multiplication subroutine
almost 1000x more often.

Nonetheless, Strassen’s multiplication motivates the use of quadtrees and
algebraic composition, as they alone provide theoretical advantages in the dense
case. Our general approach to CFL-R can capitalise on dense cases (when they
do occur), since Strassen’s multiplication presents a viable strongly sub-cubic
algorithm. Our performance evaluation in Section 4.4 involves sparse problems
(since these occur in practice), hence Strassen’s multiplication is not used.
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4.3.2 Neighbourhood Maps

An alternative to quadtrees is the neighbourhood map. A relation R can be
interpreted as a directed graph, having the domain of R as its vertex set and
the relation itself as its edge set (i.e. a subgraph of the original input graph of
edges labelled with R). Then the relational ADT can be implemented by intro-
ducing two neighbourhood mapping functions N+

R : V 7→ 2V and N−R : V 7→ 2V ,
defined as N+

R(u) = {v | (u, v) ∈ R} and N−R(v) = {u | (u, v) ∈ R}, respec-
tively. For the problem in Figure 1.2, relations and labels are interchangeable
concepts, so for the relation assign we have: N+

assign = {this 7→ {a, b}, other 7→
{th5, th6}, a1 7→ {other}, b2 7→ {other}}.

Mapping functionN+
R(v) reproduces the set ofR-labelled successors of v, and

N−R(v) reproduces the R-labelled predecessors of v. Thus, either neighbourhood
can substitute the relation itself from the identity: (u, v) ∈ R⇔ v ∈ N+

R(u)⇔
u ∈ N−R(v). The relational operations (union, set-difference, and composition)
are defined for neighbourhood maps by expanding the previous identity. By
way of demonstration, composition is formulated as:

R ◦ S = {(u, v) | ∃w s.t . (u,w) ∈ R ∧ (w, v) ∈ S}
= {(u, v) | w ∈ V, u ∈ N−R(w), v ∈ N+

S (w)}

=
⋃
w∈V

N−R(w)×N+
S (w)

Then we see the composed-neighbourhood follows from:

v ∈ N+
R◦S(u)⇔ (u, v) ∈ R ◦ S⇔ (u, v) ∈

⋃
w∈V

N−R(w)×N+
S (w)⇔ v ∈

⋃
{w|u∈N−R (w)}

N+
S (w)

Thus composition of the neighbourhood functions is defined as:

N+
R◦S = {u 7→

⋃
{w|u∈N−R (w)}

N+
S (w) | u ∈ V }

In Figure 1.2, since H1 ∈ N+
alloc(a) and this ∈ N−assign(a), we have H1 ∈

N+
assign◦alloc(this), as expected. The predecessors are defined symmetrically.

From the above explanation, we consider the implementation of a neigh-
bourhood map. The map supports queries for the neighbourhood set of a given
vertex, and can therefore be implemented as a lookup table. Due to the sparse
nature of the input problems, the lookup table only contains key entries for
non-empty neighbourhoods, in which case the map is an index of the non-
empty neighbourhoods. The neighbourhood itself is a set of vertices, and must
support the operations of union, intersection, set-difference and cross-product.
Once again we desire a sparse representation, and it is convenient to re-use the
kind of index that mapped the non-empty neighbourhoods to the set of neigh-
bours. In this way, the lookup table may be implemented by, for example, a
hash-table which maps vertices to hash-sets of vertices.
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The complexity of neighbourhood map operations is described in terms of
the lookup tables which implement them. Lookup tables support the operations
of element-lookup, addition and deletion, which can be treated as parameters.
The above formulation of composition calls for a lookup of the successor and
predecessor neighbourhood n times, and adds at most n2 new edges to the result
each time, thus the parametric complexity is O

(
nLU + n3ADD

)
. Allowing for

only m pairs in the relations, we can also derive an average-case complex-
ity, namely O

(
nLU +m2ADD

)
. Set-difference and union operations require

O (nLU +mDEL) and O (nLU +mADD) time respectively, via a similar ar-
gument.

To de-parameterise the neighbourhood map’s complexity, we fix an imple-
mentation of the lookup table. Tables implemented in balanced trees (the red-
black tree and B-tree in our evaluation) have height at most log n, and thus per-
form additions, deletions, and lookups in O (log n) time. Therefore, the average
case analysis yields time complexities of O

(
m2 log n+ n log n

)
for composition,

and O (m log n+ n log n) for union and difference.

4.4 Experimental Results

4.4.1 Methodology

We implement multiple data-structures for use in our semi-näıve algorithm.
These are used as a comparison to the standard CFL-R algorithm, due to Melski
and Reps [47], called the worklist (WL) method.

• Red-Black-Tree (RB) mappings of binary-relations, due to the C++ STL’s
std::map implementation.

• Hash-Maps (UM) of binary relations, due to C++11’s std::unordered map.

• B-Trees (BT) of binary relations, using Google’s 2 implementation.

• Quadtrees (QT), as described in Section 4.3.1 and implemented in-heap
with pointers.

• Concise Quadtrees (CQ), implements the concise representation for quadtrees
(Section 4.3.1.1), with improved cache locality at the cost of additional
copying.

Our evaluation focuses on two CFL-R use-cases. Primarily, we examine
field-sensitive context-insensitive points-to analysis for Java programs, due to
Sridharan et al [70], with standard modifications to optimise evaluation. The
modified grammar is presented in the appendices. This grammar is parame-
terised by object fields and class types. Also included is the taint-analysis for
Android programs due to Bastani et al. [10].

2https://code.google.com/p/cpp-btree/
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Table 4.1: Statistical information on the DaCapo and Taint benchmarks. ES
is the number of solution-labelled edges, BNF shows the number of labels after
converting the grammar to binary normal-form, and |Quad | shows the total
number of nodes in the quadtrees for the QT and CQ implementations.

Benchmark |V | |E| |ES | |T ∪ N | BNF |Quad |
24 4,063 39,303 17,201 407 407 115,141
54 8,297 167,080 38,965 1,187 1,187 482,070
lui 22,699 44,377 12,288 1,653 2,301 213,084
lus 22,699 44,377 12,288 1,653 2,301 213,084
pmd 32,295 166,832 34,402 1,755 2,399 541,398
ant 32,927 76,919 20,898 1,095 1,520 332,454
ecl 33,912 61,725 17,119 2,257 3,172 310,201
blo 40,989 117,894 57,829 1,900 2,650 464,537
xal 46,780 111,885 42,461 2,449 3,436 500,399
cha 49,893 113,332 39,753 2,914 4,166 520,986
fop 53,851 111,690 38,802 3,495 4,742 537,345
hsq 63,281 317,361 200,762 2,817 3,974 1,122,353
jyt 78,639 524,547 383,917 3,351 4,588 1,755,173

Points-to benchmarks are drawn from the DaCapo [13] suite, with program
facts generated by the DOOP [15] static-analysis framework. The taint-analysis
problems are provided directly by the authors, and include the necessary gram-
mar file. Input data for the taint-analysis benchmarks are anonymised: we refer
to them as 24 and 54.

Experiments are run on a 32-core 2.1GHz Intel R©Xeon E5-2450 server, with
132GB of RAM, running Fedora 18. We compile with GCC 4.7.2 using the -O3

optimisation flag.

4.4.2 Benchmarks

Table 4.1 records problem-specific characteristics of the benchmarks we used.
We order the benchmarks by the size of their vertex set, which is n for our com-
plexity arguments. Note that the taint-analysis benchmarks are much smaller
than the DaCapo problems in terms of vertex-set, but have a dense edge-set.
Despite this, all benchmarks are reasonably sparse, with the edge set being
roughly 2x-20x larger than the vertex set. Converting the input problem to bi-
nary normal-form increases the number of labels by up to 50%; the taint-analysis
problems are distributed already-normalised.

4.4.3 Normalisation

Figure 4.7 shows the effect of grammar normalisation on runtime and memory-
size. We compare the WL version, which is typically presented for normalised
grammars, with a subset of the semi-näıve implementations which do not re-
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Figure 4.7: The effect of grammar normalisation on execution-time and memory-
requirement, y = normalised

unmodified , for each benchmark.

quire normalisation. As expected, the pre-normalised taint-analysis problems
show little difference. The findings validate our claim: the overhead of tracking
and storing additional information for the labels created during normalisation
increases runtime and memory footprint for the semi-näıve strategy. We also
verify the known WL limitation, namely that normalisation is necessary for im-
proved memory and time performance.

Henceforth, comparisons of implementations will be of no-normal-form ver-
sions of semi-näıve problems normalised against the binary normal-form version
of the worklist algorithm.
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Figure 4.8: Proportional runtime and space requirements as a fraction of the
normalised-worklist runtimes.

4.4.4 Performance

We show the comparative runtime performance of the implementations, as com-
pared with the worklist method, in Figure 4.8. Firstly, we see how hash-maps
are unsuitable for this kind of problem, due to uncacheable behaviour; in our
taint benchmarks we even see runtime slowdown using this method. The QT

implementation halves the runtime on average, however this can be improved
upon by using a more cache aware B-tree data-structure. The clear winner, in
terms of speed, is the concise quadtree implementation CQ, which outperforms
B-Trees, and achieves up-to 1

10 th the runtime of WL.
Further, we see the superior scaling behaviour of the semi-näıve implemen-

tation. Note that the least speedups are for smaller benchmarks, and the com-
parative advantage grows with problem-size for most implementations.
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Figure 4.9: Memory/Runtime tradeoff exhibited by the different data-structures
for the semi-näıve implementation.

Figure 4.8 also plots the relative size-demands of the implementations against
the binary normal-form WL implementation. Primarily we do not see the same
kind of scaling behaviour as we did with time requirements, so whilst memory
utilisation is better with the semi-näıve method, only a constant improvement
can be expected. Again, hash maps are usually a bad choice for the relational
data-structure, with as little as 12% shrinkage. We observe that the BT im-
plementation is the universally superior option, on average 14% of WL’s size,
compared with the CQ’s 22%.

Given that the CQ tree implementation has superior runtime, whilst the BT

binary relations have smaller memory demands, we wish to understand how
the choice of data-structure imposes a space-time tradeoff. Figure 4.9 plots the
relative improvement for runtime and size. Here we assume equal importance for
space and time considerations; different priorities may influence implementation
choice. We see the CQ cluster has superior overall performance, since it is closer
to the origin. Whilst the BT implementation uses less memory, the cost to
runtime is significant in comparison.
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Chapter 5

Declarative Optimisation

This chapter examines the efficiency and performance aspects of CFL-R logic
itself, as opposed to the evaluation of that logic. We develop a novel feedback-
directed optimisation approach for improving the performance of CFL-R solvers
by transforming their underlying logic. A version of this work is under review
for TACO, and is titled “Feedback-Directed Optimisations for Context-Free
Language Reachability” [37].

5.1 Declarative Languages

CFL-R has a reduced Datalog semantics [1], where the rules are limited to a
chain format over binary relations, i.e., CFL-R solves logic problems where all
clauses are of the form:

H(v0, vk) :- B1(v0, v1), B2(v1, v2), . . . , Bk(vk−1, vk).

Whilst we can improve the efficiency of CFL-R solvers by adapting more effective
evaluation strategies to the problem, these techniques treat the logic of the
problem as a black box. In fact, as we encountered in the high-efficiency points-
to analysis from Chapter 3, performance can be greatly improved by examining
and modifying the logic that underpins our analysis. In that work, the points-to
grammar was converted into an equivalent form:

points-to→ (assign | bridge)∗alloc

This implies a transformation of the underlying logic, which in this case was
needed to expose regularity in the context-free grammar. We now explore the
performance implications of logic transformations for the CFL-R problem.

5.1.1 Hints

The strength of declarative approaches is that they allow programmers to focus
on the logic of solutions, and ignore the implementation details of evaluating
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it. To this end, Chapter 4 discusses the tradeoffs associated with evaluating a
given CFL-R logic. But the issue is made more complicated by the fact that
there can be alternative equivalent formulations of the same logic. Consider the
two CFL-R grammars below:

S → ε | a S b (5.1)

S → ε | a R R→ S b (5.2)

Both grammars encode the canonical context-free language {anbn | n ≥ 0},
i.e. strings of some number of “a”s followed by the same number of “b”s. If a
system were truly declarative, then two logically equivalent (but non-identical)
formulations should imply the same evaluation strategy. In practice, though,
solvers for declarative problems like this tend to interpret the logic more lit-
erally. It is (currently) unreasonable to expect that a system could recognise
the underlying logic, and always adopt the most efficient solver for that logic,
as this would require human levels of intelligence. Instead, we can conceive of
normal-forms, and then say that both grammars yield the same normal form
(and therefore can be recognised as the same), though for arbitrary grammars
even this may not be the case. For the above case, Grammar 5.1 is in reduced
normal-form, which 5.2 can be converted to. Alternatively if we choose binary
normal-form, which 5.2 is in, then 5.1 may or may not be converted to the same
grammar (allowing for renaming nonterminals) depending on how we split the
a S b term. More importantly, though, it might be (operationally) useful not
to treat these two grammars as the same.

Consider the problem of searching for CFL-R paths according to the above
grammars. If we know nothing about the structure of the graph, then we can
say nothing about the best order of operations, and should simply choose a good
algorithm (such as the semi-näıve approach). On the other hand, if we knew the
graph was biased in some way, such as by having significantly more a-labelled
edges than b, we can make stronger statements about the evaluation strategy.
Assume that a new S edge is discovered and we are trying to see if another S
path can be built using the new edge as the middle. It is smarter to look at
b first, as doing so is more likely to avoid needless searching; there are fewer
b-edges, so if there is no new path that is more likely because it does not join to
a b than that it does not join to an a. The semi-näıve evaluation strategy does
not consider optimisations such as this. Indeed, the notion that “it is better
to prioritise certain labels for evaluation” falls outside the declarative scope of
CFL-R. Nonetheless, biases in the inputs are common in real-world problems,
and it is very useful for declarative solvers to be able to reason about such
domain knowledge.

For this reason, many declarative systems allow users to encode domain
knowledge via implicit or explicit constructs. Unlike typical declarative direc-
tives, such constructs specify implementation details and do not affect the logic
of the problem. We call these constructs hints. Hints allow specification writ-
ers to manually intervene, possibly because the declarative solver in question is
unable to reason strongly enough about a good evaluation strategy. In SQL,
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join-hints are frequently used to coerce the RDBMS to use the most efficient
join strategy [73]. In this case, the declarative system was usually too slow
(or outright incorrect) when deciding how best to join relations, so the pro-
grammer explicitly told it how. Sometimes hints are implicit, and are more like
artefacts of the declarative system’s translation/code generation mechanism. In
LogicBlox (3.9.0), a declared relation A(x,y,z) will be indexed from right to
left [5], so a join like P(i,j),Q(k,j) makes efficient use of the index, while
N(r,s),M(r,t) is inefficient. In Soufflé, a declared rule will be examined in or-
der unless a specific order is given [40], so a rule A(x) :- B(x), C(x) will look
at the B relation before the C relation. The above hints can be used strategically
by specification writers to encode domain knowledge, and improve the runtime
of declarative systems.

Whilst hints are necessary to achieve high performance systems, unfortu-
nately they require significant manual intervention. In the case of explicit di-
rectives, such as SQL’s join-hints, manual intervention is reasonable, since the
hints are designed to overcome limitations in the automatic procedures. On the
other hand, much manual effort can be alleviated by adopting more effective
automated techniques. In the case of Soufflé or LogicBlox’s hints, the problem
is not that an automatic approach falls short, but that it lacks the kind of in-
formation needed to make good decisions. Returning to the {anbn | n ≥ 0}
example, we can conceive of an implicit CFL-R hint; Grammar 5.2 implies that
it is better to find S b sub-paths first (calling these R) before looking for the
full a S b paths (now in the form a R), whereas Grammar 5.1 does not imply
that looking for S b first is superior to looking for a S first. Tying CFL-R’s
operational semantics to the literal expression of the grammar in this way allows
us to give hints to CFL-R solvers. Thus, if the search for S b is operationally
useful, possibly because b-edges are rare and looking for those sooner cuts down
on many wasted searches, then Grammar 5.2 may yield more effective solvers.

The problem of optimising CFL-R can now be more properly addressed;
there are two important components:

• The hints which are given to CFL-R solvers. We specifically want to
know how programmers can influence the execution semantics of their
CFL-R solvers, either by explicit or implicit modifications to the logic of
the input specification. Knowing this, we can mechanically apply hints
to a specification, provided we can verify that such a hint will improve
performance.

• The circumstances which make a hint useful. As we saw, coercing the
execution in a certain way is motivated by domain knowledge for the given
inputs (or classes of inputs), which means that one evaluation strategy may
be more or less effective than another. We examine execution feedback
to discover biases in the inputs, and choose from a collection of known
hints in order to derive a suitable optimisation.

For the purpose of our discussion, an optimisation is a hint which is automati-
cally discovered and mechanically applied.
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5.2 Executing CFL-R

In order to reason about inefficiencies in the logic of CFL-R, we look at the
evaluation of CFL-R logic, based on the algorithms for it. The underlying nature
of the CFL-R problem, which unsurprisingly can be phrased as a matrix-based
reachability problem (Section 5.2.2), is exposed, which allows us to precisely
quantify the problem. A direct byproduct of this quantification is a method
of counting waste, which occurs when dead-ends are discovered during the
search for CFL-R paths. Our modelling of waste gives us a priori knowledge of
inefficient formulations, and therefore forms the basis from which we optimise
the CFL-R logic.

5.2.1 CFL-R Evaluation

The Melski-Reps approach is detailed in Algorithm 2. There are several impor-
tant factors in this evaluation:

• Grammar rules must be in binary normal-form (BNF). A grammar in
BNF has at most two terms on the right-hand-side of its rule bodies. It
should be noted that any CFL-R grammar can be converted to BNF with
only a linear increase in the size of the grammar [43]. Clearly the way
that rules are broken up into BNF will influence the evaluation strategy,
i.e the Melski-Reps algorithm looses the domain knowledge about which
BNF rules came from which original grammar rules.

• Evaluation is driven by the worklist. The worklist functions much like the
delta-sets of the semi näıve strategy, in that new paths are only discovered
as a result of walking over recently found summary paths.

These two factors influence how the logic of a given CFL-R problem can
influence performance. Firstly, given that the presence of paths in the input
graph will not change depending on how long rules are broken up into their
BNF form, we can influence how the paths are found by breaking the rules up
in a strategic way. Assuming there are better or worse ways to find a given path,
then a logical optimisation would take the form of determining the best means
of searching for a path. Further, since path discovery is driven by the worklist,
we can also assume that different logic will prompt different evaluation orders,
which in turn causes worklist items to be discovered (i.e. queued) in a more
favourable order. Chaudhuri’s approach differs only slightly from the Melski-
Reps algorithm. For this reason, the same kinds of modifications to the logic
that would optimise a worklist evaluation should also be useful for a Chaudhuri-
style solver.

5.2.2 Matrix-based Solvers

To begin our presentation of a solver/algorithm agnostic understanding of the
costs associated with CFL-R logic, we phrase CFL-R via its underlying con-
nection with matrix multiplication. The connection between graph reachability
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Algorithm 6 A matrix-multiplication-based algorithm for solving CFL-R.

1: procedure matrix-cflr(T ,N ,P, V, E)
2: for all L ∈ T ∪ N do
3: L← ∅
4: for all L(u, v) ∈ E do
5: Lu,v ← 1
6: for all A→ ε ∈ P do
7: A← A ∪ I
8: while any matrix is changing do
9: for all H → B1 . . . Bk ∈ P do

10: H← H ∪×i∈[1,k]Bi

and matrix multiplication is well-established in the research literature [50], for
completeness we reproduce the relevant results here.

Definition 14. Given a graph G = (V,E), and some mapping V 7→ Z, then
the adjacency matrix G ∈ [0, 1]|V |×|V | is the boolean matrix having:

Gi,j =

{
1 (i, j) ∈ E
0 otherwise

Theorem 1. There is a k length path in G between i and j if and only if cell
i, j is 1 in Gk

Proof. See, for example Warshall’s work [81].

There are several useful corollaries that follow immediately from this result:

• (G ∪ I)k =
⋃
i∈[0,k] G

i are the k-or-shorter paths.

• (G ∪ I)∞ is the reflexive transitive closure.

Importantly, though, we can apply these results to compute the solution to CFL-
R problems. Using boolean matrix multiplication and addition, we can phrase
the CFL-R problem with Algorithm 6. Much like the other general-purpose
CFL-R algorithms (such as Algorithm 2), we begin by accounting for termi-
nal labels and epsilon edges, and subsequently discover paths by concatenating
known edges in sequence. Here matrix multiplication forms the vehicle for “con-
catenation”, as opposed to the notion of a path-walk. Whilst this approach is
too inefficient to be used practically, it gives us insights into where CFL-R for-
mulations are themselves inefficient (as opposed to there being inefficiencies in
their solvers), by looking at the underlying reachability problem.

Firstly, the algorithm is indeed sound and precise with respect to the CFL-R
definition. Every epsilon-path that would form a solution to cfl-r(L,G) will
be found by the algorithm:

Lemma 11. ∀N ∈ N : N
∗

=⇒ ε implies that I ⊆ N.
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Proof. If ε is in the language with start symbol N , then there are two cases:

• N → ε ∈ P, then I ⊆ N follows trivially from line 7.

• N ⇒ B1 . . . Bk
∗

=⇒ ε, but then ∀i ∈ [1, k] : Bi
∗

=⇒ ε is also true and has
strictly fewer derivations, so induct using the above as a base case.

In a similar manner we also discover all path-words that appear in the solution:

Lemma 12. ∀N ∈ N : 〈T1(v0, v1), . . . , Tk(vk−1, vk)〉 ∈ Π ∧ N ∗
=⇒ T1 . . . Tk

implies that Nv0,vk = 1.

Proof. Firstly ∀T ∈ T : T (u, v) ∈ E ⇒ Tu,v = 1. Then we have two cases:

• N → T1 . . . Tk ∈ P, then apply Theorem 1 to line 10.

• N ⇒ B1 . . . Bj
∗

=⇒ T1 . . . Tk, so partition T1 . . . Tk into (possibly empty)

substrings having ∀i ∈ [1, j] : Bi
∗

=⇒ Til . . . Tih∨Bi
∗

=⇒ ε. In the epsilon case,

lemma 11 holds. Otherwise Bi
∗

=⇒ Til . . . Tih has strictly fewer derivations.
We can induct, using the above as the base case, to show Bi

vil−1,vih = 1,
and apply Theorem 1 to line 10.

Importantly, the matrix-based formulation necessarily finds only those pairs
which do imply a reachability path spelling the word in that language:

Lemma 13. ∀N ∈ N : Np,q = 1 implies that (p, q) ∈ cfl-r((T ,N ,P, N), G).

Proof. There are three places where a cell can be set to 1:

• Line 5, then N(p, q) ∈ E, so N ∈ T ⇒ N 6∈ N , this case is irrelevant.

• Line 7, thenN → ε ∈ P, implying (p, q) ∈ {(v, v) | v ∈ V, ε ∈ (T ,N ,P, N)}

• Line 10, then N → B1 . . . Bk ∈ P and ∃v1, v2 . . . vk−1 such that B1
p,v1 =

B2
v1,v2 = . . . = Bk

vk−1,q = 1. Using the previous two cases as the base-
case, inductively assume that ∀i ∈ [1, k] : Bi

vi−1,vi = 1 ⇒ (vi−1, vi) ∈
cfl-r((T ,N ,P, Bi), G). Let π = 〈T1(p, v11), . . . , Tl(vk−1m , q)〉 be the

path formed by concatenating all the sub-paths, thereforeN ⇒ B1 . . . Bk
∗

=⇒
T1 . . . Tl and π ∈ Π, hence (p, q) ∈ cfl-r((T ,N ,P, N), G).

Hence, the algorithm is sound and precise:

Lemma 14. Algorithm 6 computes cfl-r(L, G).

Proof. The algorithm is sound from Lemmas 11 and 12. The algorithm is precise
from Lemma 13.
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Figure 5.1: A subset of the points-to problem from Figure 1.2
.

The most important takeaway from the matrix-based CFL-R algorithm is
an understanding that matrix multiplication underpins the evaluation of CFL-R
logic. In the actual algorithms for CFL-R the multiplication is substituted for a
similar vehicle, such as relational joins in the semi-näıve formulation, or an edge
search in the Melski-Reps algorithm (which is essentially the witness problem for
row vectors). The assumption, therefore, is that if we can show an inefficiency
in the logical structure of a given CFL-R formulation, then this inefficiency will
be present no matter how the problem is solved. Hence, we propose logical opti-
misations, which are agnostic with respect to the solving algorithm. Of course,
such optimisation efforts are meaningless unless the solver treats the input spec-
ification at least partially imperatively, since a truly declarative system can not
be perturbed by modifying the input specification in a logically equivalent man-
ner. As we discussed in Section 5.1.1, this is a reasonable assumption to make
for most systems.

5.2.3 Wasted Searches

The most important logical inefficiency that this work explores is based on
the execution of a wasted search. In the matrix-formulation from Algorithm 6,
the search occurs on line 10, i.e. in the expansion of a rule H → B1 . . . Bk.
This is, in essence, a chain matrix multiplication (CMM), which implies that
performing the multiplication left-to-right is not the most efficient approach [39].
Consider the CFL-R problem in Figure 5.1, a subset of the running example from
Figure 1.2. When evaluating Rule 5.5, we must choose an efficient bracketing
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with which to evaluate the CMM. Unfortunately, the dynamic programming
approach used to determine good CMM strategies assumes that the matrices
have varying sizes. On the other hand, the adjacency matrices of Figure 5.1a
are all 6× 6, so no useful strategy can be determined in this way. Nonetheless,
there are better and worse ways to evaluate the CMM, assume that a bracketing
was used such as the following:(

loadx(points-to points-to)
)

(storex points-to)

The computation of points-to points-to generates a relatively dense intermediate
result, for Figure 5.1a there are 8 nonzero cells:

(td, td), (a, a), (this, this), (tx, tx), (td, tx), (tx, td), (a, this), (this, a).

By comparison, the storex points-to term yields an intermediate result with
only a single nonzero cell, (a,H1). Since the CFL-R solver must search for
paths where the concatenation of labels forms a word in the language, these
nonzero intermediate cells correspond to valid sub-paths in the search. The
implication, then, is that if the path search is evaluated in any way like the
above CMM, then it will (needlessly) discover many intermediate paths. An
alternative bracketing for the CMM is:(

(loadx points-to)(points-to storex)
)

points-to

With this association, every intermediate multiplication yields a sub-matrix with
exactly one nonzero element. Thus, assuming some correspondence between the
CMM and the actual evaluation, the latter bracketing strategy should produce a
more efficient solver, since it does not discover as many intermediate sub-paths.

We can also look closely at the actual multiplications to discover inefficien-
cies. Consider the loadx points-to term. At the point in the evaluation where
this term becomes relevant, there are three nonzero cells in points-to and one
in loadx. If the solver worked with dense multiplications (aside from being very
inefficient anyway) it would not matter whether we looked at points-to or loadx
first. On the other hand, if the solver in any way accounted for sparsity in the
graph, then it would matter how many nonzero cells there were. The solver could
start with loadx and try to connect it to points-to, which means looking once
for a witness from amongst three edges. Alternatively, the solver could start
with points-to and try to connect it to loadx, which means looking three times
for a witness from amongst one edge. These two approaches, which we shall say
differ in their directionality, would naturally have different execution costs.
When discussing wasted effort, since only one intermediate loadx points-to path
exists, we assume that starting with points-to incurs one successful search and
two wasted searches, whilst starting with loadx has only the successful search.

Therefore, it is not enough to simply consider a CMM bracketing when
understanding the logical cost of a path search. Instead, we adopt the more
general notion of a search order, which can be any permutation of the terms
in the CMM.
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Definition 15. Given a rule with body terms B1 . . . Bk, the search order σ is
an ordered permutation of the body terms:

σ = 〈Bσ1 , . . . , Bσk
〉 ∈ S({B1, . . . , Bk})

To understand how a search order relates to the CMM bracketing, consider
how we would convert the former into the latter. Consider a search order
〈loadx, storex, points-to, points-to1, points-to2〉 for Rule 5.5, where points-toi is
the ith occurrence of points-to in the rule. Dequeue relations from the search in
order, and greedily multiply them where they should join according to the rule:

• loadx is dequeued, there is nothing to join it to.

• storex is dequeued, it does not join with the current pool containing only
loadx.

• points-to is dequeued, and makes the first subterm (points-to storex), loadx
remains in the pool.

• points-to1 is dequeued, joins with loadx, then the resulting subterm is
joined with the previous (points-to storex) subterm.

• points-to2 is dequeued and joins the subterm, completing the CMM.

Hence
(
(loadx points-to)(points-to storex)

)
points-to is the CMM bracketing as-

sociated with the above search order. Clearly multiple search orders can encode
the same CMM bracketing, but where they differ is the directionality of the mul-
tiplication (i.e. which term was already known to the search and which term
was just added). As we noted earlier, directionality can cause waste if overly
large relations are encountered first in the multiplication. The directionalities
with the above search order are:

• points-to× storex is left, i.e. storex is already in the search, then points-to
is subsequently added to the right of it.

• loadx × points-to is right.

• (loadxpoints-to) × (points-to storex) is left, the right subterm was com-
puted before the left subterm, hence the left joins it on its left.

– For simplicity, we might say that points-to1 is in the middle of loadx
and (points-to storex).

• (loadxpoints-to points-to storex)× points-to is right.

The notion of directionality allows us to begin to reason about the cost of a
given rule evaluation. Consider the rule points-to→ assign points-to, assuming
that it is evaluated exactly after the allocations were added to points-to. Let A
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and P be the adjacency matrices for assign and points-to respectively. In that
case, the matrix algorithm would encounter the following problem:

A =

0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 P =

0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 P′ = P ∪ (A×P)

which results in:

A×P =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 P′ =

0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


In other words, the points-to-labelled summary edge (this,H1) was discovered
along the path 〈assign(this, a), alloc(a,H1)〉. But now consider the problem
sparsely and with directionality. One option is to add points-to on the right of
assign. We know assign ends once at the sink-vertex a, since it is already in the
search. We then look at points-to once, in its a-row (i.e. the second row), and
see that it has a successor H1 (the 5th column). No effort is wasted here, since
a search was required in the a row and it yielded a successful witness in the H1
column. The other option is to add assign left of points-to. There are two edges
in points-to, with different sources, looking into assign for a vertex with a sink
at a succeeds (the edge is (this, a)), whereas looking for a vertex with a sink at
td fails. Thus some search effort has been wasted in the latter case, and this
occurred when a dead-end was discovered.

Dead ends are fundamental in our discussion of the CFL-R logic’s efficiency.
Unlike the somewhat nebulous notion of wasted search, dead-ends are observable
artefacts which the evaluation can discover, and therefore which can be counted
exactly.

Definition 16. Given that a path is to be extended by appending or prepending
a new group of edges, dead-ends occur when paths from the initial group do
not meet any edge in the new group.

Dead-ends relate to the search order in that the order defines which sub-paths
are the “initial group” and which relation is the “new group”. For example,
given the search for Rule 5.5 via the search order:

〈loadx, storex, points-to, points-to1, points-to2〉

• loadx is the only relation in the search, so no dead-ends will be found yet

• storex does not connect to loadx, again no dead-ends will be found

• points-to connects storex on the latter’s left, dead-ends are found where
an edge in storex can not connect to any edge in points-to.

• points-to1 joins loadx on the latter’s right, so dead-ends occur where
loadx sinks do not meet points-to sources. Subsequently (loadx points-to)
joins (points-to storex) on the latter’s left, so dead-ends are discovered if
points-to storex subpaths begin where no loadx points-to subpath ends.
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– Again, we could say points-to1 is in the middle of (points-to storex)
and loadx, thus avoid deciding if it is left or right first.

• points-to2 joins (loadx points-to points-to storex) on the latter’s right, dead-
ends are discovered where the subpath ends if no suitable points-to edge
begins there.

We say that dead-ends exist where known subpaths do not meet new edges
because we believe this to be a reasonable property of many search strategies.
Consider the Melski-Reps approach (Algorithm 2), where the “known” sub-path
is the dequeued worklist edge and the “new” edges come from the relation used
to extend that path on Lines 8 and 10. It is reasonable to count dead ends where
the worklist edge does not join anything, since the algorithm spent search effort
discovering that edge, and failing to extend the path constitutes some waste in
discovering it. Orthogonal notions for the Chaudhuri and semi-näıve evaluation
strategies can be observed, which motivate why it is better to count dead-ends
where known subpaths can not be extended with a candidate set of edges.

The number of dead ends, importantly, can be computed exactly. We begin
by noting that, whilst the presence of paths can be discovered using boolean
matrix multiplication (as per Theorem 1), the number of paths is found if we
use numeric multiplication instead.

Lemma 15. Given G, a numeric adjacency matrix of G, (G ×G)u,v counts
the number of two-step paths from u to v in G.

Proof. Numeric multiplication is defined such that (G×G)u,v =
∑
i∈[1,|V |] G

u,iGi,v.

Since Gx,y = 1 when there is an (x, y) edge and zero otherwise, the previous
can be rewritten to |{i | i ∈ V, (u, i) ∈ E, (i, v) ∈ E}|, i.e. the number of
intermediate vertices on a two-step path between u and v.

Henceforth, all matrices and matrix-arithmetic will be assumed to be numeric,
and the semantics of binary matrices will be simulated using the usual signum
function:

sgn [A]
i,j

=

{
0 Ai,j = 0

1 otherwise

Lemma 15 forms the basis from which we derive the dead-end count. We omit
the corollaries which give us numeric variants of Theorem 1, save for the fol-
lowing important result:

Corollary 3. The number of u, v paths with path-word B1 . . . Bk is
(
×i∈[1,k]Bi

)u,v
Thus we can relate partial path-searches to numeric matrices, and this allows us
to reason about the discovery of dead-ends. As indicated above, there are three
cases for how dead-ends can arise during the search, depending on whether the
newest label-set in the search joins previous ones on the left, middle, or right.
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Lemma 16. Given P and Q, two numeric matrices representing partially com-
pleted path-searches, and an adjacency matrix N, the number of dead-ends dis-
covered by adding N to the search is:

P×N⇒ ~1 ·P ·
(
~1T − sgn

[
N ·~1T

])
N×Q⇒

(
~1− sgn

[
~1 ·N

])
·Q ·~1T

P×N×Q⇒ ~1 ·P · (1−N) ·Q ·~1T

Proof. For P ×N, we have sgn
[
N ·~1T

]
is a vector which is 1 at element v if

v is a source of an edge in N and 0 otherwise. Negate this vector to form the
vector indicating non-sources of N. ~1 ·P is a vector where element u is i if there
are i paths in p ending at u. The dot product of these two is therefore the sum
of all paths in P ending at a vertex that is not a source in N.

N×Q follows symmetrically.
For P × N × Q, the term P · (1−N) · Q is a numeric matrix recording

all paths beginning with P, passing through a non-existent edge in N, and
continuing with Q. In other words, it records a path for every combination of
P and Q that can not be joined by an N-edge in the middle.

We use the above lemma to calculate the number of dead ends encountered
in a straightforward search. For the problem in Figure 5.1a, assume we are
searching for Rule 5.5, with points-to = {(td,H2), (a,H1), (this,H1)} (i.e. be-
fore the discovery of the (tx,H2) path). Let the search order be left-to-right:
〈loadx, points-to1, points-to, storex, points-to2〉. The relevant adjacency matrices
for these relations are L, P and S for loadx, points-to and storex respectively,
implying that PT records points-to. The search proceeds as follows

1. loadx is chosen from the search, no other relations are currently in the
search, the search space is represented by L.

2. points-to1 is chosen, represented by P, and joins the current search on the
right. The number of dead ends is:

~1 · L ·
(
~1T − sgn

[
P ·~1T

])
= ~1 ·

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ·
0

0
0
1
1
1

 = 0

3. points-to is chosen, though now the current path-space is represented by
L×P. According to Lemma 16, we have:

~1 · (L ·P) ·
(
~1T − sgn

[
PT ·~1T

])
= ~1 ·

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0

 ·
1

1
1
1
0
0

 = 0
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4. storex is chosen, let C = L · P · PT represent the current progress of the
search.

~1 ·C ·
(
~1T − sgn

[
S ·~1T

])
= ~1 ·

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ·
1

0
1
1
1
1

 = 1

A dead end is found when the new relation is added. We see that this is
indeed the case, as the current path-space held two subpaths:

• 〈loadx(tx, this), points-to(this,H1), points-to(H1, a)〉
• 〈loadx(tx, this), points-to(this,H1), points-to(H1, this)〉

Whilst the first joins (a, td) in storex, the second sub-path fails to join any
edge in storex and dead-ends here.

5. Finally points-to2 is chosen, with C = L ·P ·PT · S. We have:

~1 ·C ·
(
~1T − sgn

[
PT ·~1T

])
= ~1 ·

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ·
0

0
0
1
1
1

 = 0

Thus we conclude that a single dead end is discovered during the above
search. Though this gives us confidence that a closed form for the dead-end
count can be derived, there is one additional complication, which arises in the
case of disjoint searches. Such searches have terms that do not connect to
previously explored terms, e.g. 〈points-to2, loadx, points-to1, points-to, storex〉.
Observe that 〈loadx, points-to1, points-to, points-to2, storex〉 demands exactly the
same joins (i.e. the same directionality) at the same times in the search, but the
former begins with points-to2 whilst the latter does not examine this relation
until much later.

In order to quantify the costs of arbitrary searches, we must understand
how disjointedness influences the search cost. Assuming that the solver, at
least in some way, interprets the request to search for points-to2 first, instead of
fourth, then we can not assume these two orders will have the same cost. This
is a reasonable assumption, since if the solver does not treat the two orders
differently, then our cost analysis will merely determine that one of the two
has lesser cost, despite this not being a real property of the solver. The orders
differ in when points-to2 is examined, so intuitively we assume that the search
somehow “enqueues” these paths. This being the case, the first search is wasteful
of information, since it has searched for points-to2 well before it was needed,
and that search wastes computational resources for every other term until it
is actually needed. To account for computations that are wasted maintaining
partial searches, we propose a bias function. This uses a simple heuristic based
on the size of the unrelated paths (i.e. the cost associated with maintaining
unrelated paths is proportional to the expected size of those paths):

Definition 17. The bias when maintaining U, an unnecessary group of paths
in the path search, is |U| = ~1 ·U ·~1T .
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The only outstanding issue is the task of determining, given a partially com-
pleted search, which terms are connected and which are disconnected. We en-
code these connections via the notion of chains. The chains are the group
of contiguous subsets of body terms that collectively encompass the current
partially completed search:

Definition 18. The chains of S ⊆ {B1, . . . , Bk} are given by the function:

chains :: 2T ∪N → 22
T ∪N

chains(S) = {{Bl, . . . , Bu} | Bl−1 6∈ S,Bu+1 6∈ S, ∀i ∈ [l, u] : Bi ∈ S}

S =
⋃

{Bl,...,Bu}∈chains(S)

{Bl, . . . , Bu}

The chains are used to understand how subsets of the rule’s body connect
to one another at each step in the search. For example, consider the search for
Rule 5.5 using the search-order 〈loadx, storex, points-to1, points-to2, points-to〉:

1. loadx is dequeued, which is also the first term in its rule-body (i.e. it is
B1), and connects to nothing as there is nothing else in the search. The
chains are {{loadx}}.

2. The subset of body terms becomes {loadx, storex}, which are {B1, B4}
according to the order they appear in their rule. The chains therefore
become {{loadx}, {storex}}.

3. With points-to1, the terms are now {B1, B2, B4}, i.e. a new search term
(B2 = points-to1) joins with a previous chain (B1 = loadx). The chains
are now {{loadx, points-to1}, {storex}}.

4. The points-to2 term again adjoins an existing chain. According to the
order of occurance in their rule body, the terms {1, 2, 4, 5} are now in the
search, so {{loadx, points-to1}, {storex, points-to2}} are the new chains.

5. points-to completes the rule, the final term always results in a singleton
chain of all body terms: {{loadx, points-to1, points-to, storex, points-to2}}

Using the idea of chains and our counting strategies for dead-ends and bias,
we can now construct a closed-form which quantifies the waste associated to a
rule’s search order. At this time, search order is the most relevant contributing
factor towards waste, extending our presentation to include other artefacts of
the CFL-R problem’s logic is straightforward, hence we leave it to Sections 5.3.3
and 5.3.4. We first define some convenience notation.

Definition 19. Given an (indexed) list of body terms B1, . . . , Bk, and their
associated adjacency matrices B1, . . . ,Bk, we define a path-space to be the
numeric matrix:

B[l,u] = ×
i∈[l,u]

Bi
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Our chains function can now be used to define variants of the dead-ends and
bias functions which are based on the addition of a new term to some given
terms.

Definition 20. Given S ⊂ {B1, . . . , Bk}, a subset of some rule’s body terms,
and Bi ∈ {B1, . . . , Bk} \ S, a new term not in S, we have the following:

dead-ends :: 2(T ∪N ) × (T ∪ N ) 7→ Z
bias :: 2(T ∪N ) × (T ∪ N ) 7→ Z

waste :: 2(T ∪N ) × (T ∪ N ) 7→ Z

dead-ends(S,Bi) =



~1 ·B[l,i−1] · (1−Bi) ·B[i+1,u] ·~1T {Bl, . . . , Bi−1} ∈ chains(S)

∧{Bi+1, . . . , Bu} ∈ chains(S)

~1 ·B[l,i−1] ·
(
~1T − sgn

[
Bi ·~1T

])
{Bl, . . . , Bi−1} ∈ chains(S)(

~1− sgn
[
~1 ·Bi

])
·B[i+1,u] ·~1T {Bi+1, . . . , Bu} ∈ chains(S)

0 otherwise

bias(S,Bi) =
∏

{Bl,...,Bu}∈chains(S∪Bi),i6∈[l,u]

~1 ·B[l,u] ·~1T

waste(S,Bi) = bias(S,Bi)dead-ends(S,Bi)

We use these functions to derive the cost associated with each rule, and thus
the cost of the entire search:

Definition 21. Given a rule H → B1 . . . Bk is being expanded via the search-
order σ = 〈Bσ1 , . . . , Bσk

〉, we define the cost to be:

cost :: (T ∪ N )∗ 7→ Z

cost(σ) =
∑
i∈[1,k]

waste({Bσj
| j ∈ [1, i)}, Bσi

)

We can now calculate the cost of searching for a given rule using a fixed
search-order. Let L,S and P be the adjacency matrices for loadx storex and
points-to respectively, and assume the first three points-to-labelled paths from
Figure 5.1a have been discovered. Rule 5.5 would then have the cost, based on
the order 〈points-to2, points-to1, loadx, points-to, storex〉, of:

1. dead-ends(∅, points-to2) = 0 so we do not observe any cost yet.

2. dead-ends({points-to2}, points-to1) = 0 since the new relation does not
adjoin any of the known chains.

3. loadx joins the points-to1 term which is already in the search. This yields

dead-ends({points-to1, points-to2}, loadx) =
(
~1− sgn

[
~1 · L

])
· P · ~1T = 2.

Also since bias({points-to1, points-to2}, loadx) = 3 we find that the waste
for this search term is 6.
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4. Adding points-to, we see that it joins the chain {loadx, points-to1}. The
bias is |P| = 3 since {points-to2} is a disconnected chain, though this does

not matter since we have ~1 · (L ·P) ·
(
~1T − sgn

[
PT ·~1T

])
= 0 dead-ends.

5. storex is in the middle of the two chains {loadx, points-to1, points-to} and
{points-to2}. We have the dead-ends as ~1 · (L · P · PT ) · (1− S) · P · ~1T ,
i.e.:

~1 ·

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ·
1 1 1 1 1 1

0 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

 ·
0 0 0 0 0 1

0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ·~1T = 5

Thus the cost of that search order is 11, i.e. that many dead-ends will be
discovered, or partial searches will be wasted, during a search based on that
order.

5.2.3.1 An Execution Model

Our discussion of the costs associated with the logic of a CFL-R problem has
thus-far been agnostic with respect to the actual solver. Whilst we may be
able to formulate more accurate costs tailored towards a specific solver, we feel
that CFL-R is uniquely positioned by being simple enough to allow for a more
general approach towards understanding costs. Hence we focus on the costs of
the logic, rather than the cost of the actual execution. Nevertheless, it remains
to be shown that this “logical-cost” correlates to actual costs associated with
execution.

The mapping between logic-cost and execution-cost is, of course, solver spe-
cific. Since we are unable to enumerate the solver algorithms, we can not even
make a guarantee that the mapping is monotonic, let alone accurate. On the
other hand, the factors that lead to dead-ends arising must have some presen-
tation (possibly as an actual artefact of execution), so long as it is a reasonable
assumption that the solver interprets the CFL-R logic at least partially liter-
ally. We can make the strong statement that most declarative systems must,
at least in some corner cases, take literal hints from the specification. Such a
system that took no hints is either trivially simplistic or has the ability to reason
about the problem’s logic on-par with human beings. On the other hand, the
degree to which hints are taken may vary greatly, where some solvers interpret
the specification mostly imperatively (such as our own solver, detailed in Sec-
tion 6), whereas some may limit the expressive power (such as the Melski-Reps
algorithm, which only accepts specifications in binary normal-form).

To demonstrate that the mapping between waste and execution inefficiency
is not arbitrary, we devise a simple CFL-R solver for arbitrary grammars. Our
solver will evaluate rules by using nested loops which iterate over each rela-
tions. Assume that we have an indexed data-structure, which is associated with
each relation, allowing iteration, insertion, and fast lookup for successors and
predecessors of a given vertex. We construct loop nests in-order for each of
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for all (v3, v4) ∈ storex do
for all (v3, v2) ∈ points-to do

for all (v4, v5) ∈ points-to do
for all (v1, v2) ∈ points-to do

for all (v0, v1) ∈ loadx do
points-to ∪ = {(v0, v5)}

(a) σ = 〈storex, points-to, points-to2,
points-to1, loadx〉

for all (v0, v1) ∈ loadx do
for all (v3, v2) ∈ points-to do

for all (v4, v5) ∈ points-to do
if (v1, v2) ∈ points-to then

if (v3, v4) ∈ storex then
points-to ∪ = {(v0, v5)}

(b) σ = 〈loadx, points-to, points-to2,
points-to1, storex〉

Figure 5.2: Example evaluation code for Rule 5.5 based on two different search
orders.

the relations in the search order, e.g. the first item makes the outermost loop
and the second item will be nested immediately inside it. Each loop iterates
over the pairs in its associated relation, and, where possible, limits a search
if an outer loop has already bound that vertex. When both source and sink
vertices are bound by outer loops, we can replace the loop with a simple exis-
tence check. The innermost scope adds a new pair to the relation of the rule’s
head, according to what the first and last vertices in the search are. Figure 5.2
shows the execution code for a search for Rule 5.5 based on two different search
orders. We have chosen the variable names (i.e. the vertices) to indicate the
index in the path at which they occur. Since we assumed that each relation
has a fast bi-directional index (i.e. can be indexed from sources and sinks), the
rule evaluation code simply uses points-to when searching for the points-to term
(i.e. its reversal), as it is reasonable to assume that an efficient solver can avoid
computing reverse relations in such cases.

We now extend the loop-nest based rule evaluation to a complete CFL-R
solver in a näıve manner. Construct a loop nest for each rule, according to a
fixed search order per-rule. During an iteration, every rule will be evaluated in
the order they are defined in the language, so Rule 5.3 would be first, followed
by 5.4. So long as the evaluation discovers a single path (i.e. the innermost nest
is reached and a new pair is added to the relation), we continuously iterate the
rule. Whilst this evaluation strategy is not efficient, it serves to demonstrate
the correlation between logic-cost and execution.

Previously we saw that 〈points-to2, points-to1, loadx, points-to, storex〉 was
predicted to have a cost of 11. Under the simplistic execution model presented,
a dead-end implies a loop iteration that can not succeed. This was based on
the assumption that three of the points-to paths had been discovered, and this
evaluation of Rule 5.5 would yield the fourth. We track the iteration space of
the search, to show that this is indeed the case. The constructed loop-nest, and
the state of the iteration space when dead-ends are discovered, are depicted in
Figure 5.3. According to the table, a loop was encountered where no suitable
pair existed in the associated relation. Looking more closely at the prediction,
we confirm that 6 dead ends occurred when adding loadx, i.e. 2 of the sources of
the join relation points-to1 are not sinks in loadx, and those were encountered 3
times each, once for every choice of points-to2 which was already in the search.
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for all (v4, v5) ∈ points-to do
for all (v1, v2) ∈ points-to do

for all (v0, v1) ∈ loadx do
for all (v3, v2) ∈ points-to do

if (v3, v4) ∈ storex then
points-to ∪ = {(v0, v5)}

# loadx points-to points-to storex points-to
1 (?, td) (td,H2) (td,H2)
2 (?, a) (a,H1) (td,H2)
3 (tx, this) (this,H1) (H1, a) (a, td) (td,H2)
4 (tx, this) (this,H1) (H1, this) (this, td) (td,H2)
5 (?, td) (td,H2) (a,H1)
6 (?, a) (a,H1) (a,H1)
7 (tx, this) (this,H1) (H1, a) (a, a) (a,H1)
8 (tx, this) (this,H1) (H1, this) (this, a) (a,H1)
9 (?, td) (td,H2) (this,H1)
10 (?, a) (a,H1) (this,H1)
11 (tx, this) (this,H1) (H1, a) (a, this) (this,H1)
12 (tx, this) (this,H1) (H1, this) (this, this) (this,H1)

Figure 5.3: Loop-nest and progress of Rule 5.5 when dead-ends are found. Both
according to the search order 〈points-to2, points-to1, loadx, points-to, storex〉.
When a pair is needed to construct a path that does not exist in its relation,
this is noted with red text.

The other 5 dead-ends were found when storex was included in the search.

5.2.3.2 Approximating Waste

The techniques described accurately calculate the costs associated with the logic
of CFL-R problems. Whilst this model is useful for its accuracy, it is not actually
reasonable to be used in practice, as the algorithmic complexity of calculating
the cost far exceeds that of solving the CFL-R problem. The best algorithms
we have for computing matrix multiplication [23] are the major bottleneck in
the cost calculation, and they are assumed to have time-complexity O

(
n2.4

)
.

Note that boolean matrix multiplication has no faster algorithm. This is al-
most as bad as the Melski-Reps approach, Algorithm 2, which is known to
run in O

(
n3
)

[47]. The cost calculation itself also calls for multiple multipli-
cations: each call to dead-ends(S,Bi) requires O (|S|) such multiplications, as
does bias(S,Bi). The running time of cost(σ) is therefore O

(
|σ|2n2.4

)
, as the

cost function re-calculates waste once for every search term. For this discussion,
we will limit our focus to simple approximations of the cost model, to better
understand the problem, and leave more complicated strategies for future work.
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As it is not reasonable to use real matrices in the cost calculation, we must de-
vise an abstraction. Ideally, our abstraction will still give useful results, though
it is possible that the inaccuracy of those results will adversely affect any opti-
misations that could be made with them. Firstly, we must avoid using matrices
to represent relations in the search. Assume instead that the adjacency ma-

trix M can be abstracted via some suitable approximation M̃. To apply the
abstraction to the cost calculation, we require several operations to be defined
over the abstract domain:

• We build abstract path-spaces via “abstraction multiplication”: Ã ·B̃ =
C̃.

• We project the abstraction to the counts of its source and sink domains

with ~1 · M̃ and M̃ ·~1T respectively.

• we take the complement of an abstraction or an abstract source/sink

domain with 1− M̃ and ~1− M̃ respectively.

In this way, any abstraction that allows for the operations of multiplication, pro-
jection, and complement, can be used as a substitute for the adjacency matrices
in the cost calculation. Let us assume that the operations have time-complexities
O (M), O (P ), and O (C) for multiplication, projection, and complement respec-
tively. We can derive the parametric time-complexity for the abstracted cost
calculation to be O

(
|σ|2M + |σ|P + |σ|C

)
, given that each call to dead-ends

has at most two projections and one complement.
As long as an abstraction is being used to represent the matrices, we can

also devise an abstraction for the execution model. Since the accuracy of the
technique is already largely tied to the degree of abstraction for the adjacency
matrices, it does not compound the inaccuracy by much when we also assume a

simpler execution occurs. To this end, we propose that each M̃ should only rep-
resent the relation M as it is upon conclusion of the CFL-R algorithm, so since
points-to terminates with {(td,H2), (a,H1), (this,H1), (tx,H2)} when run on

the problem in Figure 5.1, the approximation P̃ should abstract those four edges.
Further, we assume that the CFL-R solver will terminate after evaluating each
rule once. In reality, rules can be re-evaluated up to O

(
n2
)

times, in the case
that the rule is cyclic and each evaluation returns a single new result. To model
the cyclic behaviour of some rules, it is sufficient to weight their cost according
to the proportion of the execution time that they account for, though in our im-
plementation we do not use the weights as it is sufficient to optimise the CFL-R
logic according to the “single execution” assumption (i.e. weighting the cost
does not noticeably improve the performance of optimised CFL-R problems).

Computing cost in an abstract domain is therefore possible for any suitable
abstraction. Here we describe the abstraction used in our implementation (see
Section 5.4), which has constant-time operations for multiplication, projection
and complement. Our abstraction characterises each relation (i.e. each adja-
cency matrix) as a 3-tuple having:

R̃ = (|{s | ∃t : (s, t) ∈ R}|, |R|, |{t | ∃t : (s, t) ∈ R}|)
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I.e., each relation is represented by its size, and the number of source and sink
vertices that adjoin the relation. Using the above abstraction we can devise
suitable operations for multiplication, projection and complement, based on a
probabilistic model. Given vertices V , an edge in a relation having t sinks will
join an edge in a relation having s sources with probability st

|V |2 . We apply this

logic to derive the following:

(sA, A, tA) · (sB , B, tB) =

(
sAtAsB
|V |2

,
AB

|V |
,
tBtAsB
|V |2

)
~1 · (s,M, t) = (s,M, |V |)
(s,M, t) ·~1 = (|V |,M, t)

1− (s,M, t) =

(
|V | − s

|V |
, |V |2 −M, |V | − t

|V |

)
sgn [(s,M, t)] =

(
s,
stM

|V |2
, t

)
The abstracted sgn function is included as a matter of convenience. Clearly
each abstract operation requires only a fixed number of multiplication or sub-
tractions, thus they have constant time. This abstraction is sufficient for the pur-
pose of optimising logical specifications, which we verify in Section 5.4. It may
be that more accurate abstractions would yield better optimisations, though we
leave such an exploration for future work.

5.3 Optimising Execution

The cost model we have designed for CFL-R logic has the useful property that it
predicts costs a-priori. Specifically, given sufficient information about the input
problem, the graph and the specification logic, we can make accurate guesses
about the discovery of dead ends under varying conditions, particularly varia-
tions in the logic. We therefore use this model to understand and predict the
performance of various logically-equivalent formulations of the input problem,
and choose the best variant as an optimisation. We implement our optimisation
framework for the prototype CFL-R solver described in Chapter 6.

CFL-R is uniquely viable as an optimisable logic fragment, as we can reason
about logically equivalent formulations more strongly. In the case of CFL-R,
logical equivalence refers specifically to linguistic equivalence. In general, it is
undecidable to determine if two context-free grammars compute the same lan-
guage [38], however we have the simpler problem of determining if a transformed
language is equivalent. Thus, any transformation which is language preserving
is guaranteed to be equivalent. We consider several transformations which are
known to be language preserving, but can yield favourable execution perfor-
mance under the right circumstances.
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Figure 5.4: Outline of the feedback-directed optimisation approach

5.3.1 Feedback

Our optimisation approach is powered by knowledge of the input problem. We
are mostly interested in characterising the input relations such that we can ap-
proximate the cost model (as per Section 5.2.3.2). Hence, we propose a profile-
driven feedback-directed approach, such as the one shown in Figure 5.4. Feed-
back direction is useful in cases where the input specification alone is not enough
to reason about optimisations. As we detail later in this section, the optimisa-
tions are necessarily tied to runtime data such as the relative sizes of relations,
and the proportion of execution time that the rule evaluations demand. It is
impossible to know, simply by looking at a spec, whether any transformation to
the logic will yield superior runtimes, even if we have detailed knowledge about
the solver. This is because the discovery of dead ends is necessarily tied to the
size and density of the input graph, as well as the distribution of terminal labels
amongst its edges.

The optimisation framework itself is a straightforward cyclic feedback-transform
approach. Starting from an initial version of the CFL-R logic, called the spec-
ification, we derive a solver using a prototype CFL-R engine (see Chapter 6).
The solver executes in a profiling manner on the training data, a representative
sample of the problem which the user specifies to the optimiser. Profiling data
is processed by our tool, from which several candidate transformations can be
proposed. Whichever transformation is predicted to be most effective, using the
cost model from Section 5.2.3, will be applied to the input specification to form
an optimised specification. We repeat the optimisation cycle using the optimised
specification as input, and running on the same training data. The optimisation
loop ends either because a pre-set limit on the number of cycles is reached, or
the framework determines that no optimisation is likely to improve performance
(again using the cost model). As a practical means of handling inaccuracies in
the cost model, the optimiser can roll-back and blacklist transformations if sub-
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sequent runs of the optimiser do not improve performance sufficiently.
Unlike, for example, SQL queries, which change frequently along with the

data on which they are run, CFL-R problems feature a mostly static grammar
and variable input graphs. As a result, though SQL favours an online/dynamic
optimisation approach, we propose optimising the specifications offline, via the
use of training data. An offline approach is useful, as it allows us to derive
the most efficient solver for the optimised logic, which avoids the overheads
associated with introspection and dynamic optimisation. In the CFL-R context,
we see that for a given problem (like points-to analysis) the grammar has a fixed
form (such as the grammar in Figure 5.1b), whereas the input graphs are tied
to the source code being analysed. Hence, optimising the problem’s grammar
usually gives a high-performance solver for every instance which shares that
grammar. Of course, optimising based on training data is only useful if the
training set is actually representative. In practice, we find that this assumption
is reasonable to make.

Our optimisation framework is designed to work in an iterative approach.
Iteration is chosen with the intention of making a tradeoff of time for improved
accuracy (i.e. confidence in the optimisations). The model allows us to reason
about the relations that result from transformations, i.e. if the transformation
requires a new rule be added, then we can predict the runtime and outputs
of that rule. Nevertheless, we do not wish to compound the inaccuracy of
these predictions when making further optimisations, i.e. by using predicted
relationships when predicting further output sizes. Each iteration requires re-
formulating an execution plan for the specification (according to the semi-näıve
evaluation approach from Chapter 4) and re-executing the input graphs with
profiling instrumentation. Ultimately this means the optimisation process it-
self is very expensive, as it takes significantly longer to optimise a specification
than it does to run it over its training data. The assumption we made regard-
ing offline optimisation, namely that for a certain class of CFL-R problem the
input graphs will have similar characteristics, also allows us to use the more
expensive approach. So long as problems that share their grammar do indeed
have similar characteristics, the optimiser can train using smaller datasets, and
the optimisations discovered will likely prove useful for large problems. In our
experimentation, we found that small benchmarks were able to yield orders of
magnitude speedup for the largest problems in our study, and brought instances,
which had previously timed out, within solvability (see Section 5.4).

5.3.2 Ordering

Unsurprisingly, based on the mathematics of dead ends, the first optimisation
we detail is ordering. Ordering strongly influences the discovery of dead ends,
and the other optimisations are secondarily important to further reduce the
dead-ends that reordering the rules can not eliminate. Ordering is indicated by
affixing the following notation to the relevant rule:

A→ B C{2} D{1} ⇔ σ = 〈B,D,C〉
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The actual operational meaning of the evaluation order will, of course, differ
depending on the solving algorithm being used. Consider that the semi-näıve
approach is chosen for solving the actual CFL-R problem. In this strategy,
the order of rule evaluations is chosen based on the topological order formed
by dependencies between the rules. Each rule is evaluated in several ways,
depending on which of the body terms is chosen as the delta relation. For
example, the following might be chosen to evaluate Rule 5.5 from Grammar 5.1b:

points-to→ loadx ∆points-to points-to storex points-to

i.e. points-to1 is the delta relation. Next, the semi-näıve strategy joins the body
terms to form paths via relational composition, which itself is defined by the
data structure is used to store the relation (as detailed in Section 4.3). Therefore,
the search order should be interpreted as the order in which composition occurs.
The semi-näıve strategy is interesting because it proposes several evaluation
strategies for each rule. In the event that there are different optimal orderings
for the different versions, then the search-order can only optimise one of these.
For simplicity, we will assume that there is an order which is reasonably effective
for all versions of the rule.

To automatically determine an effective ordering, the optimiser uses the ap-
proach described by Selinger [65]. Selinger’s algorithm is the standard technique
for determining effective join orders, and is used in industry and research for
many RDBMSs. The algorithm determines a near-optimal search order on a
per-rule bases. We tailor the technique to our specific cost function, which
determines the best ordering for a given rule H → B1 . . . Bk, in the following
way:

1. Construct the subset lattice of body terms in the usual way:

• The vertices of the lattice are drawn from {S | S ⊆ {B1, . . . , Bk}}
• For each node S, draw a directed edge (S, S′) between it and another

subset if and only if S′ = S ∪ {Bi} : Bi ∈ {B1, . . . , Bk} \ S.

• ⊥ = ∅ and > = {B1, . . . , Bk}

2. Weight the edges of the subset lattice. The edge (S, S ∪ {Bi}) has weight
waste(S,Bi). In other words, the weight of the edge is the amount of
wasted computation that occurs when the body term not in S is added to
it.

3. The minimal weight path from ⊥ to > is therefore the best search order.
This follows directly from the observation that each edge adds a single
body term to the search order, and every successor vertex S′ of S is strictly
a superset: S′ ⊃ S. Hence the path with minimum weight corresponds to
the order which adds all body terms whilst minimising the wasted search
effort.

In our actual implementation, we simply enumerate all orderings in the event
that the rule body is small enough, and fall back to Selinger’s approach when the
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rule is too large. Minor optimisations of this strategy include determining edge
weights and subset memberships in a lazy fashion, i.e., only when the Dijkstra’s
search requires determining the path cost between those vertices. The usual
relational joining problem for which Selinger’s is designed has more degrees of
freedom than the search order we use in the CFL-R context, such as the join
style, association, and directionality. Hence, it delivers a potentially sub-optimal
solution which does not explore some options. However, the version of Selinger’s
algorithm used by our optimiser does explore all potential orderings (that is, all
orderings could be candidates in the search), so we are guaranteed to derive the
best ordering for the CFL-R problem.

5.3.3 Promoting

The notion of pre-computing sub-paths for a search is captured by the pro-
motion optimisations. In general, promotion is the process of factoring out
subsequences of body terms in one rule into their own rule. Rule promotions
can be seen as a space/time tradeoff; calculating a subpath every time requires
no additional storage space, but uses computational resources, whereas com-
puting that sub-path in advance means that it must be stored somewhere. As
a general guideline, promotion is an effective optimisation where the promoted
rule changes infrequently (or not at all), and where it is not too large (so it uses
less memory), or where the calculation is quite expensive. There are several
cases which our solver recognises where one or more rules could benefit from
promotion:

• Common sub-expressions occur when multiple rules contain the same
sequences of body terms. Consider the following rules:

A→ B C D A→ B X

E → F C D E → F X

X → C D

Both grammars compute the same languages for nonterminals A and E,
though the rightmost grammar factors the C D sub-paths into their own
nonterminal. The optimiser would choose such an optimisation if it pre-
dicted, using the cost model, that X was actually small, or C D was
expensive to compute.

• Cyclic redundancies are similar to common sub-expressions, except that
they occur in one cyclic rule rather than multiple rules. The following rules
show a normal and promoted cyclic rule:

C → C P Q C → C X

X → P Q

Whilst it appears that no saving occurs here, since we have to compute
P Q anyway and we are only wasting memory to store it, the rule is in
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fact cyclic. Cyclic rules typically must be executed multiple times until
a fixpoint is reached, meaning that if P and Q are not also cyclic, the
above significantly cuts down on the wasted computation associated with
computing P Q. On the other hand, if P or Q depended on C in their
grammars, then that would require cyclicly recomputing X anyway.

• Summary chains allow the optimiser to minimise the bias that con-
tributes to waste in the search. As such, they assist more towards making
other optimisations (like reordering) more effective. Given that a partic-
ular join, or series of joins, in a rule’s body is guaranteed to encounter
dead ends, the optimiser can only realistically explore that subpath when
the bias is as small as possible. On the other hand, if the dead ends are
encountered in a completely separate rule, then we are able to explore
the subpath (via its intermediate stored form) in better time. In Fig-
ure 5.1, the very small loadX and storex relations mean that a search or-
der like 〈loadx, points-to1, storex, points-to, points-to2〉 is optimal (indeed,
it has zero dead-ends on Graph 5.1a). Nevertheless, the disjoint search
has bias, which comes from the loadx points-to subpaths that are searched
first. Consider instead:

points-to→ L S points-to L→ loadx points-to S → points-to storex

We retain the advantages of the search order above, whilst also ensuring
that no bias is encountered during any join (assuming a search order now
of 〈L, S, points-to〉, 〈loadx, points-to〉 and 〈storex, points-to〉 respectively).
In this way the promotion allows us to encounter dead-ends in a more
advantageous way, which may reduce wasted searches.

When the optimiser is considering making a promotion, it calculates an ap-
proximation of the new relation (i.e. the one that stores the promoted subchain),
and uses that to calculate dead ends in all the resulting rules. We use heuristic
weights to account for the affects of cyclic rules. For example, a cyclic redun-
dancy is essentially free to compute (itself), but will be used as many times
as the rule it was promoted from cycles, therefore we weight the waste of the
promoted rule significantly less than the resulting cyclic rule.

5.3.4 Filtering

When the CFL-R evaluation requires examining very large relations and joining
them multiple times, it may be advantageous to focus on a small subset of those
relations. We propose the use of filters, as a means of restricting a given edge-
set to only those pairs which are known to join as they are needed. Consider
Rule 5.5, as applied to Graph 5.1a. The points-to relation is very large when
compared with the other relation’s sizes, yet it is joined three times. Assuming
Graph 5.1a is representative, we could be wasting significant computational
resources simply examining points-to three times for each evaluation of Rule 5.5.
Instead, observe that only a subset of points-to is actually needed, namely the
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subset with source vertex in the sink of loadx or either endpoint of storex. Since
loadx and storex are terminal symbols in the language, the set of vertices which
points-to needs to begin at can be computed in advance. Given such a filtering
set, we can calculate a subset of points-to that is needed for Rule 5.5 and use
that instead.

Let <R = {(u, u) | ∃v : (u, v) ∈ R} be the source-filter of an edge-set
R. Similarly R> is the sink-filter. Graphically, the filters are self-loops, which
join with the target relation in order to project a subset of it. We can then
reconstruct Rule 5.5 as follows:

F → load>x | <storex | store>x P → F points-to points-to→ loadx P P storex P

Firstly, F is only evaluated once (since it depends only on terminals). Observe,
also, that points-to only appears once in the body of these rules. The implica-
tion is that significantly fewer computational resources will be wasted reading
points-to multiple times. Of course, the mathematics of dead-ends also justifies
the creation of filters, as the filtered relation will always encounter as few or
fewer dead ends during its search.

Unfortunately, filtering is not always applicable to the problem context. Fil-
tering transformations require semantics that go beyond the normal scope of
CFL-R, so it is questionable whether an arbitrary solver would be able to recog-
nise and adopt a different evaluation strategy in the presence of a filtering
transformation. Further, filtering is highly sensitive to the actual computer ar-
chitecture, so our logical optimiser often mistakes effective cases for filtering, at
which point we rely on the optimiser rolling back and blacklisting that ineffective
transformation.

5.4 Experiments

By design, the costs associated with CFL-R are agnostic with respect to the
solver. Of course, some solvers do not permit instruction that would allow us
to avoid known inefficiencies, though this is an orthogonal issue. For example,
a Melski-Reps based solver expects relations in binary normal-form, and always
extends a path from its dequeued worklist edge. It would seem, then, that order-
ing is not a useful optimisation to a Melski-Reps solver, but this is not actually
true; the order details the best way to decompose long rule chains into binary
chains. Thus, we expect the inefficiency calculations and logic transformations
discussed previously will be applicable to most reasonable solver implementa-
tions.

5.4.1 Setup

In the case of our chosen solver, we implement the feedback-directed optimi-
sation framework as part of the prototype CFL-R engine, which is discussed
in Chapter 6. Briefly, the engine synthesises solvers from the input CFL-R
language, which in turn use the semi-näıve evaluation strategy. All the logical
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optimisations discussed in Section 5.3 are understood by the prototype CFL-R
solver, and it can be instructed to run in a profiling mode, which we then use
to perform the feedback optimisation strategy.

For our experiments, we examine the case-study of points-to analysis,
which is a fundamental program analysis. The points-to analysis performed for
our experiment is more complicated than the simple example from Figure 5.1b,
by virtue of the following:

• The analysis is field sensitive, in the sense that it tracks points-to rela-
tionships in a way that respects the semantics of field loading and storing.
Simple analyses simply treat all loads or stores to an object as a kind of
indirection, similar to a = *b and *b = a from C/C++. Such analyses
are imprecise in the presence of multiple fields, and treat all fields the
same.

• The analysis is sensitive towards dispatch semantics. The semantics of
virtual dispatch, where the runtime target of a method invocation is deter-
mined by the runtime type of a call’s receiver object, are common amongst
object-oriented languages. The points-to analyses of Figures 1.2 and 5.1
treat method calls as assignments, in the sense that the i-th parameter
is assigned from the call-site’s i-th argument, and this from the receiver
object. To handle virtual dispatch, we use the points-to relation to adapt
the call-graph on-the-fly according to the potential types of the receiver
objects.

We propose two analyses, called Virtual and Conservative, which vary in
how they treat the call-graph. For Virtual, the points-to relation is used
to construct paths between call-site method descriptors and declared-method
types. In other words, the call-graph is discovered on-the fly so long as points-to
relations are discovered. For example, if o is the receiver object of a call-site,
and (o, h) ∈ points-to, then let t be the static type of the object(s) allocated
by h, thus the call-site will invoke whichever version of the method that t ob-
jects call into. For Conservative, we statically over-approximate the possible
targets of the call-site invocations, i.e. the method called by a call-site with
receiver object of static-type t is any method declared by a subtype of t, or the
closest supertype if t does not override the method. These two analyses were
chosen as they provide a similar outcome (i.e. they are refinements of points-to
analysis with some type-awareness) but they have different characteristics. The
Virtual analysis builds up its dispatch table during computation, making the
computation of the relation relevant to the optimiser, whilst Conservative
does not, meaning the optimiser will be unable to leverage those computations
to improve performance. The grammars for Virtual and Conservative, along
with a summary of the semantic interpretation for the different edge labels, are
shown in Figure 5.5.

We run our experimental analysis on standard Java benchmarks, drawn from
the DaCapo suite [13]. The DaCapo benchmarks have two major releases: the
initial release from 2006 and a subsequent 2009 version (called “Bach”). We
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Label Code Semantics (for an (s, t) edge)

ACTUAL i a = o.compare(s); s is the i-th argument to the call at
site t

ALLOC s = new Object(); a new statement at site t is assigned
to s

ASSIGN s = t; t is assigned to s

DECLARED TYPE String s; t is the declared type of variable s

DEFINER d String toString() s is the type that defines (overrides)
methods having descriptor d with an
implementation whose signature is t

FORMAL i void foo(s) s is the i-th parameter in a method
with signature t

LOAD f s = t.f; t’s f -field is loaded into variable s

RECEIVER d bar = s.d(); s is the receiver variable of the call at
site t to a method with descriptor d

REFLEX SUBTYPE class S extends T t is a reflexive transitive subtype of s

RETURNED return s; the method with signature t returns s

RETURNING s = foo.bar(); s is assigned the return value at site t

STORE f s.f = t; t is stored into s’s f -field

TYPE foo = new T(); t is the type of the object allocated
by a new statement at site s

pt : ALLOC
| ASSIGN pt
| LOAD f pt −pt STORE f pt
| FORMAL i −DEFINER d −DECLARED TYPE
−REFLEX SUBTYPE RECEIVER d
−ACTUAL i pt
| RETURNING −RECEIVER d

REFLEX SUBTYPE DECLARED TYPE
DEFINER d −RETURNED pt ;

(a) Conservative

pt : ALLOC
| ASSIGN pt
| LOAD f pt −pt STORE f pt
| FORMAL i −DEFINER d −TYPE
−pt RECEIVER d −ACTUAL i
pt

| RETURNING −RECEIVER d pt
TYPE DEFINER d −RETURNED
pt ;

(b) Virtual

Figure 5.5: The points-to grammars used for our experimentation, and the
semantics of the terminal-labelled edges. Note that “ternary” relations are
placeholders for a multiplicity of relations, one for each element in the third
domain (e.g. ACTUAL i → ACTUAL 1, ACTUAL 2, . . . ).
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Figure 5.6: Runtimes for solving the Virtual and Conservative points-to
analyses with and without optimisations.

run experiments over both suites. We use standard tools to generate input
graphs from the DaCapo programs, specifically we use DOOP [66] as a means
of generating semantic graphs from the input programs, which we subsequently
process for input to our prototype solver using simple text manipulation. The
experimental machine is a 3.2GHz Intel R© i5-4570 CPU and 8GB RAM, running
Ubuntu 16.04 in desktop mode. All execution time statistics, including the
time taken for solving problems, optimising grammars, and comparing with
alternative tools, is taken as an average over three runs.

5.4.2 Results

We first examine the effectiveness of optimisation for the different grammars.
Figure 5.6 shows the runtimes of solving the Virtual and Conservative prob-
lems over the DaCapo benchmarks. The plot compares three versions of each
solver, the first is not optimised (i.e. it was written in the most straightforward
manner), the second has been optimised with a single pass, and the third has
been optimised with unlimited passes (though in practice, 6 passes were needed
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Table 5.1: Comparison of the virtual dispatch analysis used to demonstrate
our optimiser against the well known DOOP framework’s context-insensitive
analysis. This is a re-production of a dataset published in [37].

Bench |V | |E| |pt|V |pt|D TV TD
2006-luindex 54,783 100,359 9,628 4,863 0.24 11.33
2006-lusearch 54,990 100,731 9,678 2,365 0.24 10
bach-sunflow 66,390 137,747 13,943 14,991 0.31 13.33
2006-eclipse 76,112 137,306 11,234 13,435 0.34 15
2006-pmd 79,274 167,757 17,186 4,173 1.28 12.67
2006-antlr* 84,643 158,367 13,437 18,504 0.38 15.33
2006-bloat 95,249 179,023 39,058 25,733 1.12 14.33
bach-lusearch 97,666 177,561 18,032 3,483 0.83 13.67
bach-luindex* 99,206 180,611 18,448 10,548 0.84 15.33
2006-xalan 107,222 217,835 22,019 2,271 1.37 13.33
2006-chart 109,756 220,018 24,234 7,557 0.92 15
bach-pmd 110,221 234,508 23,367 6,677 1.6 14.33
2006-fop 116,029 233,719 23,938 12,606 0.59 16
2006-hsqldb 148,873 265,518 32,541 2,413 1.24 15.33
2006-jython 161,015 423,961 42,299 202,481 11.46 27.67
bach-h2 174,966 331,573 76,029 5,217 2.11 18.67
bach-avrora 191,641 369,613 49,461 4,837 2.53 17.67
bach-batik 293,646 605,777 57,516 23,381 3.49 39
bach-jython 463,573 1,560,308 714,448 228,624 121.24 113.67
bach-xalan 552,233 1,068,759 143,796 3,519 12.19 59.33
bach-eclipse 1,000,511 1,967,814 292,016 30,827 43.38 259.67

by both benchmarks). Benchmarks with an asterisk (∗) were used as training
data for the optimiser. The Virtual problem showed significant improvement
when optimised, showing two orders of magnitude speedup and even allow-
ing problems which previously timed-out to be solved in a reasonable amount
of time. The Conservative benchmark was less amenable to optimisation,
and whilst some improvement was made by performing a single transformation,
further changes did not gain from there. This shows us firstly that logical op-
timisation is sensitive to the input problem. As the logic of Conservative is
mostly controlled by a relatively dense input edge set (i.e the static call-graph,
a coarse over-approximation), we see that few improvements can be made to
allow the logic to work faster. By comparison, Virtual discovers most of its
edges on-the-fly, so improving its logic yielded significantly better solvers.

Since our experimental setup uses the DOOP framework as a means of gen-
erating test cases, we are interested in the relevant statistics regarding the sim-
ilarities and differences with that tool. Table 5.1 records metrics about the
datasets, including the number of vertices and input (terminal) edges for each
problem. Importantly, |E| is mostly O (|V |), differing by between 2× and 3×.
The columns |pt|V and |pt|D show the number of points-to edges as discovered
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Figure 5.7: Runtimes of LogicBlox and Soufflé on the Virtual problem, as
compared with our optimised and unoptimised versions.

by Virtual and DOOP respectively. As we see, the logic of the two techniques
differs, so we would not expect the same results. Nonetheless, Virtual is a
good characterisation of the input problems, as its output size roughly corre-
lates with the more accurate DOOP, hence Virtual and Conservative are
representative of points-to analyses. The TV and TD record the runtimes for
Virtual (fully optimised) and DOOP respectively. We see that DOOP has
some overheads which we would expect of industry-grade analyses, though the
runtime can vary wildly, having between 0.9× and 10× slowdown/speedup when
compared with Virtual.

Next, we compare the utility of optimisation against commodity logic sys-
tems based on Datalog. Figure 5.7 examines how optimisation compares with
using the tuned solvers LogicBlox [5] and Soufflé [40]. LogicBlox does not make
any optimisations to its input specification, to the best of our knowledge, hence
we see that its performance is only slightly better than the runtime of our un-
optimised specification on the prototype solver. Soufflé uses a heuristic based
optimiser for scheduling rules, and we see that it performs well, though still
this approach is not as effective as our prototype solver when using the most
efficient logic. We conclude that fast solvers alone are not enough to ensure
high-performing applications, but that the logic of those solvers also needs to
be optimised, which can be done in an automatic way.

Finally we examine the individual transformations, and see how they influ-
ence runtimes individually. We instruct the optimiser to consider only a single
class of transformations (i.e. ordering, promotion, or filtering) and optimise the
Virtual specification with a single round. The results of these transformation,
and the runtimes of those optimised specifications on the input benchmarks
are shown in Figure 5.8. The ordering transformation observes a very small
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pt : FORMAL i{6}
−DEFINER d{5}
−TYPE{3} −pt {2}
RECEIVER d{1}
−ACTUAL i{4}
pt {7} ;

(a) Ordering

X d : TYPE DEFINER d ;
pt : FORMAL i −X d

−pt RECEIVER d
−ACTUAL i pt

| RETURNING
−RECEIVER d pt
X d −RETURNED
pt ;

(b) Promotion

F: STORE f>
| <STORE f ;

X: F pt ;
pt : LOAD f pt −X

STORE f X ;

(c) Filtering
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(d) Comparing the effectiveness of the different transformations. The virtual dispatch
grammar is optimised with a single pass.

Figure 5.8: The Virtual problem when allowed a single optimising transfor-
mation, and the runtimes for those optimised specifications on our benchmark
suite.

RECEIVER d relation (i.e. the relation between callsites and their receiver vari-
able), and uses this as a bottleneck to keep the number of intermediate paths
small. The optimiser promotes TYPE DEFINER d (i.e. sub-paths joining heap
objects to the method objects of that type call via signature d), which is re-
dundant in two rules: one linking parameters to arguments, and one linking
return statements to returned variables. Filtering is performed for two of the
three uses of points-to in the equivalent version of Rule 5.5, thus maintaining a
smaller filter was deemed superior to performing fewer reads of the larger rela-
tion. We see that ordering is by far the most effective standalone optimisation,
whilst filtering is quite volatile, and produces a slight slowdown on some of the
smaller datasets.
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Chapter 6

CFL-R Tools

This chapter describes a tool for synthesising CFL-R solvers from an input DSL,
called Cauliflower. Cauliflower is publicly available as an open source 1 project.
Much of this chapter was published to LPAR, 2017, in the paper “Cauliflower:
A Solver Generator for Context-Free Language Reachability” [36].

6.1 Design Goals

The CFL-R problem is an important framework for formalising and evaluating
many program analyses. The conceptually simple framework lends itself to
diverse analyses by virtue of closely modelling relationships amongst program
constructs, making CFL-R amenable to phrasing data-flow [59], object-flow [88],
control-flow [79], specification inferencing [10], set-constraint solving [47], shape-
analysis [57] and alias-analysis [68, 27]. Despite its generality, the actual solvers
for CFL-R problems (particularly all of the above cases) are custom-made on a
per-problem basis. We would expect that such a general and useful framework
should have specialised tools for solving it, yet in our survey of the literature
we have found no such system. Hence, there is a need to develop capable and
robust tools to assist the research and development in the CFL-R space.

When designing a CFL-R tool, we must first understand the reasons why
such a tool does not already exist. Our first clue comes from the diversity of
CFL-R problems themselves. A CFL-R application developer needs to focus on
the dual problems of understanding their input graphs (the problem instances)
and grammars (the problem logic). It is tempting to see the logic as inherently
tied to the solver, in which case the diverse array of problems demands a diverse
array of solvers. In this work we aim to show that it is better to optimise
solvers for the underlying CFL-R problem, using superior evaluation strategies
and datastructures, and to optimise the problem’s logic separately. Further,
the diversity of CFL-R applications limits the ability of new CFL-R research
to build on the results of older work. CFL-R practitioners who adopt solvers

1https://cauliflower-cflr.github.io/
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from the research literature will find they perform very poorly on even slightly
different logic, as those solvers were tailored to the specific logic of their problem
class. As Chapter 5 suggests, inefficiencies in the logic of the CFL-R problem,
at least in the face of biases in the inputs, is a major cause of under-performing
solvers. Knowing this, we can begin to formalise the key concerns that our
high-performance CFL-R tool must address.

6.1.1 Expressibility

Many CFL-R problems that we see in the research literature do not follow a
strict adherence to the CFL-R formalism. Firstly, many applications diverge
from the usual evaluation semantics. Many problem contexts require demand-
driven analyses [70] whilst others use incremental techniques [46]. The standard
algorithms for CFL-R evaluate in a bottom-up fashion [17, 56], and so are not
directly applicable to those contexts.

More interesting are the extensions to the CFL-R framework itself, which
many applications use. As we have seen in the running example (Figure 1.2), the
use of reversal is common for many CFL-R problems. Sridharan et al. discuss
the mechanical approach to formulating reversal [70] in their work, though many
later advances simply assume the ability to reverse a CFL-R language without
discussing its implications [27]. Another common semantic extension to CFL-
R is the use of negation, or the absence of edges. Xu et al. devise a means
of improving an analysis’ performance by computing a fast pre-analysis and
negating its results [84]. Negation is a common element of Datalog problems,
and several different semantic interpretations of negation have been proposed
for that context.

When designing a general purpose CFL-R tool, we must be able to account
for these diverse requirements. We group these needs together as expressibil-
ity concerns. Firstly, we must cover the known expressibility limitations of
CFL-R solvers, which we achieve by providing means of handling the semantic
requirements demanded by the individual tools found in the research litera-
ture. Secondly, we provide additional semantic extensions to supplement these
expressibility concerns, based on foreseeable needs, and which can be imple-
mented efficiently in the solver. The resulting solver is able to formulate and
handle classes of input which previously required more powerful/general machin-
ery than CFL-R could provide, yet still maintains the performance advantages
associated with the simple CFL-R formalism.

6.1.2 Performance

Primarily, any general purpose tool which solves CFL-R problems must be de-
signed for high performance. In Chapter 4 we saw that current tools for CFL-R
have significant scalability limitations. Indeed, CFL-R is known to be in the

2NPDA class [34], for which O
(

n3

logn

)
is the best known bounds [17]. Indeed,

CFL-R is often the bottleneck in the applications that require it, and it is not
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expected that parallel processing can be used to significantly improve runtime
performance [56]. So long as tools for CFL-R are underperforming, at least
when compared to custom implementations, we can not expect practitioners to
prefer them to hand-tailored implementations.

Part of the significant improvement that custom solutions see over generic
solvers is in the availability of domain knowledge. Developers who go the route
of catering a solver to their specific problem can implement features and op-
timisations which are necessarily effective in their domain. The optimisation
approach described in Chapter 5 is a useful automatic means of allowing a
generic solver to accommodate for the domain knowledge, though we also note
that, even without such an optimiser, the transformations used to perform op-
timisations can still be implemented manually, a process which should still be
faster than developing a solver from scratch.

When considering the performance aspects of a CFL-R solver, we must com-
pare it to alternative customised and generic tools. We do not expect that a
general purpose solver can outperform manually developed solvers, nonetheless
we hope to keep the performance differences minimal. Importantly, though, a
CFL-R solver must prove its utility as compared to more general tools. There al-
ready exists high-performance solvers for more general classes of logic including
Datalog [5, 40] and SMT [49]. Since CFL-R is a simpler formalism, we expect to
be able to make assumptions about its execution that the more general logics can
not, and in this way outperform them. Thus, we aim for the performance of the
CFL-R engine to be somewhere between that of high performance hand-tailored
implementations and that of more general/powerful solvers.

6.1.3 Convenience

Manually developed CFL-R solutions have the advantage over general ones in
terms of expressibility and performance. Naturally, the developer can imple-
ment the semantic features necessary for their problem in any custom solver.
Further, the hand-optimised approach either outperforms the generic solver, or
it performs on par with it by virtue of being a manual implementation of the
generic technique, though intuitively the former is far more likely. On the other
hand, generic approaches usually have the advantage of convenience.

In understanding how a CFL-R tool can be convenient, we must first exam-
ine how it fits into the larger picture of a target application. We can think of a
complete CFL-R system as a combination of several stages. Firstly, the input
problem must be converted into something that the CFL-R solver can under-
stand and process. In the case of a program analysis like points-to analysis, the
input is a program, possibly as source code or an intermediate representation
(though, rarely machine code), and this must be converted to a semantic graph
which represents the semantics that the analysis cares about, such as a pointer-
expression graph [90]. Next, the CFL-R solver runs on its input problem, which
produces an output as a set of reachable pairs. The points-to analysis generates
a relation between pointer/object variables and the abstract heap objects which
they may reference at runtime. Finally, the target application interprets the
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Figure 6.1: Schematic overview of the Cauliflower system, a solver generator for
CFL-R problems. This is an updated version of a figure published by Hollingum
and Scholz [36].

results, using them in some way, for example a system might use the points-to
information as part of a bug-checking tool. Since the first and last stages of such
a system design are unavoidably linked to the target application, we can not
expect a CFL-R engine to assist with these. The automatic decomposition of
input problems (like source-code) into semantic information (like Datalog facts)
is an interesting topic that we leave for future work.

Where the CFL-R tool must prove useful is in the middle stage of the
pipeline. We can immediately see two important use cases for such a tool,
standalone and embedded. For a standalone application, the generation of in-
put graphs/problems occurs in advance, and the CFL-R solver is run on these
problems in isolation. This case is most similar to the kinds of experiments
we have performed (See Sections 4.4 and 5.4), though we also foresee use for
such an external tool in a development/rapid-prototyping setting. For embed-
ded applications, the input problem is immediately given to the CFL-R solver,
which may run sequentially or concurrently with the generation of facts. Ulti-
mately embedded solvers are the most performant approach to using CFL-R,
as they avoid the overheads associated with file I/O and forking execution to a
standalone solver.

6.2 Cauliflower

We develop a powerful and general tool, catered towards the CFL-R domain,
called Cauliflower. The name was chosen as it is the most common english
root words with C-F-L-R appearing in order. Cauliflower is a solver-generator
for CFL-R problems, which works by synthesising actual solver code from an
input specification, written in our custom DSL. Solving code is generated as
a header-only library, which makes use of the advanced data structures and
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parallel utilities provided by the Cauliflower library (also header-only). Further,
a rapid-prototyping focused stand-alone front-end is automatically generated,
though the user is free to replace this with a custom front-end in the case of
embedded solvers. We present a schematic overview of the Cauliflower system
in Figure 6.1.

6.2.1 Semantics

We begin by formalising several semantic extensions to CFL-R. These semantics
are intended to be used as primitive operations which the CFL-R grammar may
use. Note that CFL-R is a subset of Datalog [1], therefore it is always possible to
extend the “semantics” of CFL-R to that of Datalog, however doing this implies
loosing the algorithmic superiority of CFL-R, which is known to be O

(
n3
)

[56],
where Datalog is only guaranteed to be polynomial. For this reason, we show
that our semantic extensions are all phraseable via CFL-R gadgets (though
somewhat inefficiently) and also can be solved by trivially extending the Melski-
Reps algorithm, i.e. they retain the O

(
n3
)

runtime for CFL-R problems. We
explore the following semantics:

• Reversal, for computing paths that traverse the graph in a backwards
direction over a backwards language. The notations A← or A refer to the
relevant reversed semantics of A.

• Templating, for computing paths over a runtime-dependant index for
each relation, i.e. for n-ary relations. The notation A[] refers to the
relevant templated semantics of A.

• Branching, for computing paths that diverge and reconnect in a struc-
tured manner. The notation A∩ refers to the relevant branched semantics
for A.

• Disconnection, for computing paths over edges/paths that do not ex-
ist in the graph. The notation A¬ refers to the relevant disconnected
semantics of A.

These semantic extensions capture most of the uses of CFL-R in the research
literature, and where they do not, at least make formulations easier (such as
demand-drivenness, which benefits from disconnection semantics). It is possible
that other semantic extensions could be considered which similarly retain the
current complexity of CFL-R algorithms, so we leave this exploration for future
work.

6.2.1.1 Reversal

The need for reversal is well understood in CFL-R research [70, 68, 91], though
frequently it is defined informally or ad hoc. Reversal is needed for many CFL-
R problems, even the running example from Section 1.1.2 requires reversed pt
paths to compute the aliasing relationship.
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Reversal semantics allows for specifications to be simpler and execute effi-
ciently, while avoiding manual efforts, as was needed by Sridharan et al. [70].
Reversal implies simultaneously reversing the language and the path in the
CFL-R problem. Language reversal refers to the mechanical translation of the
input grammar to a reversed form, which matches input words in the language
spelled backwards [38]. Path reversal refers to concatenating the labels of a path
in reverse order (alternatively, moving backwards along the arcs). To compute
CFL-R reversal, we present a gadget for finding words in the reverse language
over edges in the reversed graph:

Definition 22 (CFL-R Reversal). Given
L = (T ,N ,P, S) and T -labelled G = (V,E):

P← = {A← → Bk
← . . . B1

← | A→ B1 . . . Bk ∈ P}
L← = (T ∪ {T← | T ∈ T },N ∪ {N← | N ∈ N},P ∪ P←, S)

G← = (V,E ∪ {T←(v, u) | T (u, v) ∈ E}),

the reverse-enabled CFL-R solution is,

cfl-r←(L, G) = cfl-r(L←, G←)

Cauliflower avoids expensively computing and recording reverse information
by noting the following:

Remark 1.

A(u, v) ∈ cfl-r←(L, G)⇔ A←(v, u) ∈ cfl-r←(L, G)

6.2.1.2 Templating

In traditional CFL-R, we specify each rule in advance. To enable field sensitivity
for the points-to analysis in Section 1.1.2, we specify a different rule for each
potentially matching field:

points-to→ load f points-to points-to store f points-to

points-to→ load g points-to points-to store g points-to

. . .

In practice we can limit the rules specified to only those fields we actually
encounter, though this information is only known on a per-problem basis, and
hence the grammar must vary with the graph in these cases. In a templated
problem we allow for meta-rules and meta-edges to be specified, which expand
to a series of rules/edges as needed by the specific problem instance, i.e. we
write a single meta-grammar and this is used for multiple input graphs.

Templating is a convenience notation which enables the points-to analysis
from Figure 1.2 to be field-sensitive, as well as the virtual-dispatch analysis
from Section 5.4 to use ternary relations for its parameter index and method
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1 class X{

2 Object f;

3 }

4 class Y{}

5 Object o;

6 X a, u;

7 // H1

8 o = new X();

9 a = (X)o;

10 // H2

11 o = new Y();

12 Y b = (Y)o;

13 a.f = o;

14 u.f = o;

Figure 6.2: Code and assignment-graph for a type-aware alias analysis. Classes
are given a diamond-shaped representative vertex. type edges encode the “was
declared with type” relationship, and sub edges indicate an “is a subtype of”
relationship.

descriptor edges. The specification writer declares the rules once, encoding fields
or call-sites in different templates. Since the templates are only expanded into
rules at runtime, the same specification can be re-used on different datasets with
different template values.

Like reversal, templating is common in CFL-R research [27], though its
definition has implications for the complexity of CFL-R solvers [47]. We abridge
a complicated formal definition with this intuitive explanation. A label template
L is defined over a template-set S, such that the label LS is a placeholder for
any s ∈ S. When used in a rule, the form Lx implies that whenever an L
label appears, its template-set-member shall be named x, which allows different
labels to match on their template. In Figure 1.2, the fields form a template-set
with members {x, y}. The label loadi can stand for a load of any one field, and
we ensure field-sensitivity by matching the loaded field with the stored field in
the rule points-to→ loadi points-to points-to storei points-to.

6.2.1.3 Branching

Branching is a novel and powerful means of combining rules and analyses. A
branching path can be understood intuitively as an additional constraint on
paths, which allows the user to encode that multiple conditions must be upheld
to derive a relationship between two components of the graph. Consider a simple
extension to the points-to problem from Section 1.1.2, based on the problem in
Figure 6.2. The new graph includes semantic information for types (as vertices
drawn with a diamond), a variable’s allocated type, and a transitive subtyping
relationship between types. We formulate the alias analysis by extending the

114



grammar of Section 1.1.2 with the rules:

rsub→ sub | ε
alias→ (points-to points-to) ∩ (type rsub type)

alias→ (points-to points-to) ∩ (type rsub type)

The new grammar first identifies reflexive subtypes as either direct subtypes
or the self-relation. Subsequently, it reports alias only as those variables that
refer to the same heap object and the type of one is a reflexive subtype of
the other. We use the intersection notation here to denote a branch, which
we can see in Figure 6.2 as two distinct paths which connect at their source
and sink vertices: 〈assign(a, o), alloc(o,H1), alloc(H1, o)〉 is a sequence with its
path-word in points-to points-to, and 〈type(a,X), rsub(X,Obj), type(Obj, o)〉 is
in type rsub type, hence a and o alias in the type sensitive formulation, whilst
a and b do not, despite our simple flow-insensitive formulation assuming both
variables point to H1 and H2.

It is known that context-free languages are not closed under intersection [38],
i.e. the language generated by intersecting two context-free languages is, in gen-
eral, not context-free. In our extended semantics, branching refers to two paths
having the same endpoints. This is a weaker form of language intersection on
graphs. Informally, a branching CFL-R path exists where the, possibly distinct,
paths for every term in the intersection exist. Formally, let the branching-
enabled CFL-R solution be cfl-r∩(L, G), then:

A(u, v), B(u, v) ∈ cfl-r(L, G)⇔ (A ∩B)(u, v) ∈ cfl-r∩(L, G).

And a branching production is of the form:

X → Y1,1Y1,2 . . . ∩ Y2,1 . . . ∩ . . .

To simplify the formalisms of CFL-R intersection, we desire rules of the
form X → Y ∩Z. We define an Intersecting Normal-Form (INF) which extends
binary normal-form [43] for branching productions with two components. The
following scheme converts a grammar to INF without loss of generality:

• while any rule is of the form X → . . . ∩ Yi,1 . . . Yi,k ∩ . . ., create the rule
Y ′i → Yi,1 . . . Yi,k and replace the original rule with X → . . . ∩ Y ′i ∩ . . ..

• while any rule is of the form X → Y1∩Y2∩. . ., create the rule X ′ → Y1∩Y2
and replace the original rule with X → X ′ ∩ . . ..

• convert the remaining productions into binary normal-form.

We present a gadget for branching, which makes use of the reverse-enabled
CFL-R semantics (Definition 22), and the templating notion, assuming L is in
INF.
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Definition 23 (CFL-R Branching). Given
L = (T ,N ,P, S) and T -labelled G = (V,E):

T ∩ = T ∪ {Gu,v | u, v ∈ V }
E∩ = E ∪ {Gu,v(u, v) | u, v ∈ V }
P∩ = (P \ {X → Y ∩ Z | X → Y ∩ Z ∈ P})∪
{X → Gu,vY

←Gu,vZ
←Gu,v | X → Y ∩ Z ∈ P, u, v ∈ V }

L∩ = (T ∩,N ,P∩, S),

the branching-enabled CFL-R solution is,

cfl-r∩(L, G) = cfl-r←(L∩, (V,E∩)) \ {Gu,v(u, v) | u, v ∈ V }

u v u v
Gu,v

Y

Z

Gu,v

Y←

Gu,v

Z←

Gu,v

Our gadget relies on the traversal of the templated “gate edges” Gu,v, to
ensure a matched path actually begins and ends at the correct vertices. The
gate edges can be viewed as a ternary templated label with a template set
T ⊆ V × V , i.e. a template over pairs of vertices. Consider the INF rule
X → Y ∩ Z, as shown above-left. According to the gadget, this rule will be
removed from P and replaced with:

X → Gu,v Y
← Gu,v Z

← Gu,v

Since the gadget adds a gate Gu,v for every pair (u, v), we guarantee there exists
a path for the branching rule, the actual walk of which is shown above-right.
Note that this increases the number of terminals by O

(
|V |2

)
(i.e. the instanti-

ation of the gate template) and the number of productions by O
(
|P||V |2

)
. The

gadget is inefficient to use in practice, i.e., it is designed to demonstrate branch-
ing, not compute it. Internally, Cauliflower uses set-intersection operations to
explore branched paths.

6.2.1.4 Disconnection

Disconnection, another novel mechanism in CFL-R, allows specification-writers
to simplify analysis formalisms. Instead of creating an entirely new analysis
for disconnection-problems, we can simply re-use a problem that discovers the
connected edges, and write rules that match the absence of those connections.
To demonstrate, we build a very simple null-dereference analysis by disconnect-
ing the type-aware alias analysis from Figure 6.2. It discovers variables which
are loaded-from or stored-to that also do not point to anything. This anal-
ysis will make use of branching and reversal semantics. Firstly, observe that
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(storef storef
←) ∩ ε matches paths which “begin with a store edge, then walk

back along a store edge, and traverse the empty path”, in other words, it discov-
ers a self-loop at the source of any storef edge. Further, alias∩epsilon matches
paths between two variables “which point to the same object and traverse the
empty path”, i.e. a self loop from an object to itself if that object points to
something. We combine these two observations to write a rule which discovers
store sources and load sinks that do not point to anything:

null deref → (storef storef
←) ∩ alias¬ ∩ ε

null deref → (loadf
← loadf ) ∩ alias¬ ∩ ε

We avoid having to contrive a “not-alias” analysis, and simply re-use the existing
points-to analysis to discover new relations. For the example in Figure 6.2, a is
the source of a store edge, as is u. since a points to H1, it clearly aliases itself,
hence it will not cause a null deref loop to be created at a. On the other hand
u is a store’s source, and u does not alias itself (since it points to nothing), so
the self-loop will be created there. Hence, our simple analysis discovers the null
dereference in the source code.

Cauliflower’s disconnection is defined according to the semantics of non-
recursive negation [1]. Non-recursive negation implies that the absence of a
path in the finished solution means the presence of a “negative path” in the
disconnection-enabled solution. From a practical perspective, this forbids the
use of disconnection in rules where the disconnected term depends on the rule’s
head (i.e. in cycles).

Definition 24 (CFL-R Disconnection). Given
L = (T ,N ,P, S) and T -labelled G = (V,E):

T ¬ = T ∪ {T¬ | T ∈ T }
N¬ = N ∪ {N¬ | N ∈ N},

the disconnection-enabled CFL-R solution is,

cfl-r¬((T ¬,N¬,P, S), G) =

cfl-r(L, G) ∪ {X¬(u, v) | X(u, v) 6∈ cfl-r(L, G)}

6.2.2 CauliDSL

The user interfaces with cauliflower by providing their grammar specifications to
it, written in our domain-specific language (DSL), called CauliDSL. Figure 6.4
exemplifies the syntax of CauliDSL on the null-dereference analysis discussed in
Section 6.2.1.4. Our DSL syntax borrows from BNF grammars [8]. CauliDSL
directives are divided into two groups, types are identified by a left arrow <-,
and rules by the right arrow ->.

Rule declarations define the productions which make up the CFL-R lan-
guage. Line 21 specifies that the points-to relationship exists between nodes
joined by a path labelled 〈assign, points-to〉. Rules are written in a combination
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rsub→ sub

rsub→ ε

deref→ (storef storef ) ∩ ε ∀f ∈ fields

deref→ (loadf loadf ) ∩ ε ∀f ∈ fields

points-to→ alloc

points-to→ assign points-to

points-to→ loadf alias storef points-to ∀f ∈ fields

alias→ (points-to points-to) ∩ type-compat

type-compat→ type rsub type

type-compat→ type-compat

null-deref→ deref ∩ alias¬

Figure 6.3: A complete listing of the null-dereference analysis’ grammar, fea-
turing limited type-sensitivity.

of standard BNF grammar syntax, and Cauliflower-specific notation for reversal
(-), templating ([i]), branching (&), and disconnection (!). As a convenience,
CauliDSL disambiguates associativity of its rules with ( and ), and provides
epsilon notation with ~. The semantic operations align with those discussed in
Section 6.2.1, and they are demonstrated in-isolation in Figure 6.5.

A type declaration constrains the source and sink of the edge labels to certain
domains, which are partitions of the input vertices. Types are useful both
to assist the programmer in writing Cauliflower specifications, via static type-
checking, and to optimise the execution plan. Line 2 declares that alloc edges
connect V vertices to H vertices (i.e. variables to heap-objects). Therefore, the
rule foo->alloc,alloc is invalid, since it tries to connect an endpoint from the
domain H (the sink of alloc) to one from V (the source of alloc). Because of
the performance and correctness advantages, type declaration is mandatory in
the CauliDSL.

Both the type and the relevant rules are annotated to express template
semantics. Line 4 declares that load joins V vertices to V vertices, and have a
template over F, i.e. it joins variables to variables, and has a different version
of itself for each field. The rule on Line 22 indicates a points-to relationship
exists between the endpoints of a 〈loadf , alias, storef , points-to〉 path only when
the instantiated versions of load and store share the same field. The syntax of
templating is deliberately similar to array syntax from the C-family languages,
due to the fact that Cauliflower implements field templates via an array of
relations.
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1 // Terminals

2 alloc <- V.H;

3 assign <- V.V;

4 load[F] <- V.V;

5 store[F] <- V.V;

6 type <- V.T;

7 sub <- T.T;

8 // Nonterms

9 rsub <- T.T;

10 deref <- V.V;

11 pt <- V.H;

12 alias <- V.V;

13 type_c <- V.V;

14 null_d <- V.V;

15 // Rules

16 rsub -> sub;

17 rsub -> ~;

18 deref -> (store[f], -store[f]) & ~;

19 deref -> (-load[f], load[f]) & ~;

20 pt -> alloc;

21 pt -> assign , pt;

22 pt -> load[f], alias , store[f], pt;

23 alias -> (pt , -pt) & tc;

24 type_c -> type , rsub , -type;

25 type_c -> -type_c;

26 null_d -> deref & !alias;

Figure 6.4: CauliDSL specification for the null-dereference analysis, as shown
in Figure 6.3.

X Y

(a) -(X,Y)

Xa
Yb

Y
a

(b) X[f], Y[f]

X Y

Z

(c) (X,Y) & Z

X

(d) !X

Figure 6.5: Cauliflower’s semantic extensions. Dashed lines show the paths
recognised by the CauliDSL rule-body underneath each figure. This is a repro-
duction of a figure published in LPAR-21 [36].

6.2.3 Solver Generator

Cauliflower translates the specified CFL-R application into an efficient C++
solver. The execution plan follows the course of the efficient semi-näıve evalua-
tion from [35], and makes alterations where necessary to generate the extended
semantics operations for reversal, intersection, negation and templating. Specif-
ically, Cauliflower solvers continually evaluate rules (i.e., search for paths), until
no new results can be found. The exact procedure for “evaluating a rule” varies
depending on the rule’s definition. We demonstrate the code-generation and
performance considerations by looking at how DSL instructions cause different
codes to be generated.

In the simple case, the rule has the form A->B,C,D. The structure of a rule
allows us to bind the endpoints of most labels, which constrains the search-
space when iterating over edges in the data structure, i.e., when a source is
fixed (by being connected to another label) then we only iterate over the edges
that actually begin at that source. The previous rule produces the pseudo-code
listed below (note how the source of C is bound by the sink of B):
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for all (b1, b2) ∈ B do
for all (b2, c1) ∈ C do

for all (c1, d1) ∈ D do
A← A ∪ {(b1, d1)}

According to the semi-näıve evaluation strategy, each rule has a different ex-
pansion procedure according to the choice of “delta relation” (∆). Further, new
information is added to the delta relation, for use in later rule expansions. For
this reason, the above code actually generates three rules, such as the following
for ∆B :

for all (b1, b2) ∈ ∆B do
for all (b2, c1) ∈ C do

for all (c1, d1) ∈ D do
∆A ← (∆A∪{(b1, d1)})\A

A← ∆A

Maintaining a high standard of solver performance is key to Cauliflower’s
design goals. We ensure generated code meets this standard by using efficient,
cache-aware data-structures, and instrumenting parallel regions. Cauliflower’s
data structures are specially designed for relational algebra tasks, such as CFL-
R. We use a customised trie-like data-structure [64] to record the edges for a
single label (including different structures per template-set-element of a tem-
plated label). This structure presents an efficient index, so that projecting the
successors/predecessors of a given vertex is very fast. When x is fixed, code
such as for (x,y) in Z requires only one fast lookup to return the set of all
the successors labelled with Z.

A reverse term, such as A->B,-C,A, is similarly converted to output code.
Thanks to Remark 1, we can simply swap the binding that we use for the reverse
term. The above rule binds the C relation in reverse, to produce:

for all (b1, b2) ∈ B do
for all (c1, b2) ∈ C do

for all (c1, a1) ∈ A do
A← A ∪ {(b1, a1)}

In A->B&((C&!D),E), binding is similarly used to constrains both endpoints
in intersection and the absence of endpoints in negation. Cauliflower does not
require that rules are in INF, so the above rule is valid, and would generate:

for all (b1, b2) ∈ B do
for all (b1, c1) ∈ C do

if (b1, c1) 6∈ D then
if (c1, b2) ∈ E then

A← A ∪ {(b1, a1)}

Handling negation efficiently is a non-trivial exercise. The semi-näıve evaluation
strategy makes assumptions about the sparsity of the input problem. Since
the negation of a sparse relation is always dense (though the converse is not
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true), allowing the user to negate clauses indiscriminately can have performance
implications. Specifically, a rule such as A -> !B will cause the cross product
of B’s endpoint domains to be added to A. As the intention of Cauliflower is to
express analyses which are inherently feasible, we treat such unbound negations
as an error, i.e., negated relations are only valid when the source and sink are
bound by non-negated endpoints. Operationally, the solver must conservatively
assume any path could exist unless and until there is a guarantee that no such
edge can arise. Consider the rules:

A -> !A

Y -> Y, !Z

The first rule is invalid, since A depends on its own negation, adding an edge to
it because it is currently absent in A leads to a contradiction of Definition 24.
The second rule may be valid, if Z does not transitively depend on Y, since
currently absent Z paths will remain absent for the entire computation. Other-
wise Cauliflower can make no guarantees about absent Z paths, and the rule is
invalid.

Templating demands that meta-rules be allowed as a place-holder for mul-
tiple similarly-structured rules, which depend on one-or-more templates. The
grammar-writer need not predict what values the rule/label might have in the
graph, and can avoid manually enumerating all possibilities by annotating the
relevant types and rules. As such, Cauliflower treats the template-set as run-
time data (like vertices), and repeatedly expands the rule over each element
when expanding one templated rule. Note that the shape of a templated rule
does not change with the indices, which allows code to be generated for the
rule-template in advance, despite the unknown indices. For example, the rule
A[x] -> B[y],C[x], will generate code:

for all y ∈ templ(B) do . returns B’s template-set
for all x ∈ templ(A, C) do

for all (b1, b2) ∈ By do
for all (b2, c1) ∈ Cx do

Ax ← Ax ∪ {(b1, c1)}

Note that the outermost loop here is not over a relation, but instead is over a
template-set. Cauliflower switches to a coarse-grained parallelism here, where
each set-element is examined in parallel.

Outside of each rule, solver code is orchestrated to maximise data locality.
This improves the overall performance of the code, by keeping as much relevant
data as possible in the cache. Consider the group of rules:

A→ B X → Y Z C → B

To maximise cache utilisation, Cauliflower identifies where the same relation is
being used, and co-locates their rule expansion. The relations will be updated in
the order A,C,X, which is superior to their written order A,X,C, as it allows
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B to be kept in cache for both reads, instead of risking it being evicted when X
is updated. In the case where there are conflicting opportunities for grouping
rules, the semi-näıve evaluation strategy breaks ties and forces topologically
inferior relations to be evaluated first.

As Chapter 5 discussed, CFL-R specifications are amenable to automatic op-
timisation. The approach detailed in that chapter was to use a feedback directed
approach in order to inspect the execution of a given CFL-R solver on test data,
and rewrite the grammar using that information. Cauliflower facilitates this ap-
proach by configurations which enable profiling. The generated cauliflower code
can be emitted with source instructions that reflect various computations within
the solver, such as execution times for evaluating certain rules, and overall run-
times for the solver itself. The cauliflower tool itself is subsequently able to read
the profiled logs from its generated solvers, and rewrite input grammars based
on that information. In this way, cauliflower can perform the feedback directed
optimisation described in Chapter 5 on arbitrary grammars.

6.2.3.1 Parallelism

Cauliflower identifies both coarse-grained and fine-grained opportunities for par-
allelism. For the above code, fine-grained concurrency is possible by iterating
over the B relation in parallel. We make use of the OpenMP [24] directives
for defining parallel regions, which further allows Cauliflower solvers to adapt
to individual parallel hardware. Further, the Cauliflower data-structures are
designed to allow for a special bi-modal parallelism, i.e., they are lock-free, but
the structure can only be written to or read from (but not both) in parallel. In
fact, due to parallel generation, the above reversal rule generates:

B∗ ← disjoint partitions of B
A′ ← ∅ . this temporary is thread-local
for all B′ ∈ B∗ in parallel do

for all (b1, b2) ∈ B do
for all (c1, b2) ∈ C do

for all (c1, a1) ∈ A do
A′ ← A′ ∪ {(b1, a1)}

for each A′ in parallel do
A← A ∪A′

Semi-näıve evaluation allows for bi-modality to be used here, since we can always
guarantee that there are no read-write conflicts. In the above code, we wrote to
a temporary relation A′ in each core, and then collectively updated the real A
edges in parallel. Generating code like this avoids reading and writing the same
relation in parallel, thus preserving the bi-modality.

6.3 Viability

We now compare the performance of Cauliflower’s generated-code to a modern
high-performance hand-optimised points-to analysis for Java. Our results show
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Figure 6.6: Comparison of runtimes for Cauliflower against several commercial
and research-grade Datalog engines.

that Cauliflower is viable not merely as a prototyping tool, but competes well
with an optimised implementation. Dietrich et al. [27] present an algorithm
to solve the context- and flow- insensitive field-sensitive points-to analysis for
Java, particularly on large benchmarks. We have examined this implementation
closely in Chapter 3; for these experiments we refer to that implementation as
GigaScale. A semantically equivalent field-sensitive points-to analysis (i.e. a
field sensitive version of Figure 1.2) is encoded in Cauliflower’s DSL to pro-
duce the Java points-to solver Cauliflower. Note that the Cauliflower
specification was carefully designed to maximise performance, in a way that
the optimisation techniques described in Chapter 5 can achieve. We confirm
offline that Cauliflower is correct, since it produces an identical VarPointsTo
relation to the one computed by GigaScale. These experiments are run on a
2.1 GHz Intel R© Xeon R© CPU E5-2450 with 16 cores and 128 GB RAM under
Linux.

6.3.1 Comparison with General Tools

Cauliflower is designed to alleviate programmer efforts whilst maintaining a
high standard of execution performance. The first requirement, therefore, is
that Cauliflower’s solvers are superior to the other general purpose solvers.
Figure 6.6 presents a time comparison between Cauliflower and four modern
Datalog tools, BDDBDDB [82], Z3 [49], LogicBlox [5], and Soufflé [64]. A
timeout of 10 minutes is applied, which disqualifies the OpenJDK benchmark.
As for the performance, the next best solver, Souffle, is slower than Cauliflower
on every benchmark, having an average speedup of 1.89x and a speedup weighted
by problem size of 1.34x.

This difference is expected, since the Datalog tools will have two disad-
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Table 6.1: Comparison of memory usage for Cauliflower’s generated solver
against the hand-optimised Gigascale solver described in Chapter 3, together
with the size of the input graph and points-to relation. Memory usage does not
change significantly for parallel/sequential executions of Cauliflower. This is a
re-production of a dataset published in [36].

Benchmark |V | |points-to| Gigascale
(MB)

Cauliflower
(MB)

lusearch 14,994 9,242 98.8 4.5
sunflow 15,957 16,354 96.4 15.8
luindex 17,375 9,677 120.4 32.6
avrora 25,196 21,532 130.8 35.9
eclipse 40,200 21,830 180.8 66.9
h2 56,683 92,038 206.6 82.4
pmd 59,329 60,518 206.0 91.5
xalan 62,758 52,382 223.8 102.9
batik 63,089 45,968 213.2 101.6
fop 83,016 76,615 391.2 138.3
tomcat 110,884 82,424 445.0 181.2
jython 260,034 561,720 708.2 331.5
tradebeans 466,969 696,316 1,533.4 762.6
tradesoap 468,263 698,567 1,529.4 757.8
openjdk 1,963,997 1,570,820,597 3,531.6 60,720.2

vantages against a specialised CFL-R solver. Firstly, Datalog has a constant
overhead, based on the creation and management of more general purpose data
structures, leading to a high average improvement for Cauliflower. Secondly,
a smaller, size-dependant, overhead, due to the slightly less efficient evaluation
approaches (Datalog can not make as strong assumptions about execution as
Cauliflower). In effect, since the second overhead is smaller, the comparative
advantage of Cauliflower shrinks on the larger benchmarks.

6.3.2 Comparison with Specialised Tools

Table 6.1 presents the memory usage of Cauliflower and GigaScale on
the DaCapo [13] benchmarks (2009 version). Input datasets are distributed
with the GigaScale system, and were originally created using DOOP [16],
we use them as-is for these experiments, with minor text-formatting to make
them readable by Cauliflower. It also shows the size of the input problem and
output VarPointsTo relation. GigaScale exhibits more memory overheads as
compared with Cauliflower, though these amortise on the largest benchmark,
OpenJDK, which we attribute to the use of compression. Importantly, we see
that Cauliflower’s memory usage correlates roughly with the size of the input
problem, though it is slightly better for denser problems (like jython).

Figure 6.7 presents a comparison of runtimes between GigaScale and three
versions of Cauliflower, namely (1) a sequential version of the solver, (2)
a parallel solver running on 1 core (mostly to demonstrate the overheads of
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Figure 6.7: Comparison of runtimes for Cauliflower against the high performance
Gigascale analysis.

parallelism), and (3) the same parallel solver running on 8 cores. On smaller
benchmarks, Cauliflower outperforms GigaScale in execution time. We
attribute this to overheads which GigaScale has, that improve its perfor-
mance on larger benchmarks. Small parallel executions of Cauliflower are
also faster than GigaScale, when allocating sufficient processors to Cauli-
flower (columns Cauli-T 1-proc and Cauli-T 8-proc), though the overheads of
parallelism are not justified here, as sequential execution outperforms even the
8-core version. Memory usage also favours Cauliflower for the smaller bench-
marks (columns Giga-M and Cauli-M). Dietrich et al. [27] mention compression
techniques which account for this difference, i.e. Cauliflower memory scales
linearly with problem size, whilst GigaScale compression has a high overhead
but sub-linear scaling.

6.3.3 Execution Details

We now explore the breakdown of time in finer detail. For each iteration of the
algorithm, we chart the amount of time taken and the size of the working set
(the new information needed for this iteration) in Figure 6.8. The working-set
size is the same in the presence of parallelism, hence only one series is visible
in the working-set size plot. Spikes in the execution indicate large infrequent
updates to the VarPointsTo relation (from the bridge relation). Looking at
the time disparity between 1 and 8 cores, we see speedup is better for larger
working-set sizes (though this difference is hidden visually in a log-scale). We
also see that earlier iterations have a greater effect on time than latter iterations;
spikes in the time graph are more pronounced on the left side.

Parallelism is used to improve the relative performance of Cauliflower
as compared with GigaScale On the largest benchmark, GigaScale outper-
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Figure 6.8: Running log over the OpenJDK benchmark, showing the size of
the ∆points-to set, and, the time needed to expand rules containing that delta
relation (on 1 and 8 cores).

forms Cauliflower by a reasonable margin. The GigaScale tool is hand
optimised for large benchmarks, so the disparity is understandable, and may
be reasonably traded-off with Cauliflower’s faster development cycle. In this
case, Cauliflower’s parallelism narrows the gap. We show the parallel gains
with increasing core count in Figure 6.9, on the smallest and largest DaCapo
benchmark, as well as the OpenJDK. Parallelism allows the runtime to be cut
by over 50% with 8 cores. For OpenJDK, the ≈10 minute runtime is a rea-
sonable result; [27] compares GigaScale to the commodity LogicBlox engine,
and report its runtime as over 50 minutes on faster hardware (their own time
for GigaScale is 40 seconds to our ≈60 seconds). Unfortunately, according to
Amdahl’s law, perfect speedup is impossible, since CFL-R problems necessitate
much serial computation [56].
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Chapter 7

Conclusion

The CFL-R problem is a fundamental formalism that underpins some of the
most important analyses in use today. The historic advances of CFL-R are
mostly theoretical [47, 58], and have allowed researchers to phrase and reason
about the intricacies of program analyses in a coherent manner. Unfortunately,
whilst the theory of CFL-R is well established, the practical implementations
of the formalism are lacking. In this work we have looked at the key limiting
factors that prevent widescale adoption of CFL-R, in the hopes of designing and
developing useful tools which researchers and practitioners can apply to their
specific problems. In this way, we hope to further the reach of practical CFL-R
efforts, so that the potential of CFL-R as a real-world analysis vehicle can be
met.

Our efforts to improve the practical performance of CFL-R solvers began by
looking in-depth at a real program analysis based on CFL-R. The Gigascale
analysis, as discussed in Chapter 3, forms the groundwork for our understanding
of the lengths to which real solvers go in order to guarantee performance. We
saw how the regular subset of an analysis’ grammar could be sped up using a
more efficient solving vehicle, transitive closure (TC) in this case. In addition
to the TC optimisation, the remainder of the CFL-R logic could be phrased
as a verification problem, where an over-approximation of the analysis goal
(the bridge set) was incrementally verified in a process that was significantly
faster than building the set from scratch. We examined how several additional
optimisations, including the use of compressed data structures and ordering of
the input vertices, were needed to ensure good performance. The result was an
analysis that was able to solve the field-sensitive points-to problem on a very
large graph in under a minute [27]. Our work on Gigascale indicated to us that
the evaluation strategy for CFL-R would be key in generalising the performance
improvements.

We next explored the adoption of different evaluation procedures for CFL-R
problems. Chapter 4 details our work on improving the algorithms and data-
structures used for CFL-R. CFL-R was originally phrased as a means of speeding
up Datalog computations [86], so it is interesting that we began by adopting
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superior Datalog machinery and applying it to CFL-R. The semi-näıve strategy
was instrumental here, as it allows us to cut down on redundant computations
which traditional CFL-R algorithms, such as the Melski-Reps approach shown
in Algorithm 2. Semi-näıve requires the use of newly discovered relations, called
the delta set when propagating new information, i.e. one of the new path’s edges
must be newly discovered. Further, rules are ordered in a strategic way based
on dependency information between them, such that we only search for paths
according to a rule when we are likely to discover new edges there. The superior
evaluation strategy was enhanced by the use of efficient datastructures for CFL-
R. Quadtrees were chosen as an ideal structure, as they handle the kinds of
sparse problems associated with CFL-R.

Following the adoption of improved algorithms, we began to look at means
of improving the logic of CFL-R problems. We described an optimisation
strategy for CFL-R specifications in Chapter 5. We examined a formal model
describing the costs of evaluating CFL-R logic, based on predicting the discovery
of dead-ends (i.e. wasted search effort). The formal model was shown to be ac-
curate for a simple evaluation mechanism, though intuitively it must be effective
for any reasonable solver. We described a reasonable heuristic technique which
made predicting dead-ends discoveries computationally feasible. We applied
this modelling in a feedback-directed optimiser for CFL-R logic. The optimiser
profiled CFL-R execution, to build the model, then trialled several transforma-
tions a-priori, choosing the best one to optimise the input specification with.
We looked at reordering, promoting and filtering transformations in our study,
though any language preserving transformation may prove useful. The result of
this work is a fully automatic logic optimiser, which we implemented as part of
a prototype CFL-R solver.

The development of a tool for evaluating arbitrary CFL-R problems is the
culmination of this work. We applied the ideas discussed earlier, and developed
the Cauliflower system, as detailed in Chapter 6. Cauliflower is a solver-
generator for CFL-R problems, which generates C++ code for solving any
problem which can be described in our system. We design a DSL for CFL-
R problems, based on BNF grammars, which includes a simple type system.
Cauliflower makes programming CFL-R easier by enabling enhanced semantics,
which allow users to encode reversal, templating, branching and disconnection
in their problems. In an experimental study, we showed that Cauliflower was
superior to more general alternatives (like Datalog), though not as effective as
manually developed solutions (like Gigascale). Ultimately, the CFL-R tool Cau-
liflower can be used to further research and development in the CFL-R context.

In short we have:

• Examined the case of a high performance CFL-R based analysis, whilst
developing a fast points-to analysis.

• Detailed the evaluation and data optimisations needed to improve CFL-R
algorithms.

• Described techniques to recognise and apply optimisations to the logic of
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CFL-R problems.

• Developed a high-performance general-purpose CFL-R solver, capable of
solving most problems examined by the research literature.

7.1 Future Work

This work explored the area of CFL-R, with the intention of building viable
tools and solutions which will assist in CFL-R research and practice. Whilst
our stated goal of achieving a general purpose and highly extensible CFL-R
solver was successful, many promising avenues remain which would allow CFL-
R tools, specifically Cauliflower, to be even more useful.

We here detail several key advances which we believe would be most bene-
ficial for future CFL-R research to focus on.

The use of Quadtrees as a data structure tailored for CFL-R is promis-
ing, though their adoption requires several additional improvements. Firstly,
quadtrees were only examined in the context of two-dimensional spaces (i.e.
binary relations). Ideally, a full exploration of Quadtrees could be undertaken
in the context of n-trees, i.e. higher dimensional trees. This would allow the
use of quadtrees to phrase higher arity problems, such as the kind found in
Datalog, and could be used for the enhanced semantics proposed in Chapter 6.
This line of research relates to the idea of experimenting with varying quadtree
representation on different platforms. For simplicity, our quadtrees were opti-
mised for a fixed platform (with a 64-bit architecture), it would be interesting
to see if the tradeoffs made for that word-size or cache-width could be gener-
alised based on architecture. Further, we hope to explore parallel algorithms
for multiplying quadtrees (i.e. parallel relational joins). Whilst quadtrees are
superior for sequential evaluations, highly specialised parallel data structures
ultimately outperform when given enough computational resources. Given a
parallel algorithm for multiplying quadtrees, we expect that CFL-R solvers will
become significantly faster in practice.

The evaluation strategy used for the CFL-R research was more effective
experimentally than the prior approaches, at least on our benchmarks. Nev-
ertheless, we are interested in applying other algorithms which were developed
more recently. Most computation time goes into joining relations (i.e. discover-
ing paths), so this area deserves some focus. Particularly, there is recent work
in the Datalog field which proposes joining all relations at once (instead of one
pair at a time), which may have practical gains in performance [80]. Ultimately
though, there is still work to be done improving the current semi-näıve evalu-
ation approach. Cauliflower conservatively assumes that each relation needs to
be indexed from both directions, though an alternate evaluation strategy may
obviate the need for maintaining bi-directional indices. In such cases, execution
times could be potentially halved.

The advances made by Gigascale were mostly to do with recognising subsets
of the logic which could be evaluated with superior algorithms. Ideally, we
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would be able to recognise these subsets and apply optimisations to capitalise
on them in a mechanical fashion. One such language feature is the presence of
Dyck rules in the language. There are superior algorithms for evaluating Dyck
grammars [89], though it may be possible to apply the Gigascale idea directly
and use an over-approximate/validation approach in a general evaluation. It
may be viable to mechanically recognise the regular portions of a grammar
for which TC algorithms can be used directly, though ideally we could find
the kinds of equivalence classes which language rules encode [33]. The above
features require significant effort to understand how and when they occur in a
CFL-R grammar, and how to capitalise on them when they do occur.

Finally, specifically related to the optimisations of Chapter 5, we wish to
examine better optimisation approaches. The optimisation procedure we devel-
oped used a very coarse 1-dimensional summary to represent the binary relations
used in CFL-R. Since using the actual relation is equivalent to solving CFL-R,
we would like to explore how varying the accuracy of the approximation would
improve the optimiser. Our approach relies on feedback direction and a cost
model to predict good optimisations a-priori, though it is also possible to adapt
undirected techniques, such as genetic algorithms, to discover better formula-
tions without a cost model. Further, since any language preserving transforma-
tion is a candidate for optimisation, we wish to examine other transformations,
such as rule substitution (i.e. the reverse of promotion), and develop techniques
for reasoning about their performance. Importantly, the optimisation work is
very general, so it is also possible to extend our ideas to the Datalog context.
Using feedback-directed optimisation for Datalog specifications could alleviate
much of the burden that faces Datalog practitioners, though their formalism
is more complicated than CFL-R, so we do not expect the optimisers to be as
effective there.
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