89,792 research outputs found

    Performance analysis of FDDI

    Get PDF
    The Fiber Distributed Data Interface (FDDI) is an imerging ANSI and ISO standard for a 100 megabit per second fiber optic token ring. The performance of the FDDI media access control protocol is analyzed using a simulation developed at NASA Ames. Both analyses using standard measures of performance (including average delay for asynchronous traffic, channel utilization, and transmission queue length) and analyses of characteristics of ring behavior which can be attributed to constraints imposed by the timed token protocol on token holding time (including bounded token rotation time, support for synchronous traffic, and fairness of channel access for nodes transmitting asynchronous traffic) are included

    An optimal synchronous bandwidth allocation scheme for guaranteeing synchronous message deadlines with the timed-token MAC protocol

    Get PDF
    This paper investigates the inherent timing properties of the timed-token medium access control (MAC) protocol necessary to guarantee synchronous message deadlines in a timed token ring network such as, fiber distributed data interface (FDDI), where the timed-token MAC protocol is employed. As a result, an exact upper bound, tighter than previously published, on the elapse time between any number of successive token arrivals at a particular node has been derived. Based on the exact protocol timing property, an optimal synchronous bandwidth allocation (SBA) scheme named enhanced MCA (EMCA) for guaranteeing synchronous messages with deadlines equal to periods in length is proposed. Thm scheme is an enhancement on the previously publiibed MCA scheme

    Separation of Circulating Tokens

    Full text link
    Self-stabilizing distributed control is often modeled by token abstractions. A system with a single token may implement mutual exclusion; a system with multiple tokens may ensure that immediate neighbors do not simultaneously enjoy a privilege. For a cyber-physical system, tokens may represent physical objects whose movement is controlled. The problem studied in this paper is to ensure that a synchronous system with m circulating tokens has at least d distance between tokens. This problem is first considered in a ring where d is given whilst m and the ring size n are unknown. The protocol solving this problem can be uniform, with all processes running the same program, or it can be non-uniform, with some processes acting only as token relays. The protocol for this first problem is simple, and can be expressed with Petri net formalism. A second problem is to maximize d when m is given, and n is unknown. For the second problem, the paper presents a non-uniform protocol with a single corrective process.Comment: 22 pages, 7 figures, epsf and pstricks in LaTe

    Performance of buffer insertion LANs

    Get PDF
    This thesis presents an evaluation of the performance of some ring local area network protocols, specifically the buffer insertion ring and the token ring. Both dual and single versions of each are considered, and performance statistics are obtained by measurements on real networks, by mathematical analysis, and by computer simulation. New packet routing protocols for dual contrarotating buffer insertion and token ring networks are described and their performance is examined. It is found that, due to the bandwith reuse properties of the routing methods, maximum throughputs of 800% and 200% are achievable, for the dual buffer insertion ring and the dual token ring respectively

    Cohesive token passing algorithm utilizing software agents

    Get PDF
    The communications domain has utilized the implementation of protocols for a wide spectrum of applications. This encompasses Medium Access Control (MAC) protocols. MAC protocols have been extensively researched from several angles. This encompasses the implementation in the area of Wave Division Multiplexing (WDM) networks and Mobile Adhoc Networks (MANET). The relevance of intelligence in sustaining the pre-requisites for dynamic reconfiguration has gained an integral attention in MANET. Approach: The implementation of Token Ring in MANET can be correlated to its complementary implementation in IP networks. In this paper, the limitation of Token Ring algorithm for IP networks in the context of intelligent processing has been researched extensively. An enhanced Token Ring protocol governed by intelligent processing has been implemented in this paper. The core of the new protocol is based on the circulation mechanism of the token. As opposed to the traditional circulatory mechanism, a software agent is designed to become an intelligent circulatory agent is this research. The developed software agent is utilized to implement prioritized token access subject to the traffic type. Each station is coupled with a software agent who cohesively collaborates to assign the token. Results: The proposed agent and the enhanced Token Ring implementation have been extensively verified through simulation experiments. A complete circulation of the ring is defined upon all nodes being visited at least once. Discrete-event simulation models were developed and deployed for the purpose of performance analysis. The results acquired validated the improved results of the new software agent based implementation. The performance metrics studied were average delay and average buffer utilization. Conclusion: The proposed algorithm has enabled to derive an ideal balance between the complexity of intelligent processing and the versatility of managing the token ring

    Analysis of exhaustive limited service for token ring networks

    Get PDF
    Token ring operation is well-understood in the cases of exhaustive, gated, gated limited, and ordinary cyclic service. There is no current data, however, on queueing models for the exhaustive limited service type. This service type differs from the others in that there is a preset maximum (omega) on the number of packets which may be transmitted per token reception, and packets which arrive after token reception may still be transmitted if the preset packet limit has not been reached. Exhaustive limited service is important since it closely approximates a timed token service discipline (the approximation becomes exact if packet lengths are constant). A method for deriving the z-transforms of the distributions of the number of packets present at both token departure and token arrival for a system using exhaustive limited service is presented. This allows for the derivation of a formula for mean queueing delay and queue lengths. The method is theoretically applicable to any omega. Fortunately, as the value of omega becomes large (typically values on the order of omega = 8 are considered large), the exhaustive limited service discipline closely approximates an exhaustive service discipline

    Documentation for the token ring network simulation system

    Get PDF
    A manual is presented which describes the language features of the Token Ring Network Simulation System. The simulation system is a powerful simulation tool for token ring networks which allows the specification of various Medium Access Control (MAC) layer protocols as well as the specification of various features of upper layer ISO protocols. In addition to these features, it also allows the user to specify message and station classes virtually to any degree of detail desired. The choice of a language instead of an interactive system to specify network parameters was dictated by both flexibility and time considerations. The language was developed specifically for the simulation system, and is very simple. It is also user friendly in that language elements which do not apply to the case at hand are ignored rather than treated as errors

    Parameterized Synthesis

    Full text link
    We study the synthesis problem for distributed architectures with a parametric number of finite-state components. Parameterized specifications arise naturally in a synthesis setting, but thus far it was unclear how to detect realizability and how to perform synthesis in a parameterized setting. Using a classical result from verification, we show that for a class of specifications in indexed LTL\X, parameterized synthesis in token ring networks is equivalent to distributed synthesis in a network consisting of a few copies of a single process. Adapting a well-known result from distributed synthesis, we show that the latter problem is undecidable. We describe a semi-decision procedure for the parameterized synthesis problem in token rings, based on bounded synthesis. We extend the approach to parameterized synthesis in token-passing networks with arbitrary topologies, and show applicability on a simple case study. Finally, we sketch a general framework for parameterized synthesis based on cutoffs and other parameterized verification techniques.Comment: Extended version of TACAS 2012 paper, 29 page
    corecore