182 research outputs found

    Detailed black hole state counting in loop quantum gravity

    Get PDF
    We give a complete and detailed description of the computation of black hole entropy in loop quantum gravity by employing the most recently introduced number-theoretic and combinatorial methods. The use of these techniques allows us to perform a detailed analysis of the precise structure of the entropy spectrum for small black holes, showing some relevant features that were not discernible in previous computations. The ability to manipulate and understand the spectrum up to the level of detail that we describe in the paper is a crucial step towards obtaining the behavior of entropy in the asymptotic (large horizon area) regime

    Exact arithmetic on the Stern–Brocot tree

    Get PDF
    AbstractIn this paper we present the Stern–Brocot tree as a basis for performing exact arithmetic on rational numbers. There exists an elegant binary representation for positive rational numbers based on this tree [Graham et al., Concrete Mathematics, 1994]. We will study this representation by investigating various algorithms to perform exact rational arithmetic using an adaptation of the homographic and the quadratic algorithms that were first proposed by Gosper for computing with continued fractions. We will show generalisations of homographic and quadratic algorithms to multilinear forms in n variables. Finally, we show an application of the algorithms for evaluating polynomials
    • …
    corecore