2,149 research outputs found

    AADLib, A Library of Reusable AADL Models

    Get PDF
    The SAE Architecture Analysis and Design Language is now a well-established language for the description of critical embedded systems, but also cyber-physical ones. A wide range of analysis tools is already available, either as part of the OSATE tool chain, or separate ones. A key missing elements of AADL is a set of reusable building blocks to help learning AADL concepts, but also experiment already existing tool chains on validated real-life examples. In this paper, we present AADLib, a library of reusable model elements. AADLib is build on two pillars: 1/ a set of ready-to- use examples so that practitioners can learn more about the AADL language itself, but also experiment with existing tools. Each example comes with a full description of available analysis and expected results. This helps reducing the learning curve of the language. 2/ a set of reusable model elements that cover typical building blocks of critical systems: processors, networks, devices with a high level of fidelity so that the cost to start a new project is reduced. AADLib is distributed under a Free/Open Source License to further disseminate the AADL language. As such, AADLib provides a convenient way to discover AADL concepts and tool chains, and learn about its features

    Expressing and enforcing user-defined constraints of AADL models

    Get PDF
    The Architecture Analysis and Design Language AADL allows one to model complete systems, but also to define specific extensions through property sets and library of models. Yet, it does not define an explicit mechanism to enforce some semantics or consistency checks to ensure property sets are correctly used. In this paper, we present REAL (Requirements and Enforcements Analysis Language) as an integrated solution to this issue. REAL is defined as an AADL annex language. It adds the possibility to express constraints as theorems based on set theory to enforce implicit semantics of property sets or AADL models. We illustrate the use of the language on case studies we developed with industrial partners

    Model-driven engineering approach to design and implementation of robot control system

    Full text link
    In this paper we apply a model-driven engineering approach to designing domain-specific solutions for robot control system development. We present a case study of the complete process, including identification of the domain meta-model, graphical notation definition and source code generation for subsumption architecture -- a well-known example of robot control architecture. Our goal is to show that both the definition of the robot-control architecture and its supporting tools fits well into the typical workflow of model-driven engineering development.Comment: Presented at DSLRob 2011 (arXiv:cs/1212.3308

    A Practical Example for Model-Driven Web Requirements

    Get PDF
    The number of approaches for Web environments has grown very fast in the last years: HDM, OOHDM, and WSDM were among the first, and now a large number can be found in the literature. With the definition of MDA (Model- Driven Architecture) and the acceptance of MDE (Model-Driven Engineering) techniques in this environment, some groups are working in the use of metamodels and transformations to make their approaches more powerful. UWE (UMLBased Web Engineering) or OOWS (Object-Oriented Web Solutions) are only some examples. However, there are few real experiences with Web Engineering in the enterprise environment, and very few real applications of metamodels and MDE techniques. In this chapter the practical experience of a Web Engineering approach, NDT, in a big project developed in Andalusia is presented. Besides, it shows the usability of metamodels in real environments

    Combining SysML and AADL for the design, validation and implementation of critical systems

    Get PDF
    The realization of critical systems goes through multiple phases of specification, design, integration, validation, and testing. It starts from high-level sketches down to the final product. Model-Based Design has been acknowledged as a good conveyor to capture these steps. Yet, there is no universal solution to represent all activities. Two candidates are the OMG-based SysML to perform high-level modeling tasks, and the SAE AADL to perform lower-level ones, down to the implementation. The paper shares an experience on the seamless use of SysML and the AADL to model, validate/verify and implement a flight management system

    The TASTE Toolset: turning human designed heterogeneous systems into computer built homogeneous software.

    Get PDF
    The TASTE tool-set results from spin-off studies of the ASSERT project, which started in 2004 with the objective to propose innovative and pragmatic solutions to develop real-time software. One of the primary targets was satellite flight software, but it appeared quickly that their characteristics were shared among various embedded systems. The solutions that we developed now comprise a process and several tools ; the development process is based on the idea that real-time, embedded systems are heterogeneous by nature and that a unique UML-like language was not helping neither their construction, nor their validation. Rather than inventing yet another "ultimate" language, TASTE makes the link between existing and mature technologies such as Simulink, SDL, ASN.1, C, Ada, and generates complete, homogeneous software-based systems that one can straightforwardly download and execute on a physical target. Our current prototype is moving toward a marketed product, and sequel studies are already in place to support, among others, FPGA systems

    A Model-based transformation process to validate and implement high-integrity systems

    Get PDF
    Despite numerous advances, building High-Integrity Embedded systems remains a complex task. They come with strong requirements to ensure safety, schedulability or security properties; one needs to combine multiple analysis to validate each of them. Model-Based Engineering is an accepted solution to address such complexity: analytical models are derived from an abstraction of the system to be built. Yet, ensuring that all abstractions are semantically consistent, remains an issue, e.g. when performing model checking for assessing safety, and then for schedulability using timed automata, and then when generating code. Complexity stems from the high-level view of the model compared to the low-level mechanisms used. In this paper, we present our approach based on AADL and its behavioral annex to refine iteratively an architecture description. Both application and runtime components are transformed into basic AADL constructs which have a strict counterpart in classical programming languages or patterns for verification. We detail the benefits of this process to enhance analysis and code generation. This work has been integrated to the AADL-tool support OSATE2
    corecore