

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 3664

To cite this document: GILLES, Olivier. HUGUES, Jérôme. Expressing and
enforcing user-defined constraints of AADL models. In: Proceedings of the 5th
UML and AADL Workshop (UML and AADL 2010)

Any correspondence concerning this service should be sent to the repository
administrator: staff-oatao@inp-toulouse.fr

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12041772?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/
mailto:staff-oatao@inp-toulouse.fr

Expressing and enforcing user-defined constraints of AADL models

Olivier GILLES

GET-Télécom Paris – LTCI-UMR 5141 CNRS
46, rue Barrault, F-75634 Paris CEDEX 13, France

olivier.gilles@enst.fr

Jérôme HUGUES,
Université de Toulouse, ISAE

10, avenue E. Belin - BP 54032,
31055 Toulouse CEDEX 4, France

jerome.hugues@isae.fr

Abstract—The Architecture Analysis and Design Language
AADL allows one to model complete systems, but also to define
specific extensions through property sets and library of models.
Yet, it does not define an explicit mechanism to enforce some
semantics or consistency checks to ensure property sets are
correctly used.

In this paper, we present REAL (Requirements and En-
forcements Analysis Language) as an integrated solution to
this issue. REAL is defined as an AADL annex language. It
adds the possibility to express constraints as theorems based
on set theory to enforce implicit semantics of property sets or
AADL models. We illustrate the use of the language on case
studies we developed with industrial partners.

I. INTRODUCTION

Model-Driven Engineering is now entering maturity,
where developer masters most of its concepts, modeling
patterns and artifacts. We see a trends to evolve from small
models to explore concepts to large libraries of models to
represent product lines.

It is therefore common to build a library of reusable
models, each of which comes with some contracts attached.
Those contracts can be either “implicit” or “explicit”. We
call them “explicit” when they rely directly on the under-
lying meta-models or type systems (syntactic legality rules)
to enforce contracts relationships. On the other hand, they
are “implicit” when one need to interpret part of the models
to understand its full semantics, e.g. based on some naming
conventions.

Without lack of generality, we base our work on the
AADL [12] language. These concerns are common to
most modeling frameworks, should it be UML, SCADE
or Simulink. As part of the AADL committee work, some
industrial partners indicated that the size of models libraries
can be above one million of models elements (component
types, property sets, . . .).

When building such large models, it is not uncommon to
add some implicit information on the models built. However,
lack of documentation of some artifacts is sometimes the
root cause of severe system’s failure like Ariane V maiden’s
flight [5] or NASA probes failure. Increased size of models
is therefore bringing back some common failures of software
that were to be minimized thanks to models.

In this paper, we propose to enrich the AADL with an
annex language dedicated to checking and enforcing user-
specific constraints. We first quickly present the AADL,
focusing on user-defined extension mechanisms it provides.
We show how these mechanisms may put a risk on models
reusability. We then introduce REAL, an AADL annex
language whose main goal is to express constraints on
models. This language is completed with a checker that
validate them. We illustrate the use of REAL through the
definition of a property set, and a small library of AADL
models.

II. BRIEF OVERVIEW OF AADL

AADL [12] is an architecture description language dedi-
cated to the design of Distributed Real-Time systems stan-
dardized by the SAE. AADL is component-centric and
allows to specify both software and hardware parts of a
systems. It allows one to define consistent block interfaces,
and to separate them from block implementation.

An AADL model is made of components. Software
components (data, thread, thread group, subprogram,
process) are distinguished from execution platform com-
ponents (memory, bus, processor, device) and hybrid
components (system).

The behavior of a system (e.g. how functional blocks
interact) is fully defined in the standard by mean of “proper-
ties” (attributes with a dedicated semantics) to progressively
refine the semantics of a system, e.g. dispatching invariants,
communication patterns; non-functional properties (such as
timing, priorities, etc) applied to each model element; non-
functional aspects of components can be described within an
AADL model such as thread dispatching condition (periodic
or sporadic), interface specifications and how components
are interconnected. These have a deep impact on the system’s
behavior. Functional aspects (algorithmic specifications) are
attached separately as source code by means of AADL
properties. An introduction to AADL can be found in [6].

AADL proposes two interesting extension mechanisms:
property sets and extends.

Property sets allow one to define custom properties to
extend standard ones. This is the path taken by the “Data
modeling annex document” [15] that allows one to model

Data Dig i ts : aadlinteger applies to (data) ;
−− The Data Dig i ts p roper ty s p e c i f i e s the t o t a l number
−− of d i g i t s o f the f i x e d po in t type .

Listing 1. A property definition from [15].

precisely data types to be manipulated, or the “ARINC
annex document” [13] that defines patterns for modeling
ARINC653 systems. Example 1 illustrates one property
definition from the “Data modeling annex document”. We
note that comments statements explicitly state that this
property is for fixed point data component types defined
through another properties: Data_Representation.

AADL extends mechanism allows one to reuse and
extend one component type. If a component type extends
another component type, then features, flows, and property
associations can be added to those already inherited. A com-
ponent type extending another component type can also re-
fine the declaration of inherited feature and flow declarations
by more completely specifying partially declared component
classifiers and by associating new values with properties.
Hence, one can easily derive new models from existing one,
following typical derivation as in object-oriented approach
a-la UML, or product lines.

Finally, the AADL language can be extended through an-
nex languages. They offer the possibility to attach additional
considerations to an AADL component like behavioral
specification [14]. Observe that languages may extend the
semantics of the AADL core. They must be defined with
great care, the definition of the behavioral or error modeling
annexes as part of the AS-2C committee shows this is not
an easy process .

III. PITFALLS OF AADL EXTENSION MECHANISMS

The AADL defines both a full grammar, and additional
legality and naming rules to constraint the set of legal
models. These rules define consistency checks to ensure the
model is meaningful. However, these rules apply only to the
properties defined in the core of AADL.

The model designer has limited control over the exten-
sions he may add through property sets or model refine-
ments. The two examples in the previous section illustrate
potential pitfalls of large model repositories:

• Inconsistency in use of properties: even if properties
are typed, there is no control of coordinated use of
properties, and thus AADL legality rules that prevent to
model an integer whose codeset is Cyrillic. Yet, codeset
is obviously the property of a string or character.

• Inconsistency in the extension of component types.
There is no equivalent of the Java’s final keyword that
would prevent the addition of features or properties.
Yet, this is an important feature to represent some
impossible evolution of a component. Hence, one may
want to explicitly forbid the addition of some buses to

a processor, or to restrict the bus that can be connected
for security or energy reasons. But the AADL language
does not support such restrictions.

• Inconsistency introduced by the use of AADL annex
languages. Such language allow one to specify one
aspect of the system (error modeling, behavioral mod-
eling, . . .). Since those can be seen as domain-specific
language with their own semantics, it is hard to check
they do not violate any semantic element of the AADL
standard. Thus, we do not address them.

A mechanism to ensure one does not violate any assump-
tion made on some model elements is to attach constraints
that express these assumptions, and define a tool to check
them. We take advantage of the AADL annex language
mechanism to define a DSL: REAL to define such con-
straint, and later process them in our AADL toolchain.

In the following, we introduce REAL and then show how
it solves the issues we emphasized.

IV. REAL, AN AADLV2 ANNEX LANGUAGE

REAL (Requirement Enforcement Analysis Language)
aims at checking constraints enforcement on architectural
descriptions at the specification step, saving significant time
over verification at execution time. In this section, we
describe the main features of this language. REAL pursues
multiple design goals

• Enabling easy navigation through AADL meta-model
elements, yet being at a high-level abstraction. To do
so, we discarded the use of OCL and decided to define
a specific DSL based on AADL meta-model concepts
to ease writing of constraints.

• Allowing to define generic theorems: universal quanti-
fiers (∀, ∃) notation is interesting to define theorems that
can apply to a wide range of models, not just specific
instances.

• Allowing for modularity through definition of separate
constraints that can be later combined.

• Being integrated to the AADL as an annex language,
so that constraints are coupled to models in the model
repository.

From these goals, we defined REAL as follows: REAL is
based on set theory and associated mathematical notations. It
allows one to build sets whose elements are AADL entities
(connections, components or subprogram calls). Verification
can then be performed on either a set or its elements by
stating Boolean expressions. The basic unit of REAL is
a theorem. A theorem verifies an expression over all the
elements of a set that is called the range set.

In order to write complex expressions, one can use prede-
fined sets, which contain the instances of the AADL model
of a given type, or build intermediary sets, using relations
between elements of sets (e.g. returns the elements of the
set A which are subcomponents of any elements of the set
B).

Subtheorems calls can be used to extract values computed
from range sets different than the current one - thus allowing
constructs like get all the instances of threads which peri-
odicity is equal to the minimum periodicity in the system.
These can also be used to define pre-required constraints on
the model.

Finally, subtheorems calls can also be used to build local
or global variables, or to check pre-required constraints on
the model. Callee theorems inherit during theorem interpre-
tation from the caller environment (the local set), and the
user can pass parameters. Thus, it is possible to design a
library of theorems that will be used by higher-level, user-
defined theorems.

REAL [7] has been integrated as an annex language
in OCARINA [10], our AADL toolsuite. We present full
examples of REAL in the next sections and show how it
can help enforcing additional semantics checks to AADL
models.

V. ENFORCING ADDITIONAL SEMANTICS OF AADL
EXTENSIONS USING REAL

In this section, we illustrate some use cases of REAL,
demonstrating both language features, but also usefulness to
validate implicit constraints arising from AADL models.

A. Property sets

Defining a new property set is a typical activity part of
the modeling of complex AADL systems. The rationale is
to handle project-specific or process-specific concerns that
are not part of the AADL core standard. Typical examples
include power consumption, weight analysis, security anal-
ysis, . . .

Let us consider the property sets defined as part of
the “Data Modeling” annex document [15]. This normative
document defines a set of properties to define precisely data
types, like for instance “an signed integer on 16bits”. To do
so, a property set has been defined to represent each aspect
of such type.

Let us consider the following property:
Real Range : range of aad l r ea l

applies to (data , port , parameter) ;

−− Real Range s p e c i f i e s a range of r e a l values t h a t apply
−− to the data component . This p roper ty i s used to
−− represent r e a l range c o n s t r a i n t s on data t h a t i s o f
−− some r e a l type .

Obviously, this property shall be defined only for data
types that represent ultimately a real type. Types are defined
using the Data_Representation property, it defines Array,
Boolean, Character, Enum, Float, Fixed, Integer, String,
Struct, Union.

A constraint is therefore that the Real_Range property
shall be applied only if the corresponding data type also has
Data_Representation set to “float”.

Translating as a REAL theorem, we have to check that for
all data components, if the property Real_Range is defined,

then the property Data_Representation exists and is set
to “float”. This is illustrated in the following theorem.
−− Real Range proper ty

theorem check real range
foreach d in data set do

−− 1/ Check t h a t the ” Real Range ” p roper ty i s app l ied
−− only to data type whose rep resen ta t i on i s f l o a t .

check ((not p rope r t y ex i s t s (d , ” rea l range ”))
or (p rope r t y ex i s t s (d , ” da ta represen ta t ion ”)
and get proper ty va lue (d , ” da ta represen ta t ion ”) =

” f l o a t ”)) ;
end check real range ;

This theorem is a direct translation of the implication logic
connector “⇒” in logic: “A⇒ B” is equivalent to “¬A∨B”
using REAL constructs.

Based on this pattern, we may define a full library of
theorems to check for the different acceptable combinations.
This library is likely to grow quickly. In the context of the
data modeling annex, the number of combination to check
for is growing linearly with the number of properties in the
property sets.

Besides, the cost to evaluate a property is an affine relation
of the number of elements in the function to evaluate. Op-
timized implementation of the internal model representation
in OCARINA ([10]) ensures that the cost for evaluating
the whole library is limited. This is an important point if
one wants to integrate such library at model-time, in an
interactive environment like OSATE2 [3].

B. Library of models

Maturity of modeling paradigm and associated framework
like UML or AADL is now sufficient to achieve full model
reusability. For instance, the LAMBDA [9] or ADAMS [1]
project are currently exploring how to model libraries of
models. Such projects are a natural consequence of modeling
paradigms and supporting tools going mainstream.

As we pointed out, one need to be cautious when defining
such models: implicit constraints need to be defined and then
enforced.

Let us suppose we want to define a Ravenscar-compatible
model of a real-time executive. Generally speaking, the
Ravenscar profile defines a set of restrictions applied to a
model or a program to enable Rate Monotonic Analysis
or Response Time Analysis. This profile [2] targets real-
time and critical systems. It is a subset of the Ada language
that restricts concurrency constructs that prevent schedula-
bility analysis. In particular, strong restrictions are put on
communication and runtime constructs such as tasks, ren-
dezvous and protected objects. Basically, this profile forbids
any dynamic and non-deterministic features in concurrent
programming. This profile has been extended to Real-Time
Java, and AADL where it serves in the OCARINA AADL-
to-ADA code generator we develop [8].

1) Thread and protected objects restrictions: To be
Ravenscar-compliant, an AADL model must comply to
several properties. we focus on the three following properties
:

• Tasks are cyclic, with a non null Minimum Inter Ar-
rival Time : Threads are either sporadic or periodic,
scheduled by the FIFO_Within_Priorities policy.

• PCP-consistent : concurrent access to shared data uses
the Priority Ceiling Protocol [16]

In some conditions, Ravenscar systems can also comply
to the more restrictive rule:

• RMA-schedulable : The threads are schedulable accord-
ing to the Rate Monotonic Analysis

Other restrictions are more specific to the code being used,
and cannot be checked at model level (e.g. dynamic task
creation, use of delay constructs, . . .).

From an AADL model, checked by a set of REAL rules,
one can generate code that follows the architectural descrip-
tion with an appropriate code generator like OCARINA. Code
patterns would strictly follow architectural patterns. Then
verifying code compliance to the Ravenscar profile would
have the same complexity as verifying the model compliance
to the Ravenscar profile. This earlier check helps in ensuring
the quality of the model to requirements. We show how to
define the corresponding REAL theorems.

2) Non-aperiodic tasks: The first step toward writing a
REAL theorem is to translate the code-related statement in
the AADL model. The statement is quite easy to translate :
the Dispatch_Protocol AADL standard property defined
the nature of the thread. Hence, verifying whether tasks
are periodic or sporadic is the same as verifying if threads
have the property Dispatch_Protocol set to Sporadic or
Periodic.

In listing 2, Thread_Set is a predefined set that
includes all AADL thread component instances.
Get_Property_Value returns the value of the property for
the given element. In this case, the value is tested for each
element of the range set.
theorem t a s k p e r i o d i c i t y
foreach t in Thread Set do

check ((Get Property Value (t , ” D ispatch Protoco l ”) =
” p e r i o d i c ”) or

(Get Property Value (t , ” D ispatch Protoco l ”) =
” sporad ic ”)) ;

end t a s k p e r i o d i c i t y ;

Listing 2. Task Periodicity

3) PCP-Compliance: The PCP-compliance condition can
be divided into two conditions :

• All data components shared by multiples threads have
been defined as following PCP

• No data component following PCP has an accessor
thread whose priority is superior to the data priority and
all those threads must be hosted by the same processor.

The first condition is equivalent to assessing that if
more than one thread access a data component instance

(i.e. the same data component instance is provided to
those threads), then the data component instance must
have the Concurrency_Control_Protocol property set to
PRIORITY_CEILING.

The second condition states: all threads accessing a data
must have a priority which is less than the priority of the
accessed data. Furthermore, all threads must be on the same
processor.

The theorem is split in two parts: the theorem in Listing 3
checks whether PCP has been declared for all shared data;
the second one (listing 4) checks whether conditions for PCP
are present.

We use some predefined sets and relations:
• Data_Set contains all data instances
• Processor_Set contains all processor instances
• Is_Accessing_To relation returns true when the first

argument accesses the second one.
• Is_Bound_To relation returns true when the first argu-

ment’s Actual_Processor_Binding property refers to
the second argument.

theorem a l l pcp
foreach d in Data Set do

accessor threads := { t in Thread Set sothat
Is Accessing To (t , d)}

check (Card ina l (accessor threads) = 1 or
(Get Property Value

(d , ” Concurrency Contro l Protocol ”) =
” P r i o r i t y C e i l i n g ”)) ;

end a l l pcp ;

Listing 3. Shared data access

theorem PCP
foreach e in Data Set do

accessor threads := { t in Thread Set |
Is Accessing To (t , e)}

threads processors := {p in Processor Set |
Is Bound To (accessor threads , p)}

requires (a l l pcp) ; −− a l l pcp theorem i s v a l i d

check (((Get Property Value
(e , ” Concurrency Contro l Protocol ”) <>

” p r i o r i t y c e i l i n g ”) or
(Get Property Value (e , ” P r i o r i t y ”) >=

Max (accessor threads ,
Get Property Value , ” P r i o r i t y ”)))

and Card ina l (threads processors) <= 1) ;
end PCP;

Listing 4. PCP

4) RMA Schedulability: A sufficient condition for RMA
schedulability for independents threads is defined in [11]
by the following formula : ∑

N
i=0

Ci
Pi

< N(2
1
N − 1), where N

is the number of threads in the system, and Ci and Pi are
respectively thread i’s period and computation time. The
value of Ci

Pi
is named thread i’s utilization (Ui). To represent

this factor, we have defined a thread property Utilization.
Note that independence is a necessary condition, which

means that the threads must not share protected objects.
Also, it requires all threads to be periodic, which is a stricter
condition that the previous one.

To detect shared protected objects, we use the data

component property Concurrency Control Protocol. Then,
checking that each protected object is accessed at most by
one thread ensures independence.

The theorem has been split in two parts. The first, theorem
(listing 5), checks whether threads are independents, while
the second one (listing 6) checks whether conditions for
RMA are met.
theorem Independance
foreach e in Data Set do
−− a c t u a l l y t h i s set i s e i t h e r one−element or empty
protec ted data := {d in Data Set |

Compare Property Value
(e , ” Concurrency Contro l Protocol ” ,

” Protected Access ”)}
accessor threads := { t in Thread Set |

Is Accessing To
(t , pro tec ted data)}

check (Card ina l (accessor threads) <= 1) ;
end Independance ;

Listing 5. Independence

theorem RMA
foreach e in Processor Set do

Proc Set (e) := {x in Process Set |
Is Bound To (x , e)}

Threads := {x in Thread Set |
Is Subcomponent Of (x , Proc Set)}

requires (independance) ;
check (sum (get proper ty va lue

(Threads ,
” RTOS properties : : U t i l i z a t i o n ”)) <=

(Card ina l (Threads) *
(2 ** (1 / Card ina l (Threads))) − 1)) ;

end RMA;

Listing 6. RMA

: This two case studies illustrate how to define theo-
rems that can be later attached to AADL models to ensure
they faithfully comply with some modeling guidelines. We
are currently building a library to gather all theorems and
make them available through both OCARINA and the OS-
ATE2 modeling environment.

VI. CONCLUSION

The AADL allows one to define models whose seman-
tics goes beyond the standard by adding more information
through dedicated property sets or patterns. Yet, we note
this comes with limited support from the standard: it is
not possible to attach constraints or contracts to particular
patterns.

In this paper, we discussed how AADL annex languages
can propose a solution, and introduced our annex language
REAL. REAL allows the designer to attach constraints to
express implied semantics of specific properties or patterns.

REAL relies on simple mathematical notation to define
properties: set manipulation and queries on elements of the
sets. By doing so, reading or writing theorems is quite
natural, without needs to rely on AADL meta-model. Being
away from the meta-model roots of AADL was a design
goal to achieve higher readability.

REAL has been integrated to our AADL environment
OCARINA. It has been successfully used to enforce many

constraints derived from the Data Modeling or ARINC653
annex documents [4], but also to represent patterns like
POSIX or Ravenscar.

We are now working towards deploying REAL in a
more systematic way, to build a comprehensive library
of constraints expressed in the AADL core standard and
attached annex documents. The objective is to help the user
to better understand the model being built and to catch
design misconception early in the process.

REFERENCES

[1] ADAMS. Action for the Dissemination and Adoption of
the MARTE and related Standards for component based
middleware. http://www.adams-project.org/, 2009.

[2] A. Burns, B. Dobbing, and T. Vardanega. Guide for the use
of the Ada Ravenscar profile in high integrity systems, 2003.

[3] CMU/SEI. Open Source AADL Tool Environment (OS-
ATEv2). Technical report, CMU/SEI, 2009.

[4] J. Delange, L. Pautet, and P. Feiler. Validating safety and
security requirements for partitioned architectures. In Ada-
Europe ’09: Proceedings of the 14th Ada-Europe Interna-
tional Conference on Reliable Software Technologies, pages
30–43, Berlin, Heidelberg, 2009. Springer-Verlag.

[5] J. L. L. et al. ARIANE V, FLight 501 Failure. http://sunnyday.
mit.edu/accidents/Ariane5accidentreport.html.

[6] P. H. Feiler, D. P. Gluch, and J. J. Hudak. The Architecture
Analysis & Design Language (AADL): An Introduction.
Technical report, 2006. CMU/SEI-2006-TN-011.

[7] O. Gilles. REAL User’s Guide. Technical report, Télécom
Paris, 2009. available at http://aadl.enst.fr/real.html.

[8] J. Hugues, B. Zalila, L. Pautet, and F. Kordon. From the
Prototype to the Final Embedded System Using the Ocarina
AADL Tool Suite. ACM Transactions in Embedded Comput-
ing Systems (TECS), 7(4):1–25, July 2008.

[9] Lambda. LIBRARIES FOR APPLYING MODEL
BASED DEVELOPMENT APPROACHES. http:
//www.usine-logicielle.org/lambda/index FR.html, 2009.

[10] G. Lasnier, B. Zalila, L. Pautet, and J. Hugues. OCARINA:
An Environment for AADL Models Analysis and Automatic
Code Generation for High Integrity Applications. In Reliable
Software Technologies’09 - Ada Europe, volume LNCS, pages
237–250, Brest, France, jun 2009.

[11] C. L. Liu and J. W. Layland. Scheduling algorithms for multi-
programming in hard-real-time environment. In Journal of the
ACM, january 1973.

[12] SAE/AS2-C. Architecture Analysis & Design Language v2.0
(AS5506A), January 2009.

[13] SAE/AS2-C. ARINC653 Annex document for the Architecture
Analysis & Design Language v2.0 (AS5506A), October 2009
2009.

[14] SAE/AS2-C. Behavioral Annex Language Specification for
the Architecture Analysis & Design Language v2.0 (AS5506A)
(draft 2.11), October 2009 2009.

[15] SAE/AS2-C. Data Modeling Annex document for the Ar-
chitecture Analysis & Design Language v2.0 (AS5506A),
October 2009.

[16] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance
protocols : An approach to real-time synchronization. In IEEE
Transactions on Computers, 1990.

	Hugues_3664
	Hugues_36642.pdf
	Hugues_3664
	Hugues_3664.pdf

