20 research outputs found

    Revenue Maximization in Stackelberg Pricing Games: Beyond the Combinatorial Setting

    Get PDF
    In a Stackelberg Pricing Game a distinguished player, the leader, chooses prices for a set of items, and the other players, the followers, each seeks to buy a minimum cost feasible subset of the items. The goal of the leader is to maximize her revenue, which is determined by the sold items and their prices. Most previously studied cases of such games can be captured by a combinatorial model where we have a base set of items, some with fixed prices, some priceable, and constraints on the subsets that are feasible for each follower. In this combinatorial setting, Briest et al. and Balcan et al. independently showed that the maximum revenue can be approximated to a factor of H_k ~ log(k), where k is the number of priceable items. Our results are twofold. First, we strongly generalize the model by letting the follower minimize any continuous function plus a linear term over any compact subset of R_(n>=0); the coefficients (or prices) in the linear term are chosen by the leader and determine her revenue. In particular, this includes the fundamental case of linear programs. We give a tight lower bound on the revenue of the leader, generalizing the results of Briest et al. and Balcan et al. Besides, we prove that it is strongly NP-hard to decide whether the optimum revenue exceeds the lower bound by an arbitrarily small factor. Second, we study the parameterized complexity of computing the optimal revenue with respect to the number k of priceable items. In the combinatorial setting, given an efficient algorithm for optimal follower solutions, the maximum revenue can be found by enumerating the 2^k subsets of priceable items and computing optimal prices via a result of Briest et al., giving time O(2^k|I|^c ) where |I| is the input size. Our main result here is a W[1]-hardness proof for the case where the followers minimize a linear program, ruling out running time f(k)|I|^c unless FPT = W[1] and ruling out time |I|^o(k) under the Exponential-Time Hypothesis

    Graph Pricing Problem on Bounded Treewidth, Bounded Genus and k-partite graphs

    Full text link
    Consider the following problem. A seller has infinite copies of nn products represented by nodes in a graph. There are mm consumers, each has a budget and wants to buy two products. Consumers are represented by weighted edges. Given the prices of products, each consumer will buy both products she wants, at the given price, if she can afford to. Our objective is to help the seller price the products to maximize her profit. This problem is called {\em graph vertex pricing} ({\sf GVP}) problem and has resisted several recent attempts despite its current simple solution. This motivates the study of this problem on special classes of graphs. In this paper, we study this problem on a large class of graphs such as graphs with bounded treewidth, bounded genus and kk-partite graphs. We show that there exists an {\sf FPTAS} for {\sf GVP} on graphs with bounded treewidth. This result is also extended to an {\sf FPTAS} for the more general {\em single-minded pricing} problem. On bounded genus graphs we present a {\sf PTAS} and show that {\sf GVP} is {\sf NP}-hard even on planar graphs. We study the Sherali-Adams hierarchy applied to a natural Integer Program formulation that (1+ϵ)(1+\epsilon)-approximates the optimal solution of {\sf GVP}. Sherali-Adams hierarchy has gained much interest recently as a possible approach to develop new approximation algorithms. We show that, when the input graph has bounded treewidth or bounded genus, applying a constant number of rounds of Sherali-Adams hierarchy makes the integrality gap of this natural {\sf LP} arbitrarily small, thus giving a (1+ϵ)(1+\epsilon)-approximate solution to the original {\sf GVP} instance. On kk-partite graphs, we present a constant-factor approximation algorithm. We further improve the approximation factors for paths, cycles and graphs with degree at most three.Comment: Preprint of the paper to appear in Chicago Journal of Theoretical Computer Scienc

    Specializations and Generalizations of the Stackelberg Minimum Spanning Tree Game

    Full text link
    Let be given a graph G=(V,E)G=(V,E) whose edge set is partitioned into a set RR of \emph{red} edges and a set BB of \emph{blue} edges, and assume that red edges are weighted and form a spanning tree of GG. Then, the \emph{Stackelberg Minimum Spanning Tree} (\stack) problem is that of pricing (i.e., weighting) the blue edges in such a way that the total weight of the blue edges selected in a minimum spanning tree of the resulting graph is maximized. \stack \ is known to be \apx-hard already when the number of distinct red weights is 2. In this paper we analyze some meaningful specializations and generalizations of \stack, which shed some more light on the computational complexity of the problem. More precisely, we first show that if GG is restricted to be \emph{complete}, then the following holds: (i) if there are only 2 distinct red weights, then the problem can be solved optimally (this contrasts with the corresponding \apx-hardness of the general problem); (ii) otherwise, the problem can be approximated within 7/4+ϵ7/4 + \epsilon, for any ϵ>0\epsilon > 0. Afterwards, we define a natural extension of \stack, namely that in which blue edges have a non-negative \emph{activation cost} associated, and it is given a global \emph{activation budget} that must not be exceeded when pricing blue edges. Here, after showing that the very same approximation ratio as that of the original problem can be achieved, we prove that if the spanning tree of red edges can be rooted so as that any root-leaf path contains at most hh edges, then the problem admits a (2h+ϵ)(2h+\epsilon)-approximation algorithm, for any ϵ>0\epsilon > 0.Comment: 22 pages, 7 figure

    Improved Hardness of Approximation for Stackelberg Shortest-Path Pricing

    Get PDF
    We consider the Stackelberg shortest-path pricing problem, which is defined as follows. Given a graph G with fixed-cost and pricable edges and two distinct vertices s and t, we may assign prices to the pricable edges. Based on the predefined fixed costs and our prices, a customer purchases a cheapest s-t-path in G and we receive payment equal to the sum of prices of pricable edges belonging to the path. Our goal is to find prices maximizing the payment received from the customer. While Stackelberg shortest-path pricing was known to be APX-hard before, we provide the first explicit approximation threshold and prove hardness of approximation within 2−o(1). We also argue that the nicely structured type of instance resulting from our reduction captures most of the challenges we face in dealing with the problem in general and, in particular, we show that the gap between the revenue of an optimal pricing and the only known general upper bound can still be logarithmically large

    Computational comparisons of different formulations for the Bilevel Minimum Spanning Tree Problem

    Get PDF
    International audienceLet be given a graph G = (V, E) whose edge set is partitioned into a set R of red edges and a set B of blue edges, and assume that red edges are weighted and contain a spanning tree of G. Then, the Bilevel Minimum Spanning Tree Problem (BMSTP) is that of pricing (i.e., weighting) the blue edges in such a way that the total weight of the blue edges selected in a minimum spanning tree of the resulting graph is maximized. In this paper we present different mathematical formulations for the BMSTP based on the properties of the Minimum Spanning Tree Problem and the bilevel optimization. We establish a theoretical and empirical comparison between these new formulations and we also provide reinforcements that together with a proper formulation are able to solve medium to big size instances random instances. We also test our models in instances already existing in the literature

    Spanning-Tree Games

    Get PDF
    We introduce and study a game variant of the classical spanning-tree problem. Our spanning-tree game is played between two players, min and max, who alternate turns in jointly constructing a spanning tree of a given connected weighted graph G. Starting with the empty graph, in each turn a player chooses an edge that does not close a cycle in the forest that has been generated so far and adds it to that forest. The game ends when the chosen edges form a spanning tree in G. The goal of min is to minimize the weight of the resulting spanning tree and the goal of max is to maximize it. A strategy for a player is a function that maps each forest in G to an edge that is not yet in the forest and does not close a cycle. We show that while in the classical setting a greedy approach is optimal, the game setting is more complicated: greedy strategies, namely ones that choose in each turn the lightest (min) or heaviest (max) legal edge, are not necessarily optimal, and calculating their values is NP-hard. We study the approximation ratio of greedy strategies. We show that while a greedy strategy for min guarantees nothing, the performance of a greedy strategy for max is satisfactory: it guarantees that the weight of the generated spanning tree is at least w(MST(G))/2, where w(MST(G)) is the weight of a maximum spanning tree in G, and its approximation ratio with respect to an optimal strategy for max is 1.5+1/w(MST(G)), assuming weights in [0,1]. We also show that these bounds are tight. Moreover, in a stochastic setting, where weights for the complete graph K_n are chosen at random from [0,1], the expected performance of greedy strategies is asymptotically optimal. Finally, we study some variants of the game and study an extension of our results to games on general matroids

    Grundy Distinguishes Treewidth from Pathwidth

    Get PDF
    Structural graph parameters, such as treewidth, pathwidth, and clique-width, are a central topic of study in parameterized complexity. A main aim of research in this area is to understand the "price of generality" of these widths: as we transition from more restrictive to more general notions, which are the problems that see their complexity status deteriorate from fixed-parameter tractable to intractable? This type of question is by now very well-studied, but, somewhat strikingly, the algorithmic frontier between the two (arguably) most central width notions, treewidth and pathwidth, is still not understood: currently, no natural graph problem is known to be W-hard for one but FPT for the other. Indeed, a surprising development of the last few years has been the observation that for many of the most paradigmatic problems, their complexities for the two parameters actually coincide exactly, despite the fact that treewidth is a much more general parameter. It would thus appear that the extra generality of treewidth over pathwidth often comes "for free". Our main contribution in this paper is to uncover the first natural example where this generality comes with a high price. We consider Grundy Coloring, a variation of coloring where one seeks to calculate the worst possible coloring that could be assigned to a graph by a greedy First-Fit algorithm. We show that this well-studied problem is FPT parameterized by pathwidth; however, it becomes significantly harder (W[1]-hard) when parameterized by treewidth. Furthermore, we show that Grundy Coloring makes a second complexity jump for more general widths, as it becomes para-NP-hard for clique-width. Hence, Grundy Coloring nicely captures the complexity trade-offs between the three most well-studied parameters. Completing the picture, we show that Grundy Coloring is FPT parameterized by modular-width.Comment: To be published in proceedings of ESA 202

    Signalisierte Netzwerkflüsse - Optimierung von Lichtsignalanlagen und Vorwegweisern und daraus resultierende Netzwerkflussprobleme

    Get PDF
    Guideposts and traffic signals are important devices for controlling inner-city traffic and their optimized operation is essential for efficient traffic flow without congestion. In this thesis, we develop a mathematical model for guideposts and traffic signals in the context of network flow theory. Guideposts lead to confluent flows where each node in the network may have at most one outgoing flow-carrying arc. The complexity of finding maximum confluent flows is studied and several polynomial time algorithms for special graph classes are developed. For traffic signal optimization, a cyclically time-expanded model is suggested which provides the possibility of the simultaneous optimization of offsets and traffic assignment. Thus, the influence of offsets on travel times can be accounted directly. The potential of the presented approach is demonstrated by simulation of real-world instances.Vorwegweiser und Lichtsignalanlagen sind wichtige Elemente zur Steuerung innerstädtischen Verkehrs und ihre optimale Nutzung ist von entscheidender Bedeutung für einen staufreien Verkehrsfluss. In dieser Arbeit werden Vorwegweiser und Lichtsignalanlagen mittels der Netzwerkflusstheorie mathematisch modelliert. Vorwegweiser führen dabei zu konfluenten Flüssen, bei denen Fluss einen Knoten des Netzwerks nur gebündelt auf einer einzigen Kante verlassen darf. Diese konfluenten Flüsse werden hinsichtlich ihrer Komplexität untersucht und es werden Polynomialzeitalgorithmen für das Finden maximaler Flüsse auf ausgewählten Graphenklassen vorgestellt. Für die Versatzzeitoptimierung von Lichtsignalanlagen wird ein zyklisch zeitexpandiertes Modell entwickelt, das die gleichzeitige Optimierung der Verkehrsumlegung ermöglicht. So kann der Einfluss geänderter Versatzzeiten auf die Fahrzeiten direkt berücksichtigt werden. Die Leistungsfähigkeit dieses Ansatzes wird mit Hilfe von Simulationen realistischer Szenarien nachgewiesen
    corecore