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Abstract
Structural graph parameters, such as treewidth, pathwidth, and clique-width, are a central topic
of study in parameterized complexity. A main aim of research in this area is to understand the
“price of generality” of these widths: as we transition from more restrictive to more general notions,
which are the problems that see their complexity status deteriorate from fixed-parameter tractable
to intractable? This type of question is by now very well-studied, but, somewhat strikingly, the
algorithmic frontier between the two (arguably) most central width notions, treewidth and pathwidth,
is still not understood: currently, no natural graph problem is known to be W-hard for one but FPT
for the other. Indeed, a surprising development of the last few years has been the observation that
for many of the most paradigmatic problems, their complexities for the two parameters actually
coincide exactly, despite the fact that treewidth is a much more general parameter. It would thus
appear that the extra generality of treewidth over pathwidth often comes “for free”.

Our main contribution in this paper is to uncover the first natural example where this generality
comes with a high price. We consider Grundy Coloring, a variation of coloring where one seeks
to calculate the worst possible coloring that could be assigned to a graph by a greedy First-Fit
algorithm. We show that this well-studied problem is FPT parameterized by pathwidth; however, it
becomes significantly harder (W[1]-hard) when parameterized by treewidth. Furthermore, we show
that Grundy Coloring makes a second complexity jump for more general widths, as it becomes
para-NP-hard for clique-width. Hence, Grundy Coloring nicely captures the complexity trade-offs
between the three most well-studied parameters. Completing the picture, we show that Grundy
Coloring is FPT parameterized by modular-width.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases Treewidth, Pathwidth, Clique-width, Grundy Coloring

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.14

Related Version https://arxiv.org/abs/2008.07425

© Rémy Belmonte, Eun Jung Kim, Michael Lampis, Valia Mitsou, and Yota Otachi;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 14; pp. 14:1–14:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343692874?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://remybelmonte.wordpress.com/
mailto:remybelmonte@gmail.com
https://www.lamsade.dauphine.fr/~kim/
mailto:eun-jung.kim@dauphine.fr
https://orcid.org/0000-0002-5791-0887
https://www.lamsade.dauphine.fr/~mlampis/
mailto:michail.lampis@lamsade.dauphine.fr
https://www.irif.fr/~vmitsou/
mailto:vmitsou@irif.fr
https://orcid.org/0000-0002-0087-853X
https://www.math.mi.i.nagoya-u.ac.jp/~otachi/cv.html
mailto:otachi@nagoya-u.jp
https://doi.org/10.4230/LIPIcs.ESA.2020.14
https://arxiv.org/abs/2008.07425
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


14:2 Grundy Distinguishes Treewidth from Pathwidth

Funding Supported under the PRCCNRSJSPS 2019-2020 program, project PARAGA (Parameter-
ized Approximation Graph Algorithms).
Rémy Belmonte: The author was partially supported by JSPS KAKENHI Grant Number JP18K11157.
Eun Jung Kim: The author was partially supported by ANR JCJC Grant Number 18-CE40-0025-01
Yota Otachi: The author was partially supported by JSPS KAKENHI Grant Numbers JP18K11168,
JP18K11169, JP18H04091.

1 Introduction

The study of the algorithmic properties of structural graph parameters has been one of the
most vibrant research areas of parameterized complexity in the last few years. In this area
we consider graph complexity measures (“graph width parameters”), such as treewidth, and
attempt to characterize the class of problems which become tractable for each notion of
width. The most important graph widths are often comparable to each other in terms of
their generality. Hence, one of the main goals of this area is to understand which problems
separate two comparable parameters, that is, which problems transition from being FPT for
a more restrictive parameter to W-hard for a more general one1. This endeavor is sometimes
referred to as determining the “price of generality” of the more general parameter.

The two most widely studied graph widths are probably treewidth and pathwidth, which
have an obvious containment relationship to each other. Despite this, to the best of our
knowledge, no natural problem is currently known to delineate their complexity border in the
sense we just described. Our main contribution is exactly to uncover a natural, well-known
problem which fills this gap. Specifically, we show that Grundy Coloring, the problem
of ordering the vertices of a graph to maximize the number of colors used by the First-Fit
coloring algorithm, is FPT parameterized by pathwidth, but W[1]-hard parameterized by
treewidth. We then show that Grundy Coloring makes a further complexity jump if one
considers clique-width, as in this case the problem is para-NP-complete. Hence, Grundy
Coloring turns out to be an interesting specimen, nicely demonstrating the algorithmic
trade-offs involved among the three most central graph widths.

Graph widths and the price of generality. Much of modern parameterized complexity
theory is centered around studying graph widths, especially treewidth and its variants. In
this paper we focus on the parameters summarized in Figure 1, and especially the parameters
that form a linear hierarchy, from vertex cover, to tree-depth, pathwidth, treewidth, and
clique-width. Each of these parameters is a strict generalization of the previous ones in
this list. On the algorithmic level we would expect this relation to manifest itself by the
appearance of more and more problems which become intractable as we move towards the
more general parameters. Indeed, a search through the literature reveals that for each step
in this list of parameters, several natural problems have been discovered which distinguish
the two consecutive parameters (we give more details below). The one glaring exception to
this rule seems to be the relation between treewidth and pathwidth.

Treewidth is a parameter of central importance to parameterized algorithmics, in part
because wide classes of problems (notably all MSO2-expressible problems [18]) are FPT
for this parameter. Treewidth is usually defined in terms of tree decompositions of graphs,
which naturally leads to the equally well-known notion of pathwidth, defined by forcing
the decomposition to be a path. On a graph-theoretic level, the difference between the two

1 We assume the reader is familiar with the basics of parameterized complexity theory, such as the classes
FPT and W[1], as given in standard textbooks [21].
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notions is well-understood and treewidth is known to describe a much richer class of graphs.
In particular, while all graphs of pathwidth k have treewidth at most k, there exist graphs of
constant treewidth (in fact, even trees) of unbounded pathwidth. Naturally, one would expect
this added richness of treewidth to come with some negative algorithmic consequences in
the form of problems which are FPT for pathwidth but W-hard for treewidth. Furthermore,
since treewidth and pathwidth are probably the most studied parameters in our list, one
might expect the problems that distinguish the two to be the first ones to be discovered.

Nevertheless, so far this (surprisingly) does not seem to have been the case: on the one
hand, FPT algorithms for pathwidth are DPs which also extend to treewidth; on the other
hand, we give (in Section 1.1) a semi-exhaustive list of dozens of natural problems which are
W[1]-hard for treewidth and turn out without exception to also be hard for pathwidth. In fact,
even when this is sometimes not explicitly stated in the literature, the same reduction that
establishes W-hardness by treewidth also does so for pathwidth. Intuitively, an explanation
for this phenomenon is that the basic structure of such reductions typically resembles a k×n
(or smaller) grid, which has both treewidth and pathwidth bounded by k.

Our main motivation in this paper is to take a closer look at the algorithmic barrier
between pathwidth and treewidth and try to locate a natural (that is, not artificially contrived)
problem whose complexity transitions from FPT to W-hard at this barrier. Our main result
is the proof that Grundy Coloring is such a problem. This puts in the picture the
last missing piece of the puzzle, as we now have natural problems that distinguish the
parameterized complexity of any two consecutive parameters in our main hierarchy.

Parameter Result Ref
Clique-width para-NP-hard Theorem 25
Treewidth W[1]-hard Theorem 16
Pathwidth FPT Theorem 20
Modular-width FPT Theorem 26

In the figure, clique-width, treewidth, pathwidth, tree-depth,
vertex cover, feedback vertex set, neighborhood diversity, and
modular-width are indicated as cw, tw, pw, td, vc, fvs, nd, and mw
respectively. Arrows indicate more general parameters. Dotted
arrows indicate that the parameter may increase exponentially,
(e.g. graphs of vc k have nd at most 2k + k).

Figure 1 Summary of considered graph parameters and results.

Grundy Coloring. In the Grundy Coloring problem we are given a graph G = (V,E)
and are asked to order V in a way that maximizes the number of colors used by the greedy
(First-Fit) coloring algorithm. The notion of Grundy coloring was first introduced by Grundy
in the 1930s, and later formalized in [17]. Since then, the complexity of Grundy Coloring
has been very well-studied (see [1, 3, 14, 30, 44, 46, 52, 55, 73, 74, 76, 77, 78] and the
references therein). For the natural parameter, namely the number of colors to be used,
Grundy coloring was recently proved to be W[1]-hard in [1]. An XP algorithm for Grundy
Coloring parameterized by treewidth was given in [74], using the fact that the Grundy
number of any graph is at most logn times its treewidth. In [13] Bonnet et al. explicitly
asked whether this can be improved to an FPT algorithm. They also observed that the
problem is FPT parameterized by vertex cover. It appears that the complexity of Grundy
Coloring parameterized by pathwidth was never explicitly posed as a question and it was

ESA 2020
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not suspected that it may differ from that for treewidth. We note that, since the problem
(as given in Definition 1) is easily seen to be MSO1 expressible for a fixed Grundy number, it
is FPT for all considered parameters if the Grundy number is also a parameter [19], so we
intuitively want to concentrate on cases where the Grundy number is large.

Our results. Our results illuminate the complexity of Grundy Coloring parameterized
by pathwidth and treewidth, as well as clique-width and modular-width. More specifically:

1. We show that Grundy Coloring is W[1]-hard parameterized by treewidth via a
reduction from k-Multi-Colored Clique. The main building block of our reduction
is the structure of binomial trees, which have treewidth one but unbounded pathwidth,
which explains the complexity jump between the two parameters. As mentioned, an XP
algorithm is known in this case [74], so this result is in a sense tight.

2. We show that Grundy Coloring is FPT parameterized by pathwidth. Our main tool
here is a combinatorial lemma, which draws heavily from known combinatorial bounds on
the performance of First-Fit coloring on intervals graphs [53, 65]. We use this lemma to
show that on any graph the Grundy number is at most a linear function of the pathwidth.

3. We show that Grundy Coloring is para-NP-complete parameterized by clique-width,
that is, NP-complete for graphs of constant clique-width (specifically, clique-width 6).

4. We show that Grundy Coloring is FPT parameterized by neighborhood diversity
(which is defined in [56]) and leverage this result to obtain an FPT algorithm parameterized
by modular-width (which is defined in [38]).

Our main interest is concentrated in the first two results, which achieve our goal of finding
a natural problem distinguishing pathwidth from treewidth. The result for clique-width
nicely fills out the picture by giving an intuitive view of the evolution of the complexity of
the problem and showing that in a case where no non-trivial bound can be shown on the
optimal value, the problem becomes hopelessly hard from the parameterized point of view.

Other related work. Let us now give a brief survey of “price of generality” results involving
our considered parameters, that is, results showing that a problem is efficient for one
parameter but hard for a more general one. In this area, the results of Fomin et al. [35],
introducing the term “price of generality”, have been particularly impactful. This work and
its follow-ups [36, 37], were the first to show that four natural graph problems (Coloring,
Edge Dominating Set, Max Cut, Hamiltonicity) which are FPT for treewidth, become
W[1]-hard for clique-width. In this sense, these problems, as well as problems discovered later
such as counting perfect matchings [20], SAT [68, 23], ∃∀-SAT [59], Orientable Deletion
[45], and d-Regular Induced Subgraph [16], form part of the “price” we have to pay for
considering a more general parameter. This line of research has thus helped to illuminate the
complexity border between the two most important sparse and dense parameters (treewidth
and clique-width), by giving a list of natural problems distinguishing the two. (An artificial
MSO2-expressible such problem was already known much earlier [19, 58]).

Let us now focus in the area below treewidth in Figure 1 by considering problems which
are in XP but W[1]-hard parameterized by treewidth. By now, there is a small number of
problems in this category which are known to be W[1]-hard even for vertex cover: List
Coloring [31] was the first such problem, followed by CSP (for the vertex cover of the
dual graph) [70], and more recently by (k, r)-Center, d-Scattered Set, and Min Power
Steiner Tree [49, 48, 50] on weighted graphs. Intuitively, it is not surprising that problems
W[1]-hard by vertex cover are few and far between, since this is a very restricted parameter.
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Indeed, for most problems in the literature which are W[1]-hard by treewidth, vertex cover is
the only parameter (among the ones considered here) for which the problem becomes FPT.

A second interesting category are problems which are FPT for tree-depth ([66]) but
W[1]-hard for pathwidth. Mixed Chinese Postman Problem was the first discovered
problem of this type [43], followed by Min Bounded-Length Cut [25, 10], ILP [40],
Geodetic Set [51] and unweighted (k, r)-Center and d-Scattered Set [49, 48].

To the best of our knowledge, for all remaining problems which are known to be W[1]-hard
by treewidth, the reductions that exist in the literature also establish W[1]-hardness for
pathwidth. Below we give a (semi-exhaustive) list of problems which are known to be
W[1]-hard by treewidth. After reviewing the relevant works we have verified that all of the
following problems are in fact shown to be W[1]-hard parameterized by pathwidth (and in
many case by feedback vertex set and tree-depth), even if this is not explicitly claimed.

1.1 Known problems which are W-hard for treewidth and for pathwidth
Precoloring Extension and Equitable Coloring are shown to be W[1]-hard for
both tree-depth and feedback vertex set in [31] (though the result is claimed only for
treewidth). This is important, because Equitable Coloring often serves as a starting
point for reductions to other problems. A second hardness proof for this problem was
recently given in [22]. These two problems are FPT by vertex cover [33].
Capacitated Dominating Set and Capacitated Vertex Cover are W[1]-hard
for both tree-depth and feedback vertex set [24] (though again the result is claimed for
treewidth).
Min Maximum Out-degree on weighted graphs is W[1]-hard by tree-depth and feedback
vertex set [72].
General Factors is W[1]-hard by tree-depth and feedback vertex set [71].
Target Set Selection is W[1]-hard by tree-depth and feedback vertex set [9] but FPT
for vertex cover [67].
Bounded Degree Deletion is W[1]-hard by tree-depth and feedback vertex set, but
FPT for vertex cover [11, 39].
Fair Vertex Cover is W[1]-hard by tree-depth and feedback vertex set [54].
Fixing Corrupted Colorings is W[1]-hard by tree-depth and feedback vertex set [12]
(reduction from Precoloring Extension).
Max Node Disjoint Paths is W[1]-hard by tree-depth and feedback vertex set [29, 34].
Defective Coloring is W[1]-hard by tree-depth and feedback vertex set [8].
Power Vertex Cover is W[1]-hard by tree-depth but open for feedback vertex set [2].
Majority CSP is W[1]-hard parameterized by the tree-depth of the incidence graph
[23].
List Hamiltonian Path is W[1]-hard for pathwidth [62].
L(1,1)-Coloring is W[1]-hard for pathwidth, FPT for vertex cover [33].
Counting Linear Extensions of a poset is W[1]-hard (under Turing reductions) for
pathwidth [26].
Equitable Connected Partition is W[1]-hard by pathwidth and feedback vertex set,
FPT by vertex cover [28].
Safe Set is W[1]-hard parameterized by pathwidth, FPT by vertex cover [7].
Matching with Lower Quotas is W[1]-hard parameterized by pathwidth [4].
Subgraph Isomorphism is W[1]-hard parameterized by the pathwidth of G, even when
G,H are connected planar graphs of maximum degree 3 and H is a tree [61].
Metric Dimension is W[1]-hard by pathwidth [15].
Simple Comprehensive Activity Selection is W[1]-hard by pathwidth [27].

ESA 2020



14:6 Grundy Distinguishes Treewidth from Pathwidth

Defensive Stackelberg Game for IGL is W[1]-hard by pathwidth (reduction from
Equitable Coloring) [5].
Directed (p, q)-Edge Dominating Set is W[1]-hard parameterized by pathwidth [6].
Maximum Path Coloring is W[1]-hard for pathwidth [57].
Unweighted k-Sparsest Cut is W[1]-hard parameterized by the three combined parame-
ters tree-depth, feedback vertex set, and k [47].
Graph Modularity is W[1]-hard parameterized by pathwidth plus feedback vertex
set [63].

Let us also mention in passing that the algorithmic differences of pathwidth and treewidth
may also be studied in the context of problems which are hard for constant treewidth.
Such problems also generally remain hard for constant pathwidth (examples are Steiner
Forest [42], Bandwidth [64], Minimum mcut [41]). One could also potentially try to
distinguish between pathwidth and treewidth by considering the parameter dependence of
a problem that is FPT for both. Indeed, for a long time the best-known algorithm for
Dominating Set had complexity 3k for pathwidth, but 4k for treewidth. Nevertheless, the
advent of fast subset convolution techniques [75], together with tight SETH-based lower
bounds [60] has, for most problems, shown that the complexities on the two parameters
coincide exactly.

Finally, let us mention a case where pathwidth and treewidth have been shown to be
quite different in a sense similar to our framework. In [69] Razgon showed that a CNF can be
compiled into an OBDD (Ordered Binary Decision Diagram) of size FPT in the pathwidth
of its incidence graphs, but there exist formulas that always need OBDDs of size XP in the
treewidth. Although this result does separate the two parameters, it is somewhat adjacent
to what we are looking for, as it does not speak about the complexity of a decision problem,
but rather shows that an OBDD-producing algorithm parameterized by treewidth would
need XP time simply because it would have to produce a huge output in some cases.

2 Definitions and Preliminaries

For non-negative integers i, j, we use [i, j] to denote the set {k | i ≤ k ≤ j}. Note that if
j < i, then the set [i, j] is empty. We will also write simply [i] to denote the set [1, i].

We give two equivalent definitions of our main problem.

I Definition 1. A k-Grundy Coloring of a graph G = (V,E) is a partition of V into k

non-empty sets V1, . . . , Vk such that: (i) for each i ∈ [k] the set Vi induces an independent
set; (ii) for each i ∈ [k − 1] the set Vi dominates the set

⋃
i<j≤k Vj.

I Definition 2. A k-Grundy Coloring of a graph G = (V,E) is a proper k-coloring c : V → [k]
that results by applying the First-Fit algorithm on an ordering of V ; the First-Fit algorithm
colors one by one the vertices in the given ordering, assigning to a vertex the minimum color
that is not already assigned to one of its preceding neighbors.

The Grundy number of a graph G, denoted by Γ(G), is the maximum k such that G
admits a k-Grundy Coloring. In a given Grundy Coloring, if u ∈ Vi (equiv. if c(u) = i)
we will say that u was given color i. The Grundy Coloring problem is the problem of
determining the maximum k for which a graph G admits a k-Grundy Coloring. It is not
hard to see that a proper coloring is a Grundy coloring if and only if every vertex assigned
color i has at least one neighbor assigned color j, for each j < i.
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3 W[1]-Hardness for Treewidth

In this section we prove that Grundy Coloring parameterized by treewidth is W[1]-hard
(Theorem 16). Our proof relies on a reduction from k-Multi-Colored Clique and initially
establishes W[1]-hardness for a more general problem where we are given a target color
for a set of vertices (Lemma 8); we then reduce this to Grundy Coloring. Interestingly,
this intermediate problem turns out to be W[1]-hard even for pathwidth (Lemma 12), since
our reduction uses the standard strategy of constructing a grid-like structure of dimensions
k × n. The reason this reduction fails to prove that Grundy Coloring is W[1]-hard by
pathwidth is that we use some gadgets to implement the targets and a support operation
(which “pre-colors” some vertices) and for these gadgets we use trees of unbounded pathwidth.
The results of Section 4 show that this is essential: our reduction needs some part that causes
it to have high pathwidth, otherwise the Grundy number of the constructed graph would be
bounded by the parameter, resulting in an instance that can be solved in FPT time.

Let us now present the different parts of our construction. We will make use of the
structure of binomial trees Ti.

I Definition 3. The binomial tree Ti with root ri is a rooted tree defined recursively in
the following way: T1 consists simply of its root r1; in order to construct Ti for i > 1, we
construct one copy of Tj for all j < i and a special vertex ri, then we connect rj with ri. An
alternative equivalent definition of the binomial tree Ti, i ≥ 2 is that we construct two trees
Ti−1 , T ′i−1, we connect their roots ri−1, r′i−1 and select one of them as the new root ri.

I Proposition 4. Let i ≥ 2, Ti be a binomial tree and 1 ≤ t < i. There exist 2i−t−1 binomial
trees Tt which are vertex-disjoint and non-adjacent subtrees in Ti, where no Tt contains the
root ri of Ti.

I Proposition 5. Γ(Ti) ≤ i. Furthermore, for all j ≤ i there exists a Grundy coloring which
assigns color j to the root of Ti.

The proofs of Propositions 4 and 5 can be found in the full version of this paper.
A Grundy coloring of Ti that assigns color i to ri is called optimal. If ri is assigned color

j < i then we call the Grundy coloring sub-optimal.
We now define a generalization of the Grundy coloring problem with target colors and

show that it is W[1]-hard parameterized by treewidth. We later describe how to reduce this
problem to Grundy Coloring such that the treewidth does not increase by a lot.

I Definition 6 (Grundy Coloring with Targets). We are given a graph G(V,E), an
integer t ∈ IN called the target and a subset S ⊂ V . (For simplicity we will say that vertices
of S have target t.) If G admits a Grundy Coloring which assigns color t to some vertex s ∈ S
we say that, for this coloring, vertex s achieves its target. If there exists a Grundy Coloring
of G which assigns to all vertices of S color t, then we say that G admits a Target-achieving
Grundy Coloring. Grundy Coloring with Targets is the decision problem associated
to the question “given G,S, t as defined above, does G admit a Target-achieving Grundy
Coloring ?”.

We will also make use of the following operation:

I Definition 7 (Tree-support). Given a graph G = (V,E), a vertex u ∈ V and a set N of
positive integers, we define the tree-support operation as follows: (a) for all i ∈ N we add a
copy of Ti in the graph; (b) we connect u to the root ri of each of the Ti. We say that we add
supports N on u. The trees Ti will be called the supporting trees or supports of u. Slightly
abusing notation, we also call supports the numbers i ∈ N .

ESA 2020
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(a) Vertex Selection gadget Si,j .

(b) Propagators pi,j and Edge Selection gadget Wj . The
edge selection checkers and the supports of the pi,j and sl

i,j

are not depicted. In the example Bx = 010 and By = 100.

Figure 2 The gadgets. Figure 2a is an enlargment of Figure 2b between pi,j−1 and pi,j .

Intuitively, the tree-support operation ensures that vertex u may have at least one
neighbor of color i for each i ∈ N in a Grundy coloring, and thus increase the color u can
take. Observe that adding supporting trees to a vertex does not increase the treewidth, but
does increase the pathwidth (binomial trees have unbounded pathwidth).

Our reduction is from k-Multi-Colored Clique, proven to be W[1]-hard in [32]: given
a k-multipartite graph G = (V1, V2, . . . , Vk, E), decide if for every i ∈ [k] we can pick ui ∈ Vi

forming a clique, where k is the parameter. We can also assume that ∀i ∈ [k], |Vi| = n, that n
is a power of 2, and that Vi = {vi,0, vi,1, . . . , vi,n−1}. Furthermore, let |E| = m. We construct
an instance of Grundy Coloring with Targets G′ = (V ′, E′) and t = 2 logn+ 4 (where
all logarithms are base two) using the following gadgets:

Vertex selection Si,j . See Figure 2a. This gadget consists of 2 logn vertices S1
i,j ∪ S2

i,j =⋃
l∈[log n]{s

2l−1
i,j } ∪

⋃
l∈[log n]{s2l

i,j}, where for each l ∈ [logn] we connect vertex s2l−1
i,j to

s2l
i,j thus forming a matching. Furthermore, for each l ∈ [2, logn], we add supports [2l− 2]
to vertices s2l−1

i,j and s2l
i,j . Observe that the vertices s2l−1

i,j and s2l
i,j together with their

supports form a binomial tree T2l with either of these vertices as the root. We construct
k(m+ 2) gadgets Si,j , one for each i ∈ [k], j ∈ [0,m+ 1].

The vertex selection gadget Si,1 encodes in binary the vertex that is selected in the clique
from Vi. In particular, for each pair s2l−1

i,1 , s2l
i,1, l ∈ [logn] either of these vertices can take

the maximum color in an optimal grundy coloring of the binomial tree T2l (that is, a
coloring that gives the root of the binomial tree T2l color 2l). A selection corresponds to
bit 0 or 1 for the lth binary position. In order to ensure that for each j ∈ [m] all (middle)
Si,j encode the same vertex, we use propagators.

Propagators pi,j . See Figure 2b. For i ∈ [k] and j ∈ [0,m], a propagator pi,j is a single
vertex connected to all vertices of S2

i,j ∪ S1
i,j+1. To each pi,j , we also add supports

{2 logn+ 1, 2 logn+ 2, 2 logn+ 3}. The propagators have target t = 2 logn+ 4.
Edge selection Wj . See Figure 2b. Let j = (vi,x, vi′,y) ∈ E, where vi,x ∈ Vi and vi′,y ∈ Vi′ .

The gadget Wj consists of four vertices wj,x, wj,y, w
′
j,x, w

′
j,y. We call w′j,x, w

′
j,y the edge

selection checkers. We have the edges (wj,x, wj,y), (w′j,x, wj,x), (w′j,y, wj,y). Let us now
describe the connections of these vertices with the rest of the graph. Let Bx = b1b2 . . . blog n

be the binary representation of x. We connect wj,x to each vertex s2l−bl
ij , l ∈ [logn] (we do

similarly for wj,y, Si′,j , and By). We add to each of wj,x, wj,y supports
⋃

l∈[log n+1]{2l−1}.
We add to each of w′j,x, w

′
j,y supports [2 logn + 3] \ {2 logn + 1} and set the target

t = 2 logn+ 4 for these two vertices. We construct m such gadgets, one for each edge.
We say that Wj is activated if at least one of wj,x, wj,y receives color 2 logn+ 3.
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Edge validators qi,i′ . We construct
(

k
2
)
of them, one for each pair (i, i′), i < i′ ∈ [k]. The

edge validator is a single vertex that is connected to all vertices wj,x for which j is an
edge between Vi and Vi′ . We add supports [2 logn+ 1] and a target of t = 2 logn+ 4.
The edge validator plays the role of an “or” gadget: in order for it to achieve its target,
at least one of its neighboring edge selection gadgets should be activated.

I Lemma 8. G has a clique of size k if and only if G′ has a target-achieving Grundy coloring.

Proof. ⇒) Suppose that G has a clique. We color the vertices of G′ in the following order:
First, we color the vertex selection gadget Si,j . We start from the supports which we color
optimally. We then color the matchings as follows: let vi,x be the vertex that was selected
in the clique from Vi and b1b2 . . . blog n be the binary representation of x; we color vertices
s

2l−(1−bl)
i,j , l ∈ [logn] with color 2l− 1 and vertices s2l−bl

i,j , l ∈ [logn] will receive color 2l. For
the propagators, we color their supports optimally. Propagators have 2 logn+ 3 neighbors
each, all with different colors, so they receive color 2 logn+ 4, thus achieving the targets.

Then, we color the edge validators qi,i′ and the edge selection gadgets Wj that correspond
to edges of the clique (that is, j = (vi,x, vi′,y) ∈ E and vi,x ∈ Vi, vi′,y ∈ Vi′ are selected in
the clique). We first color the supports of qi,i′ , wj,x, wj,y optimally. From the construction,
vertex wj,x is connected with vertices s2l−bl

i,j which have already been colored 2l, l ∈ [logn]
and with supports

⋃
l∈[log n+1]{2l− 1}, thus wj,x will receive color 2 logn+ 2. Similarly wj,y

already has neighbors which are colored [2 logn+ 1], but also wj,x, thus it will receive color
2 logn+ 3. These Wj will be activated. Since both wj,x, wj,y connect to qi,i′ , the latter will
be assigned color 2 logn+ 4, thus achieving its target. As for w′j,x and w′j,y, these vertices
have one neighbor colored c, where c = 2 logn+ 2 or c = 2 logn+ 3. We color their support
Tc sub-optimally so that the root receives color 2 logn+ 1; we color their remaining supports
optimally. This way, vertices w′j,x, w

′
j,y can be assigned color t = 2 logn+ 4, achieving the

target.
Finally, for the remaining Wj , we claim that we can assign to both wj,x, wj,y a color

that is at least as high as 2 logn+ 1. Indeed, we assign to each supporting tree Tr of wj,x

a coloring that gives its root the maximum color that is ≤ r and does not appear in any
neighbor of wj,x in the vertex selection gadget. We claim that in this case wj,x will have
neighbors with all colors in [2 logn], because in every interval [2l − 1, 2l] for l ∈ [logn], wj,x

has a neighbor with a color in that interval and a support tree T2l+1. If wj,x has color
2 logn+ 1 then we color the supports of w′j,x optimally and achieve its target, while if wj,x

has color higher than 2 logn+ 1, we achieve the target of w′j,x as in the previous paragraph.

⇐) Suppose that G′ admits a coloring that achieves the target for all propagators, edge
selection checkers, and edge validators. We will prove the following three claims:

B Claim 9. The coloring of the vertex selection gadgets is consistent throughout. This
corresponds to a selection of k vertices of G.

B Claim 10.
(

k
2
)
edge selection gadgets have been activated. That correspond to

(
k
2
)
edges

of G being selected.

B Claim 11. If an edge selection gadget Wj = {wj,x, wj,y} with j = (vi,x, vi′,y) has been
activated then the coloring of the vertex selection gadgets Si,j and Si′,j corresponds to the
selection of vertices vi,x and vi′,y. In other words, selected vertices and edges form indeed a
clique of size k in G.
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Proof of Claim 9. Suppose that an edge selection checker w′j,x achieved its target. We claim
that this implies that wj,x has color at least 2 logn+ 1. Indeed, w′j,x has degree 2 logn+ 3,
so its neighbors must have all distinct colors in [2 logn+ 3], but among the supports there
are only 2 neighbors which may have colors in [2 logn+ 1, 2 logn+ 3]. Therefore, the missing
color must come from wj,x. We now observe that vertices from the vertex selection gadgets
have color at most 2 logn, because if we exclude from their neighbors the vertices wj,x (which
we argued have color at least 2 logn+ 1) and the propagators (which have target 2 logn+ 4),
these vertices have degree at most 2 logn− 1.

Suppose that a propagator pi,j achieves its target of 2 logn + 4. Since this vertex has
a degree of 2 logn + 3, that means that all of its neighbors should receive all the colors
in [2 logn + 3]. As argued, colors [2 logn + 1, 2 logn + 3] must come from the supports.
Therefore, the colors [2 logn] come from the neighbors of pi,j in the vertex selection gadgets.

We now note that, because of the degrees of vertices in vertex selection gadgets,
only vertices s2 log n

i,j , s2 log n−1
i,j+1 can receive colors 2 logn, 2 logn − 1; from the rest, only

s2 log n−2
i,j , s2 log n−3

i,j+1 can receive colors 2 logn − 2, 2 logn − 3 etc. Thus, for each l ∈ [logn],
if s2l

i,j receives color 2l − 1 then s2l−1
i,j+1 should receive color 2l and vice versa. With similar

reasoning, in all vertex selection gadgets we have that s2l−1
i,j , s2l

i,j received the two colors
{2l − 1, 2l} since they are neighbors. As a result, the colors of s2l−1

i,j+1, s
2l−1
i,j (and thus the

colors of s2l
i,j+1, s2l

i,j) are the same, therefore, the coloring is consistent, for all values of
j ∈ [m]. C

Proof of Claim 10. If an edge validator achieves its target of 2 logn+ 4, then at least one of
its neighbors from an edge selection gadget has received color 2 logn+ 3. We know that each
edge selection gadget only connects to a unique edge validator, so there should be

(
k
2
)
edge

selection gadgets which have been activated in order for all edge validators to achieve the
target. C

Proof of Claim 11. Suppose that an edge validator qi,i′ achieves its target. That means that
there exists an edge selection gadget Wj = {wj,x, wj,y, w

′
j,x, w

′
j,y} for which at least one of

its vertices {wj,x, wj,y}, say vertex wj,x, has received color 2 logn + 3. Let j be an edge
connecting vi,x ∈ Vi to vi′,y ∈ Vi′ . Since the degree of wj,x is 2 logn+ 4 and we have already
assumed that two of its neighbors (qi,i′ and w′j,x) have color 2 logn + 4, in order for it to
receive color 2 logn+ 3 all its other neighbors should receive all colors in [2 logn+ 2]. The
only possible assignment is to give colors 2l, l ∈ [logn] to its neighbors from Si,j and color
2 logn + 2 to wj,y. The latter is, in turn, only possible if the neighbors of wj,y from Si′,j

receive all colors 2l, l ∈ [logn]. The above corresponds to selecting vertex vi,x from Vi and
vi′,y from Vi′ . C

J

I Lemma 12. Let G′′ be the graph that results from G′ if we remove all the tree-supports.
Then G′′ has pathwidth at most

(
k
2
)

+ 2k + 3.

The proof of Lemma 12 can be found in the full version of the paper.
We will now show how to implement the targets using the tree-filling operation below.

I Definition 13 (Tree-filling). Let G = (V,E) be a graph and S = {s1, s2, . . . , sj} ⊂ V a
set of vertices with target t. The tree-filling operation is the following. First, we add in G
a binomial tree Ti, where i = dlog je + t + 1. Observe that, by Proposition 4, there exist
2i−t−1 > j vertex-disjoint and non-adjacent sub-trees Tt in Ti. For each s ∈ S, we find such
a copy of Tt in Ti, identify s with its root rt, and delete all other vertices of the sub-tree Tt.
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The tree-filling operation might in general increase treewidth, but we will do it in a way
that it only increases by a constant factor in regards to the pathwidth of G.

I Lemma 14. Let G = (V,E) be a graph of pathwidth w and S = {s1, . . . , sj} ⊂ V a subset
of vertices having target t. Then there is a way to apply the tree-filling operation such that
the resulting graph H has tw(H) ≤ 4w + 5.

Proof. Construction of H. Let (P,B) be a path-decomposition of G whose largest bag has
size w + 1 and B1, B2, . . . , Bj ∈ B distinct bags where ∀a, sa ∈ Ba (assigning a distinct bag
to each sa is always possible, as we can duplicate bags if necessary). We call those bags
important. We define an ordering o : S → IN of the vertices of S that follows the order of the
important bags from left to right, that is o(sa) < o(sb) if Ba is on the left of Bb in P. For
simplicity, let us assume that o(sa) = a and that Ba is to the left of Bb if a < b.

We describe a recursive way to do the substitution of the trees in the tree-filling operation.
Crucially, when j > 2 we will have to select an appropriate mapping between the vertices of
S and the disjoint subtrees Tt in the added binomial tree Ti, so that we will be able to keep
the treewidth of the new graph bounded.

If j = 1 then i = t+ 1. We add to the graph a copy of Ti, arbitrarily select the root of a
copy of Tt contained in Ti, and perform the tree-filling operation as described.
Suppose that we know how to perform the substitution for sets of size at most dj/2e,
we will describe the substitution process for a set of size j. We have i = dlog je+ t+ 1
and for all j we have dlogdj/2ee = dlog je − 1. Split the set S into two (almost) equal
disjoint sets SL and SR of size at most dj/2e, where for all sa ∈ SL and for all sb ∈ SR,
a < b. We perform the tree-filling on each of these sets by constructing two binomial
trees TL

i−1, T
R
i−1 and doing the substitution; then, we connect their roots and set the root

of the left tree as the root ri of Ti, thus creating the substitution of a tree Ti.

Small treewidth. We now prove that the new graph H that results from applying the
tree-filling operation on G and S as described above has a tree decomposition (T ,B′) of
width 4w + 5; in fact we prove by induction on j a stronger statement: if A,Z ∈ B are the
left-most and right-most bags of P, then there exists a tree decomposition (T ,B′) of H of
width 4w + 5 with the added property that there exists R ∈ B′ such that A ∪ Z ∪ {ri} ⊂ R,
where ri is the root of the tree Ti.

For the base case, if j = 1 we have added to our graph a Ti of which we have selected an
arbitrary sub-tree Tt, and identified the root rt of Tt with the unique vertex of S that has a
target. Take the path decomposition (P,B) of the initial graph and add all vertices of A (its
first bag) and the vertex ri (the root of Ti) to all bags. Take an optimal tree decomposition of
Ti of width 1 and add ri to each bag, obtaining a decomposition of width 2. We add an edge
between the bag of P that contains the unique vertex of S, and a bag of the decomposition
of Ti that contains the selected rt. We now have a tree decomposition of the new graph of
width 2w + 2 < 4w + 5. Observe that the last bag of P now contains all of A,Z and ri.

For the inductive step, suppose we applied the tree-filling operation for a set S of size
j > 1. Furthermore, suppose we know how to construct a tree decomposition with the desired
properties (width 4w + 5, one bag contains the first and last bags of the path decomposition
P and ri), if we apply the tree-filling operation on a target set of size at most j− 1. We show
how to obtain a tree decompostition with the desired properties if the target set has size j.

By construction, we have split the set S into two sets SL, SR and have applied the
tree-filling operation to each set separately. Then, we connected the roots of the two added
trees to obtain a larger binomial tree. Observe that for |S| = j > 1 we have |SL|, |SR| < j.
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Let us first cut P in two parts, in such a way that the important bags of SL are on the
left and the important bags of SR are on the right. We call AL = A and ZL the leftmost
and rightmost bags of the left part and AR, ZR = Z the leftmost and rightmost bags of the
right part. We define as GL (respectively GR) the graph that contains all the vertices of the
left (respectively right) part. Let ri be the root of Ti and ri−1 the root of its subtree Ti−1.
From the inductive hypothesis, we can construct tree decompositions (T L,BL), (T R,BR) of
width 4w + 5 for the graphs HL, HR that occur after applying tree-filling on GL, SL and
GR, SR; furthermore, there exist RL ∈ BL, RR ∈ BR such that RL ⊇ A ∪ ZL ∪ {ri} and
RR ⊇ AR ∪ Z ∪ {ri−1}.

We construct a new bag R′ = A ∪AR ∪ ZL ∪ Z ∪ {ri−1, ri}, and we connect R′ to both
RL and RR, thus combining the two tree-decompositions into one. Last we create a bag
R = A ∪ Z ∪ {ri} and attach it to R′. This completes the construction of (T ,B′).

Observe that (T ,B′) is a valid tree-decomposition for H:
V (H) = V (HL) ∪ V (HR), thus ∀v ∈ V (H), v ∈ BL ∪ BR ⊂ B.
E(H) = E(HL) ∪ E(HR) ∪ {(ri−1, ri)}. We have that ri−1, ri ∈ R′ ∈ B. All other edges
were dealt with in T L, T R.
Each vertex v ∈ V (H) that belongs in exactly one of HL, HR trivially satisfied the
connectivity requirement: bags that contain v are either fully contained in T L or T R.
A vertex v that is in both HL and HR is also in ZL ∩ AR due to the properties of
path-decompositions, hence in R′. Therefore, the sub-trees of bags that contain v in
T L, T R, form a connected sub-tree in T .

The width of T is max{tw(HL), tw(HR), |R′| − 1} = 4w + 5. J

The last thing that remains to do in order to complete the proof is to show the equivalence
between achieving the targets and finding a Grundy coloring.

I Lemma 15. Let G and G′ be two graphs as described in Lemma 8 and let H be constructed
from G′ by using the tree-filling operation. Then G has a clique of size k iff Γ(H) ≥
dlog(k(m+ 1) +

(
k
2
)

+ 2m)e+ 2 logn+ 5. Furthermore, tw(H) ≤ 4
(

k
2
)

+ 8k + 17.

The proof of Lemma 15 can be found in the full version of the paper.

I Theorem 16. Grundy Coloring parameterized by treewidth is W[1]-hard.

4 FPT for pathwidth

In this section, we show that, in contrast to treewidth, Grundy Coloring is FPT parame-
terized by pathwidth. We achieve this by providing an upper bound on the Grundy number
of any graph as a function of its pathwidth. Pipelining this with the algorithm of [74], we
obtain a dependency on pathwidth alone. In order to obtain our bound, we rely on the
following result on the performance ratio of the first-fit coloring algorithm on interval graphs.

I Theorem 17 ([65]). First-Fit is 8-competitive for online coloring interval graphs.

In other words, interval graphs satisfy Γ(G) ≤ 8 · χ(G). Since for any interval graph G
we have χ(G) = pw(G) + 1, we immediately obtain the following:

I Corollary 18. For every interval graph G, Γ(G) ≤ 8 · (pw(G) + 1).

I Lemma 19. For every graph G, Γ(G) ≤ 8 · (pw(G) + 1).



R. Belmonte, E. J. Kim, M. Lampis, V. Mitsou, and Y. Otachi 14:13

Proof. For a contradiction, suppose there exists G such that Γ(G) > 8 · (pw(G) + 1), and let
c : V (G)→ {1, . . . ,Γ(G)} be a Grundy coloring using Γ(G) colors. In addition, let G have
the smallest possible number of vertices, i.e., there is no G′ satisfying those conditions with
|V (G′)| < |V (G)|. This implies that, for every optimal path decomposition of G, there is no
bag B and vertices u, v ∈ B such that c(u) = c(v).

Indeed, if such vertices exist, adding the edge uv to G and contracting uv yields a new
graph G′ such that pw(G′) ≤ pw(G) (edge contraction does not increase the pathwidth),
Γ(G′) ≥ Γ(G) (since c when limited to V(G’) is a valid Grundy coloring of G′) and |V (G′)| <
|V (G)|, contradicting the assumption that G is smallest possible.

In addition, for any u, v such that c(u) 6= c(v) and v /∈ N(u), adding edge uv to G
does not decrease the Grundy number of G since c remains a valid Grundy coloring of the
new graph. In particular, since, as previously observed, vertices in any bag of an optimal
path decomposition of G all have pairwise different colors, turning every bag of such a
decomposition into a clique does not decrease the Grundy number of G. More precisely, this
yields a graph G′ such that pw(G′) = pw(G) and Γ(G′) ≥ Γ(G), where G′ is an interval
graph. Applying Corollary 18 we obtain Γ(G) ≤ Γ(G′) ≤ 8 · (pw(G′) + 1), contradiction. J

Combining Lemma 19 with the O∗(2O(tw(G)·Γ(G))) algorithm of [74], we have:

I Theorem 20. Grundy Coloring can be solved in time O∗(2O(pw(G)2)).

Finally, note that there exist interval graphs that satisfy Γ(G) ≥ r · pw(G), for any r < 5
[53], therefore, the constant in Lemma 19 cannot be improved below 5.

5 NP-hardness for Constant Clique-width

In this section we prove that Grundy Coloring is NP-hard even for constant clique-width
via a reduction from 3-SAT. We use a similar idea of adding supports as in Section 3, but
supports now will be cliques instead of binomial trees. The support operation is defined as:

I Definition 21. Given a graph G = (V,E), a vertex u ∈ V and a set of positive integers S,
we define the support operation as follows: for each i ∈ S, we add to G a clique of size i
(using new vertices) and we connect one arbitrary vertex of each such clique to u.

When applying the support operation we will say that we support vertex u with set S and
we will call the vertices introduced supporting vertices. Intuitively, the support operation
ensures that the vertex u may have at least one neighbor with color i for each i ∈ S.

We are now ready to describe our construction. Suppose we are given a 3CNF formula φ
with n variables x1, . . . , xn and m clauses c1, . . . , cm. We assume without loss of generality
that each clause contains exactly three variables. We construct a graph G(φ) as follows:
1. For each i ∈ [n] we construct two vertices xP

i , x
N
i and the edge (xP

i , x
N
i ).

2. For each i ∈ [n] we support the vertices xP
i , x

N
i with the set [2i− 2]. (Note that xP

1 , x
N
1

have empty support).
3. For each i ∈ [n], j ∈ [m], if variable xi appears in clause cj then we construct a vertex xi,j .

Furthermore, if xi appears positive in cj , we connect xi,j to xP
i′ for all i′ ∈ [n]; otherwise

we connect xi,j to xN
i′ for all i′ ∈ [n].

4. For each i ∈ [n], j ∈ [m] for which we constructed a vertex xi,j in the previous step, we
support that vertex with the set ({2k | k ∈ [n]} ∪ {2i− 1, 2n+ 1, 2n+ 2}) \ {2i}.

5. For each j ∈ [m] we construct a vertex cj and connect to all (three) vertices xi,j already
constructed. We support the vertex cj with the set [2n].
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6. For each j ∈ [m] we construct a vertex dj and connect it to cj . We support dj with the
set [2n+ 3] ∪ [2n+ 5, 2n+ 3 + j].

7. We construct a vertex u and connect it to dj for all j ∈ [m]. We support u with the set
[2n+ 4] ∪ [2n+ 5 +m, 10n+ 10m].

This completes the construction. Before we proceed, let us give some intuition. Observe
that we have constructed two vertices xP

i , x
N
i for each variable. The support of these vertices

and the fact that they are adjacent, allow us to give them colors {2i− 1, 2i}. The choice of
which gets the higher color encodes an assignment to variable xi. The vertices xi,j are now
supported in such a way that they can “ignore” the values of all variables except xi; for xi,
however, xi,j “prefers” to be connected to a vertex with color 2i (since 2i− 1 appears in the
support of xi,j , but 2i does not). Now, the idea is that cj will be able to get color 2n+ 4 if
and only if one of its literal vertices xi,j was “satisfied” (has a neighbor with color 2i). The
rest of the construction checks if all clause vertices are satisfied in this way.

We now state the lemmata that certify the correctness of our reduction. Their proofs
appear in the full version of the paper.

I Lemma 22. If φ is satisfiable then G(φ) has a Grundy coloring with 10n+ 10m+ 1 colors.

I Lemma 23. If G(φ) has a Grundy coloring with 10n+ 10m+ 1 colors, then φ is satisfiable.

I Lemma 24. The graph G(φ) has constant clique-width.

I Theorem 25. Given graph G = (V,E), k-Grundy Coloring is NP-hard even when the
clique-width of the graph cw(G) is a constant.

6 FPT for modular-width

In this section we show that Grundy Coloring is FPT parameterized by modular-width.
Recall that G = (V,E) has modular-width w if V can be partitioned into at most w modules,
such that each module is a singleton or induces a graph of modular-width w. Neighborhood
diversity is the restricted version of this measure where modules are required to be cliques
or independent sets. We sketch the main ideas of the algorithm (a full proof is in the full
version of the paper).

The first step is to show that Grundy Coloring is FPT parameterized by neighborhood
diversity. Similarly to the standard Coloring algorithm for this parameter [56], we observe
that, without loss of generality, all modules can be assumed to be cliques, and hence any color
class has one of 2w possible types. We would like to use this to reduce the problem to an
ILP with 2w variables, but unlike Coloring, the ordering of color classes matters. We thus
prove that the optimal solution can be assumed to have a “canonical” structure where each
color type only appears in consecutive colors. We then extend the neighborhood diversity
algorithm to modular-width using the idea that we can calculate the Grundy number of each
module separately, and then replace it with an appropriately-sized clique.

I Theorem 26. Let G = (V,E) be a graph of modular-width w. The Grundy number of G
can be computed in time 2O(w2w)nO(1).
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