10,771 research outputs found

    The stable roommates problem with ties

    Get PDF
    We study the variant of the well-known stable roommates problem in which participants are permitted to express ties in their preference lists. In this setting, more than one definition of stability is possible. Here we consider two of these stability criteria, so-called super-stability and weak stability. We present a linear–time algorithm for finding a super-stable matching if one exists, given a stable roommates instance with ties. This contrasts with the known NP-hardness of the analogous problem under weak stability. We also extend our algorithm to cope with preference lists that are incomplete and/or partially ordered. On the other hand, for a given stable roommates instance with ties and incomplete lists, we show that the weakly stable matchings may be of different sizes and the problem of finding a maximum cardinality weakly stable matching is NP-hard, though approximable within a factor of 2

    Deepening the (Parameterized) Complexity Analysis of Incremental Stable Matching Problems

    Get PDF
    When computing stable matchings, it is usually assumed that the preferences of the agents in the matching market are fixed. However, in many realistic scenarios, preferences change over time. Consequently, an initially stable matching may become unstable. Then, a natural goal is to find a matching which is stable with respect to the modified preferences and as close as possible to the initial one. For Stable Marriage/Roommates, this problem was formally defined as Incremental Stable Marriage/Roommates by Bredereck et al. [AAAI '20]. As they showed that Incremental Stable Roommates and Incremental Stable Marriage with Ties are NP-hard, we focus on the parameterized complexity of these problems. We answer two open questions of Bredereck et al. [AAAI '20]: We show that Incremental Stable Roommates is W[1]-hard parameterized by the number of changes in the preferences, yet admits an intricate XP-algorithm, and we show that Incremental Stable Marriage with Ties is W[1]-hard parameterized by the number of ties. Furthermore, we analyze the influence of the degree of "similarity" between the agents' preference lists, identifying several polynomial-time solvable and fixed-parameter tractable cases, but also proving that Incremental Stable Roommates and Incremental Stable Marriage with Ties parameterized by the number of different preference lists are W[1]-hard.Comment: Accepted to MFCS'2

    Adapting Stable Matchings to Forced and Forbidden Pairs

    Full text link
    We introduce the problem of adapting a stable matching to forced and forbidden pairs. Specifically, given a stable matching M1M_1, a set QQ of forced pairs, and a set PP of forbidden pairs, we want to find a stable matching that includes all pairs from QQ, no pair from PP, and that is as close as possible to M1M_1. We study this problem in four classical stable matching settings: Stable Roommates (with Ties) and Stable Marriage (with Ties). As our main contribution, we develop an algorithmic technique to "propagate" changes through a stable matching. This technique is at the core of our polynomial-time algorithm for adapting Stable Roommates matchings to forced pairs. In contrast to this, we show that the same problem for forbidden pairs is NP-hard. However, our propagation technique allows for a fixed-parameter tractable algorithm with respect to the number of forbidden pairs when both forced and forbidden pairs are present. Moreover, we establish strong intractability results when preferences contain ties

    Parameterized Complexity of Stable Roommates with Ties and Incomplete Lists Through the Lens of Graph Parameters

    Get PDF
    We continue and extend previous work on the parameterized complexity analysis of the NP-hard Stable Roommates with Ties and Incomplete Lists problem, thereby strengthening earlier results both on the side of parameterized hardness as well as on the side of fixed-parameter tractability. Other than for its famous sister problem Stable Marriage which focuses on a bipartite scenario, Stable Roommates with Incomplete Lists allows for arbitrary acceptability graphs whose edges specify the possible matchings of each two agents (agents are represented by graph vertices). Herein, incomplete lists and ties reflect the fact that in realistic application scenarios the agents cannot bring all other agents into a linear order. Among our main contributions is to show that it is W[1]-hard to compute a maximum-cardinality stable matching for acceptability graphs of bounded treedepth, bounded tree-cut width, and bounded feedback vertex number (these are each time the respective parameters). However, if we "only" ask for perfect stable matchings or the mere existence of a stable matching, then we obtain fixed-parameter tractability with respect to tree-cut width but not with respect to treedepth. On the positive side, we also provide fixed-parameter tractability results for the parameter feedback edge set number

    The Stable Roommates problem with short lists

    Get PDF
    We consider two variants of the classical Stable Roommates problem with Incomplete (but strictly ordered) preference lists (sri) that are degree constrained, i.e., preference lists are of bounded length. The first variant, egald-sri, involves finding an egalitarian stable matching in solvable instances of sri with preference lists of length at most d. We show that this problem is NP-hard even if d = 3. On the positive side we give a 2d+372d+37-approximation algorithm for d ∈{3,4,5} which improves on the known bound of 2 for the unbounded preference list case. In the second variant of sri, called d-srti, preference lists can include ties and are of length at most d. We show that the problem of deciding whether an instance of d-srti admits a stable matching is NP-complete even if d = 3. We also consider the “most stable” version of this problem and prove a strong inapproximability bound for the d = 3 case. However for d = 2 we show that the latter problem can be solved in polynomial time

    The Stable Roommates problem with short lists

    Full text link
    We consider two variants of the classical Stable Roommates problem with Incomplete (but strictly ordered) preference lists SRI that are degree constrained, i.e., preference lists are of bounded length. The first variant, EGAL d-SRI, involves finding an egalitarian stable matching in solvable instances of SRI with preference lists of length at most d. We show that this problem is NP-hard even if d=3. On the positive side we give a (2d+3)/7-approximation algorithm for d={3,4,5} which improves on the known bound of 2 for the unbounded preference list case. In the second variant of SRI, called d-SRTI, preference lists can include ties and are of length at most d. We show that the problem of deciding whether an instance of d-SRTI admits a stable matching is NP-complete even if d=3. We also consider the "most stable" version of this problem and prove a strong inapproximability bound for the d=3 case. However for d=2 we show that the latter problem can be solved in polynomial time.Comment: short version appeared at SAGT 201

    "Almost stable" matchings in the Roommates problem

    Get PDF
    An instance of the classical Stable Roommates problem (SR) need not admit a stable matching. This motivates the problem of finding a matching that is “as stable as possible”, i.e. admits the fewest number of blocking pairs. In this paper we prove that, given an SR instance with n agents, in which all preference lists are complete, the problem of finding a matching with the fewest number of blocking pairs is NP-hard and not approximable within n^{\frac{1}{2}-\varepsilon}, for any \varepsilon>0, unless P=NP. If the preference lists contain ties, we improve this result to n^{1-\varepsilon}. Also, we show that, given an integer K and an SR instance I in which all preference lists are complete, the problem of deciding whether I admits a matching with exactly K blocking pairs is NP-complete. By contrast, if K is constant, we give a polynomial-time algorithm that finds a matching with at most (or exactly) K blocking pairs, or reports that no such matching exists. Finally, we give upper and lower bounds for the minimum number of blocking pairs over all matchings in terms of some properties of a stable partition, given an SR instance I

    The Strongly Stable Roommates Problem

    Get PDF
    An instance of the strongly stable roommates problem with incomplete lists and ties (SRTI) is an undirected non-bipartite graph G = (V,E), with an adjacency list being a linearly ordered list of ties, which are vertices equally good for a given vertex. Ties are disjoint and may contain one vertex. A matching M is a set of vertex-disjoint edges. An edge {x, y} in EM is a blocking edge for M if x is either unmatched or strictly prefers y to its current partner in M, and y is either unmatched or strictly prefers x to its current partner in M or is indifferent between them. A matching is strongly stable if there is no blocking edge with respect to it. We present an O(nm) time algorithm for computing a strongly stable matching, where we denote n = |V| and m = |E|. The best previously known solution had running time O(m^2) [Scott, 2005]. We also give a characterisation of the set of all strongly stable matchings. We show that there exists a partial order with O(m) elements representing the set of all strongly stable matchings, and we give an O(nm) algorithm for constructing such a representation. Our algorithms are based on a simple reduction to the bipartite version of the problem
    • …
    corecore