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—— Abstract

When computing stable matchings, it is usually assumed that the preferences of the agents in the
matching market are fixed. However, in many realistic scenarios, preferences change over time.
Consequently, an initially stable matching may become unstable. Then, a natural goal is to find a
matching which is stable with respect to the modified preferences and as close as possible to the
initial one. For STABLE MARRIAGE/ROOMMATES, this problem was formally defined as INCREMENTAL
STABLE MARRIAGE/ROOMMATES by Bredereck et al. [AAAI '20]. As they showed that INCREMENTAL
STABLE ROOMMATES and INCREMENTAL STABLE MARRIAGE WITH TIES are NP-hard, we focus on
the parameterized complexity of these problems. We answer two open questions of Bredereck et
al. [AAAI ’20]: We show that INCREMENTAL STABLE ROOMMATES is W([1]-hard parameterized by
the number of changes in the preferences, yet admits an intricate XP-algorithm, and we show that
INCREMENTAL STABLE MARRIAGE WITH TIES is W[1]-hard parameterized by the number of ties.
Furthermore, we analyze the influence of the degree of “similarity” between the agents’ preference
lists, identifying several polynomial-time solvable and fixed-parameter tractable cases, but also
proving that INCREMENTAL STABLE ROOMMATES and INCREMENTAL STABLE MARRIAGE WITH TIES
parameterized by the number of different preference lists are W[1]-hard.
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1 Introduction

Efficiently adapting solutions to changing inputs is a core issue in modern algorithmics [3, 6,
9, 16, 27]. In particular, in incremental combinatorial problems, roughly speaking, the goal
is to build new solutions incrementally while adapting to changes in the input. Typically,
one wants to avoid (if possible) too radical changes in the solution relative to perhaps
moderate changes in the input. The corresponding study of incremental algorithms attracted
research on numerous problems and scenarios [24], including among many others shortest path
computation [40], flow computation [31], clustering problems [9, 35], and graph coloring [28].

In this paper, we study the problem of adapting stable matchings under preferences to
change. Consider for instance the following two scenarios: First, as reported by Feigenbaum
et al. [18], school seats in public schools are centrally assigned in New York. Ahead of the
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start of the new year, all interested students are asked to submit their preferences over public
schools. Then, a stable matching of students to public schools is computed and transmitted.
However, in the past, shortly before the start of the new year typically around 10% of
students changed their preferences and decided to attend a private school instead, leaving the
initially implemented matching unstable and triggering lengthy decentralized ad hoc updates.
Second, consider the assignment of freshmen to double bedrooms in college accommodation.
After the orientation weeks, it is quite likely that students got to know each other (and in
particular their roommates) better and thus their initially uninformed preferences changed,
making the matching unstable.

In our work, we focus on the problem of finding a stable matching after the “change” that
is as close as possible to a given initially stable matching. The closeness condition here is
due to the fact that in most applications reassignments come at some cost which we want to
minimize (e.g., in the above New York example, reassigning students might make it necessary
for the family to reallocate within the city). We build upon the work of Bredereck et al. [7],
who performed a first systematic study of incremental versions of stable matching problems,
and the recent (partially empirical) follow-up work by Boehmer et al. [5], who proved among
others that different types of changes are “equivalent” to each other. The central focus of our
studies lies on the STABLE ROOMMATES (SR) problem: given a set of agents with each agent
having preferences over other agents, the task is to find a stable matching, i.e., a matching
so that there are no two agents preferring each other to their assigned partner. We also
consider a famous special case of SR, namely STABLE MARRIAGE (SM), where the set of
agents is partitioned into two sets, and each agent may only be matched to an agent from
the other set. Formally, in the incremental versions of SR and SM, called INCREMENTAL
STABLE ROOMMATES (ISR) and INCREMENTAL STABLE MARRIAGE (ISM), we are given
two preference profiles containing the preferences of each agent before and after the “change”
and a matching that is stable in the preference profile before the change. Then, the task
is to find a matching that is stable after the change and as close as possible to the given
matching, i.e., has a minimum symmetric difference to it.

Related Work. Bredereck et al. [7] formally introduced INCREMENTAL STABLE MAR-
RIAGE [WITH TIES| (ISM/[ISM-T]) and INCREMENTAL STABLE ROOMMATES [WITH TIES]
(ISR/[ISR-T]). They showed that ISM without ties (in the preference lists) is solvable in
polynomial time by a simple reduction to finding a stable matching maximizing the weight of
the included agent pairs (which is solvable in polynomial time [17]). In contrast to this, ISR
is NP-complete [12, Theorem 4.2], yet admits an FPT-algorithm for the parameter k, that is,
the maximum allowed size of the symmetric difference between the two matchings [7]. With
ties, Bredereck et al. [7] showed that ISM-T and ISR-T are NP-complete and W/[1]-hard for
k even if the two preference profiles only differ in a single swap in some agent’s preference list.
As ISR-T can be considered as a generalization of ISM-T, their results motivate us to focus
on the NP-hard ISR and ISM-T problems (which are somewhat incomparable problems).
Recently, Boehmer et al. [5] followed up on the work of Bredereck et al. [7], proving that
different types of changes such as deleting agents or performing swaps of adjacent agents
in some preference list are “equivalent”. Moreover, they introduced incremental variants of
further stable matching problems and performed empirical studies.

More broadly considered, matching problems involving preferences in the presence of
change are of high current interest in several application domains. Many such works fall into
the category of “dynamic matchings” [1, 2, 14, 15, 34]. However, different from our work,
there the focus is typically on adapting classic stability notions to dynamic settings while we
rather aim for “reestablishing” (classic) stability at minimal change cost.
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Table 1 Overview of our main results where each row contains results for one parameterization.
Note that ISM is polynomial-time solvable as proven by Bredereck et al. [7].

ISR ISM-T
|PL& Py | W[l-h. (Th. 1) & XP (Th. 2) NP-h. for |P; & P2 = 1 (Th. 5)
Htiest+k FPT wrt. k (Th. 1 in [7)) WIL-h. even if [Py &P =1 (Th. 5)
XP (even for parameter #agents with ties) (Pr. 6)
#outliers FPT (Th. 10) | ?
#master lists W]1]-h. even for complete preferences (Th. 11/12)

Closer to our work, there are several papers on adapting a given matching to change
(while minimizing the number of reassignments): First, Gajulapalli et al. [20] designed a
polynomial-time (and incentive-compatible) algorithm for an incremental variant of the
many-to-one version of STABLE MARRIAGE (known as HOSPITAL RESIDENTS) where new
agents are added. Second, Feigenbaum et al. [18] considered an incremental variant of
HospPITAL RESIDENTS where some agents may leave the system. They designed a “fair”,
Pareto-efficient, and strategy-proof algorithm for finding a matching before and after the
change. Both these works are closest related to the polynomial-time solvable ISM problem,
which we do not study. Third, Bhattacharya et al. [3] studied one-to-one matching markets
where agents are added and deleted over time and for some agents the set of acceptable
partners may change. Their focus is on updating the matching in each step such that the
number of reassignments is small while maintaining a small unpopularity factor. So in
contrast to our work, they do not maintain that the matching is stable but (close to) popular.

Also motivated by temporally evolving preferences, several papers study the robustness of
stable matchings subject to changing preferences [4, 11, 21, 22, 23, 36]. By selecting a robust
initial stable matching, one can increase the odds that it remains stable after some changes.

Our Contributions. Focusing on the two NP-hard problems ISR and ISM-T, we significantly
extend the work of Bredereck et al. [7] on incremental stable matchings, particularly answering
their two main open questions. Moreover, we strengthen several of their results. In addition,
we analyze the impact of the degree of “similarity” between the agents’ preference lists.
Doing so, from a conceptual perspective, we complement work of Meeks and Rastegari [38].
They studied the influence of the number of agent types on the computational complexity of
stable matching problems (two agents are of the same type if they have the same preferences
and all other agents are indifferent between them). By way of contrast, we consider the
smaller so far unstudied parameter “number of different preference lists”.

Next, we present a brief summary of the structure of the paper (for each section marking
the main studied problem(s)) and our main contributions (see Table 1 for an overview):

Section 3 (ISR). Motivated by the observation that ISM-T is NP-hard even if just one
swap has been performed, Bredereck et al. [7] asked for the parameterized complexity of
ISR with respect to the difference |P; @ Pa| between the two given preference profiles.
We design and analyze an involved algorithm solving ISR in polynomial time if |P; & Pa|
is constant (in other words, this is an XP-algorithm). Our algorithm relies on the
observation that if we know how certain agents are matched in the matching to be
constructed and we adapt the given matching accordingly, then we can find an optimal
solution by propagating these changes through the matching until a new stable matching
is reached; a general approach that might be of independent interest. We complement
this result by proving that ISR parameterized by |P; @ Pa| is W[1]-hard.
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Section 4 (ISM-T). Bredereck et al. [7] considered the total number of ties to be a promising
parameter to potentially achieve fixed-parameter tractability results. We prove that this
is not the case as ISM-T is W[1]-hard with respect to k plus the total number of ties
even if |P; @ Pa| = 1. Notably, this result strengthens the W[1]-hardness with respect to
k for |P1 @ Pa| = 1 of Bredereck et al. [7] for ISM-T, while presenting a fundamentally
different yet less technical proof. On the positive side, we devise an XP-algorithm for the
number of agents with at least one tie in their preferences.

Section 5 (ISR; ISM-T). We study different cases where the agents have “similar” prefer-
ences. For instance, we consider the case where all but s agents have the same preference
list (we call these s agents outliers), or the case where each agent has one out of only
p different master preference lists. We devise an algorithm that enumerates all stable
matchings in an SR instance in FPT time with respect to s, implying an FPT algorithm
for ISR parameterized by s. In contrast to this and to a simple FPT algorithm for the
number of agent types [5], we prove that ISR and ISM-T are W[1]-hard with respect to
the number p of different preference lists.

2 Preliminaries

The input of STABLE ROOMMATES WITH TIES (SR-T) is a set A = {a1,...,az,} of agents.
Each agent a € A has a subset Ac(a) C A\{a} of agents it accepts and a preference relation 7,
which is a weak order over the agents Ac(a). Without loss of generality, we assume that
acceptance is symmetric, i.e., for two agents a,a’ € A, a’ € Ac(a) implies a € Ac(a’). We
collect the preferences of all agents in a preference profile P. For two agents a’,a” € Ac(a),
agent a weakly prefers a’ to o’ if ' 77, a”’. If a weakly prefers a’ to a”’ but does not weakly
prefer @’ to a’, then a strictly prefers a’ to a’’, and we write @’ =, a”. If a weakly but
not strictly prefers a’ to a”, then a is indifferent between a’ and a” and we write a’ ~, a”;
in other words, @’ and a” are tied. If a strictly prefers o’ to a” or a’ = a” holds, then we
write @’ =, a”. We say that an agent a has strict preferences, which we denote as >,
if =, is a strict order, and, in this case, we use the terms “strictly prefer” and “prefer”
interchangeably. For two preference relations 7~ and 7’ defined over the same set, the swap
distance between - and 7=’ is the number of agent pairs that are ordered differently by the
two relations, i.e., |[{(a,b) :a = bAbZ a}|+|{(a,b) : a ~bA=(a~"b)}|; for two preference
relations over different sets, we define the swap distance to be infinite. For two preference
profiles P; and P5 containing the preferences of the same agents, |P; @ Pa| denotes the total
swap distance between the two preference relations of an agent summed over all agents.*

A matching M is a set of pairs {a,a'} with a # a’ € A, a € Ac(d’), and o’ € Ac(a), where
each agent appears in at most one pair. In a matching M, an agent a is matched if a is part
of one pair from M; otherwise, a is unmatched. A perfect matching is a matching in which
all agents are matched. For a matching M and an agent a € A, we denote by M(a) the
partner of a in M, i.e., M(a) = a' if {a,a’} € M and M(a) := O if a is unmatched in M.
All agents a € A strictly prefer any agent from Ac(a) to being unmatched, i.e., a’ >, O for
all a € A and o’ € Ac(a).

1 Notably, by the equivalence theorem of Boehmer et al. [5, Theorem 1], all our results (except for
Theorem 5 where the constant [Py @ P2| increases by a small number) still hold if |P1 & P2| instead
denotes the number of agents whose preferences changed, the number of deleted agents (i.e., the number
of agents with empty preferences in P2 and non-empty preferences in P1), or the number of added
agents (i.e., the number of agents with empty preferences in P; and non-empty preferences in Ps).
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Two agents a # a’ € A block a matching M if a and a’ accept each other and strictly
prefer each other to their partners in M, i.e., a € Ac(da’), o' € Ac(a), @’ >4 M(a), and
a =q M(a'). A matching M is stable if it is not blocked by any agent pair.? An agent
pair {a,a’'} is called a stable pair if there is a stable matching M with {a,a’} € M. For two
matchings M and M’, we denote by M AM’ the set of pairs that appear only in M or only
in M, ie, MAM' ={{a,d'} | ({a,a'} € MA{a,a'} ¢ M')V ({a,a'} ¢ M A{a,a'} € M')}.
The incremental variant of STABLE ROOMMATES [WITH TIES] is defined as follows.

INCREMENTAL STABLE ROOMMATES [wITH TIES] (ISR/[ISR-T])

Input: A set A of agents, two preference profiles P; and P, containing the strict
[weak] preferences of all agents, a stable matching M; in P;, and an integer k.
Question: Is there a matching M that is stable in Py such that |M;AMs| < k7

We also consider the incremental variant of STABLE MARRIAGE. Instances of STABLE
MARRIAGE are instances of STABLE ROOMMATES where the set of agents is partitioned into
two sets U and W such that agents from one of the sets only accept agents from the other
set, i.e., Ac(m) C W for all m € U and Ac(w) C U for all w € W. Following traditional
conventions, we refer to the agents from U as men and to the agents from W as women. All
definitions from above still analogously apply to STABLE MARRIAGE. Thus, in INCREMENTAL
STABLE MARRIAGE [WITH TIES| (ISM/[ISM-T]), we are given a set A = U J W of agents
and two preference profiles P; and Py containing the strict [weak] preferences of all agents,
where each m € U accepts only agents from W and the other way round.

Lastly, in STABLE ROOMMATES, the preferences of an agent a € A are complete if
Ac(a) = A\ {a}. In STABLE MARRIAGE, the preferences of an agent a € U JW are complete
if Ac(a) =W for a € U or if Ac(a) = U for a € W. If the preferences of an agent are not
complete, then they are incomplete.

We defer the proofs (or their completions) of all results marked by (x) to a full version.

3 Incremental Stable Roommates Parameterized by |P; & P-|

Bredereck et al. [7] showed that ISR-T and ISM-T are NP-hard even if P; and P, differ only
by a single swap. While Bredereck et al. showed that ISR (without ties) is NP-hard, they
asked whether it is fixed-parameter tractable parameterized by |P; @ P2|. We show that ISR
is W[1]-hard with respect to [P @ Pa| (Section 3.1), yet admits an intricate polynomial-time
algorithm for constant |P; @ Pa| (Section 3.2), thus still clearly distinguishing it from the
case with ties.

3.1 W][1]-Hardness

This section is devoted to proving that ISR with respect to [Py @ Pa| is W[1]-hard:
» Theorem 1 (x). ISR parameterized by |P1 & Po| is W[1]-hard.

To prove the theorem, we reduce from the W[1]-hard MULTICOLORED CLIQUE problem
parameterized by the solution size ¢ [39]. In MULTICOLORED CLIQUE, we are given an
{-partite graph G = (VI U V2UW--- W V* E) and the question is whether there is a clique X

2 This definition of stability in the presence of ties is the by far most frequently studied variant known
as weak stability. Strong stability and super stability are the two most popular alternatives. Notably,
ISM-T (as defined later) becomes polynomial-time solvable for both strong and super stability, as for
these two stability notions a stable matching maximizing a given weight function on all pairs of agents
can be found in polynomial time [19, 32, 33].
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of size £ in G with X NV° £ ) for all ¢ € [¢(]. To simplify notation, we assume that
Ve ={v§,...,v5} for all ¢ € [¢] and that the given graph G is r-regular for some r € N. We
refer to the elements of [¢] as colors and say that a vertex v has color ¢ € [¢] if v € V. The
structure of the reduction is as follows. For each color ¢ € [{], there is a vertex-selection
gadget, encoding which vertex from V¢ is part of the multicolored clique. Furthermore,
there is one edge gadget for each edge. Unless both endpoints of an edge are selected by
the corresponding vertex-selection gadgets, the matching M selected in the edge gadget
contributes to the difference M1 AM; between M; and Ms. We set k (that is, the upper
bound on |M; AMs|) such that at least (é) edges need to have both endpoints in the selected
set of vertices, implying that the selected set of vertices forms a clique.

Vertex-Selection Gadget. For each color ¢ € [{], we add a vertex selection gadget. For
each vertex vf € V', we add one 4-cycle consisting of agents af ;, af 5, af 3, and af 4. Further,
in Py, two agents s¢ and 5° are “added” to the gadget (more formally, s and 5¢ are matched
to dummy agents t¢ and ¢ in all stable matching in P; but cannot be matched to t¢ and
t° in a stable matching in P5). We construct the vertex-selection gadget such that the
agents s¢ and s¢ have to be matched to agents from the same 4-cycle in a stable matching
in Py. This encodes the selection of the vertex corresponding to this 4-cycle to be part
of the multicolored clique. Lastly, we add a second 4-cycle consisting of agents af ;, a5 o,
ag 5, and ag 4 for each vertex vf € V¢ to achieve that M; AM; contains the same number of
pairs from the vertex-selection gadget, independent of which vertex is selected to be part of
the clique.

Apart from agents s¢ and 5¢, all agents from the vertex-selection gadget only find agents
from the gadget acceptable, while s and 5° also find agent a. 1 (this agent will be introduced
in the next paragraph “Edge Gadget”) for each edge e incident to a vertex from V¢ acceptable.
For v{ € V¢, let Aé(vic),l denote the set of agents a.,; such that e is an edge incident to vy,
Le., Asqe)1 = {aeq1 | e € ENnenv§ # 0}, and let [Ag(vf),l] denote an arbitrary strict order
of Aj(ye)1- Forall ¢ € [4] and i € [n], each vertex-selection gadget contains the following
agents with the indicated preferences in Ps:

st = aly = aiy = [Aseyal = asy = a5y = [Aswg)al = ag
- a’fL,l - [Aé('u’f)J]

gc N EC >‘ Q%A >‘ &%’4 >‘ [AS(’U%),l] >‘ afolA >‘ &271’4 >‘ [A5(,Uc

n—

Dl = emaiy

=ajy - [Aé(u;),l]

€08 = ul, t°: 3% = a°, u : t°, uc ¢
. C c c c ., ,C c . . C c . . C —=C c
a/i71 . Cl,i,2 >‘ S >‘ a/i747 a/i72 . ai’3 >‘ ai71, ai,3 . a/i74 >‘ a;i,2, ai74 . ai,1 >‘ S >‘ ai73

= . ~C C —=C —=C . ~C —=C = . ~C =C = . 5C =C —=C
Ajq Qo= 8 = Q7 QioiGrg>= 01, Qj3:G4= 0o, GQjq:0;1 =8 =a;3

In P, only the preferences of agents t¢ and t° change to u® >~ s¢, respectively,
u® = s° See Figure 1 for an example. Notably, in each of the added 4-cycles, there
exist two matchings of the four agents that are stable within the cycle in both P; and P,
(ie., {{afy,afo},{afs afat} or {{afy,afs}, {afs. afs}} and {{af,,af,} {afs,af,}} or
{{a¢,, a5 ,},{as,,as5}} for ¢ € [(] and i € [v]). Matching M; contains for the 4-cycles
consisting of agents {af, | t € [4]} the edges {af ;,af,} and {af 3,af,} and for the 4-cycles
consisting of agents {af, | t € [4]} the edges {af,,a;,} and {af,, a5 3}

Edge Gadget. For each edge e = {v§, vf}, we add an edge gadget. This gadget consists of a
4-cycle with agents ac 1, ae 2, ac 3, and ac 4, admitting two different matchings that are stable
within the gadget in both P; and P,. The matching M; contains {ac 1,ac.4} and {ac 3, ac2}
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z=Ww-2)(r+2)+2 aiy '\ R %ie as 4
3M1 1 2 3 1 1
1

A
2
| 2 > X
y=@w-1r+2)+2 127\ 127 T31
af,a & b ag,fﬂ & \* as
‘lf,l 2
: \
{c Y x r+4 tc
acrl—zi-l—l-% S| | =@~ 2 — 1@ 3
vl L T+ 5
; /
_ ai’l 2,
a5 & 55 & M35,
12/ 3% 2 3"
|2 X . | X |
3,17 "1 2 \3y1 12
. & i, a5, N s,

Figure 1 An example for the vertex-selection gadget from Theorem 1. For an edge between two
agents a and a’, the number z closer to agent a means that a ranks a’ at position z, i.e., there are
x — 1 agents which a prefers to a’. For example, the preferences of af , are ai > 8 > ajz. The
depicted preferences are those in P;. The preferences in P2 arise from swapping the red numbers.
The matching M; is marked in bold.

in this 4-cycle and remains stable in M, if all of s¢, 5°, s, and 5° are matched at least
as good as the respective agents corresponding to v§ and vjc This notably only happens
if the vertex-selection gadgets of V¢ and V¢ “select” the endpoints of e. Otherwise, the
agents in this component need to be matched as {ac 1,ac 2} and {ac 3, aca} in My, thereby

contributing four pairs to My/AM,. For each e = {v§,v5} € E, the agent’s preferences are as

[

i Vg
follows:
. c —c ¢ P~ .
Qe1 1 Qe2 ™ 8 =8 =8 =8 > G4, Qe 2 1 Qe 3 ™ Qe 1,
Qe 3 @ Qe 4 - Qe 2, Qe 4 @ Qe 1 - Qe 3-

The Reduction. To complete the description of the parameterized reduction, we set M7 :=
{{SC’ tc}a {gcv tc} | cE [@} U {{agla a$’2}7 {ag,:%’ a§,4}7 {a;lv 5,24}, {a"f,S? (_122} | cE [E],’L € [V]} U
{{ae1,0e4},{Ge3,0c2} |e € E} and k:={- (4v 4+ 5) + 4(|E| — (é))

For the correctness of the reduction one can show that in M, for each ¢ € [{] there is
some i* € [v] such that the matching My contains pairs {s¢, af. ; }, {5, ag. 4} (this corresponds
to selecting vertex vg. for color ¢). Then, the only agents a. 1 for an edge e € E incident
to some vertex from V¢ that both s¢ and s¢ do not prefer to their partner in M, are those
in As(ue,),1- This implies that for all edges e = {v ;
can match a.; worse than s¢, 5¢, s¢, and 5°. Thus, we can select {ac 1,ae4}, {Gc.2, a3} as
in M; in the respective edge gadget. In contrast, for all other edges we have to select the
other matching in the edge gadget. To upper-bound the overall symmetric difference, one
needs to further prove that for all j < i*, matching My contains {{a$,,a$,},{a5s,a54}},
and that for all j > i*, matching M contains {{a$,,a§,},{a§4,a$3}}. Thus, independent
of the selected vertex, each vertex-selection gadget contributes 4v + 5 pairs to M AMs.

c
79

v$} with both endpoints selected we

3.2 XP-Algorithm

Complementing the above W[1]-hardness result, we now sketch an intricate XP-algorithm
for ISR parameterized by |Py @ P2, resulting in the following theorem:
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» Theorem 2 (x). ISR can be solved in O(24P1OP21. pdIP1OP2143) time.

Our algorithm works in two phases: In the initialization phase, we make some guesses how
the stable matching Ms looks like and accordingly change the original stable matching M.
These changes and guesses then impose certain constraints how good/bad some agents must
be matched in Ms. Subsequently, in the propagation phase, we locally resolve blocking
pairs caused by the initial changes by “propagating” these constraints through the instance
until a new stable matching is reached. This matching is then guaranteed to be as close as
possible to the original stable matching. We believe that our technique to propagate changes
through a matching is also of independent interest and might find applications elsewhere. In
the following, we sketch the main ingredients of our algorithm. We say that we update a
matching M to contain a pair e = {a, b} if we delete all pairs containing a or b from M and
add pair e to M.

Initialization Phase (First Part of Description). Our algorithm maintains a matching M.
At the beginning, we set M := M;. Before we change M, we make some guesses on how the
output matching M> shall look like. These guesses are responsible for the exponential part of
the running time (the rest of our algorithm runs in polynomial time). The guesses result in
some changes to M and, for some agents a € A, in a “best case” and “worst case” to which
partner a can be matched in Ms. Consequently, we will store in be(a) the best case how a
may be matched in Ma, i.e., the most-preferred (by a in Ps) agent b for which we cannot
exclude that a is matched to b in a stable matching in Ps respecting the guesses. Similarly,
wc(a) stores the worst case to which a can be matched. We initialize be(a) = we(a) = L for
all a € A, encoding that we do not know a best or worst case yet.

To be more specific, among others, in the initialization phase we guess for each agent a € A
with modified preferences as well as for M (a) how they are matched in M> and update M to
include the guessed pairs. Moreover, as an unmatched agent a shall always have be(a) # L
or we(a) # L, we guess for all agents a that became unmatched by this whether they
prefer M;(a) to Ms(a) (in which case we set be(a) := My (a)) or Ma(a) to Mq(a) (in which
case we set we(a) := My (a)). Our algorithm also makes further guesses in the initialization
phase. However, in order to understand the purpose of these additional guesses, it is helpful
to first understand the propagation phase in some detail. Thus, we postpone the description
of the additional guesses to the end of this section.

Propagation Phase. After the initialization phase, blocking pairs for the current match-
ing M force the algorithm to further change M and force a propagation of best and worst
cases through the instance until a stable matching is reached. As our updates to M are in
some sense “minimally invasive” and exhaustive, once M is stable in Ps, it is guaranteed
to be the stable matching in Py which is closest to M; among all matchings respecting the
initial guesses. At the core of the technique lies the simple observation that in an SR instance
for each stable pair {¢,d} and each stable matching N not including {¢, d} exactly one of ¢
and d prefers the other to its partner in NV:

» Lemma 3 ([26, Lemma 4.3.9]). Let N be a stable matching and e = {c,d} ¢ N be a stable
pair in an SR instance. Then either N(c) =, d and ¢ =4 N(d) or d >, N(c) and N(d) =4 c.

From this we can draw conclusions in the following spirit: Assuming that for a stable pair
{¢,d} in Py we have that we(c) >, d, i.e., ¢ is matched better than d in Ms, it follows from
Lemma 3 that d is matched worse than ¢ in My, implying that we can safely set be(d) = c.
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Algorithm 1 Simplified propagation step performed for a pair {a,b} of two matched agents
blocking M with be(b) = M(b) or for an unmatched agent a with we(a) # L.

1: if a is unmatched then Let e = {a,c} be the stable pair in Py such that ¢ =72 wc(a)
and be(e) =72 a (or be(e) = 1) and ¢ is worst-ranked by a among all such pairs.

2: else Let e = {a, c} be the stable pair in Py such that ¢ =72 M(a) and be(c) =72 a (or
be(e) = L) and ¢ is worst-ranked by a among all such pairs.

: if no such pair exists then Reject this guess.

if M(a) # O then be(M(a)) := a.

3
4: else Update M such that it contains e, set we(a) := ¢ and be(c) == a.
5
6 if M(c) # O then we(M(c)) :=c.

In the following, we will now explain simplified versions of some parts of the propagation
phase, while leaving out others (in fact, for the full algorithm and proof of correctness an
extensive analysis is needed; see our full version).

Assume for a moment that the current matching M is perfect and that there is a
blocking pair for M in Py (see Algorithm 1 for a pseudocode-description of the following
procedure). Because M is stable in Py, all pairs that currently block M; either involve an
agent with changed preferences or resulted from previous changes made to M. Using this,
one can show that at least one of the two agents from a blocking pair {a, b}, say b, will have
a > be(b) = M (b). Thus, we know that b is matched worse than a in any stable matching
in P5 respecting our current guesses. Accordingly, for {a,b} not to block Ms, agent a has
to be matched to b or better and, in particular, better than M (a) in the solution. As a
consequence, we update the worst case of a to be the next agent ¢ which a prefers to M(a)
such that {a, c} is a stable pair in Py, i.e., we set wc(a) := ¢ (see Line 4). This change is then
further propagated through the instance. Note that from Lemma 3 it follows that if {a’, a”}
is a stable pair in Py and agent a” is the worst possible partner of a’ in a stable matching

" cannot be matched

in Py (or a’ prefers its worst possible partner to a”), then agent o
better than agent o’ in a stable matching in Ps. Thus, by setting we(a’) := a” we also get
be(a”) := a’. Consequently, applying this to our previous update wc(a) = ¢, we can also
set be(ce) := a (see Line 4). Moreover, recall that a prefers ¢ to a’s current partner M (a) in
M. Thus, assuming that in a stable matching M™* in P; one of a and M (a) prefers the other
to its partner in M™ and the other prefers its partner in M*, we can use the same argument
again and set be(M(a)) := a (see Line 5; we will discuss in the last paragraph in this section
why this assumption can be made). For the update in Line 6 a similar reasoning applies.
So far we assumed that all agents are matched (which indeed needs to be the case for Mo
because we can delete all agents not matched by M, in a preprocessing step). Using this,
whenever there is an unmatched agent a, one can show that it cannot be matched to be(a)
or wc(a). Thus, if we(a) # L, then we match a to the next-better agent ¢ before we(a) in
its preferences such that {a,c} is a stable pair in Py and set we(a) = ¢. Subsequently, we

propagate this change as in the above described case of a blocking pair (see Algorithm 1).

Otherwise, we have be(a) # L and we match a to the next-worse agent b after be(a) in the
preferences of a such that {a,b} is a stable pair in Ps. Here, a slightly more complicated
subsequent propagation step is needed (as described in our full version).

Repeating these steps, i.e., matching so far unmatched agents and resolving blocking
pairs, eventually either results in a conflict (i.e., an agent preferring its worst case to its best
case, or changing a pair which we guessed to be part of M) or in a stable matching. In
the first case, we conclude that no stable matching obeying our guesses exists, while in the
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latter case, we found a stable matching obeying the guesses and minimizing the symmetric
difference to M; among all such matchings. The reason for the optimality of this matching
is that every matching obeying our initial guesses has to obey the best and worst cases at
the termination of the algorithm, and the computed matching M contains all pairs from M;
which comply with the best and worst cases.

Initialization Phase (Second Part of Description). In addition to the guesses described
above, the algorithm guesses the set F of pairs from M7 for which both endpoints prefer My
to Mj. Similarly, the algorithm guesses the set H of pairs from My for which both endpoints
prefer My to M,. Notably, one can prove that the cardinality of both F' and H can be
upper-bounded by [Py & Ps|, ensuring XP-running time. The reason why we need to guess
the set F is that pairs {a,b} from M; may not be stable pairs in Py. In this case, a
preferring M (a) to b does not imply that b prefers a to M (b). Thus, if we would treat the
pairs from F as “normal” pairs, we would propagate an incorrect worst case in Line 5. Note
that all pairs from M \ M; are stable pairs in Ps, as we only add pairs that are stable over
time (see Line 4). The reason why we need to guess the set H is more subtle but also due to
fact that pairs from H might cause problems for our propagation step (see our full version).
To incorporate our guesses, for each {a,b} € F, we delete {a, b} from M and set wc(a) =b
and wc(b) = a, while for each {a,b} € H we update M to include H. We remark that from
the proof of Theorem 1 it follows that ISR is NP-complete even if we know for each agent a
whose preferences changed as well as M;j(a) how they are matched in Ms and the set of
pairs F' C M; for which both endpoints prefer My to M;. This indicates that guessing the
set H might be necessary for an XP-algorithm.

4 Incremental Stable Marriage with Ties Parameterized by the
Number of Ties

Bredereck et al. [7] raised the question how the total number of ties influences the compu-
tational complexity of ISM-T. Note that the number of ties in a preference relation is the
number of equivalence classes of the relation containing more than one agent. For instance
the preference relation a ~ b ~ ¢ = d ~ e > f contains two ties, where the first tie has size
three and the second tie has size two. In this section, following a fundamentally different
and significantly simpler path than Bredereck et al., we show that their W[1]-hardness result
for ISM-T parameterized by k for |P; @ Po| = 1 still holds if we parameterize by k plus the
number of ties. To prove this, we introduce a natural extension of ISM called INCREMENTAL
STABLE MARRIAGE WITH FORCED EDGES (ISMFE). ISMFE differs from ISM in that as
part of the input we are additionally given a subset Q C M; of the initial matching, and
the question is whether there is a stable matching M> for the changed preferences with
| M1 AMs| < k containing all pairs from @, i.e., Q@ C Mos.

We first show that ISMFE with ties is intractable even if |Q| = 1 by reducing from a
W/1]-hard local search problem related to finding a perfect stable matching with ties [37]:

» Proposition 4 (x). ISMFE with ties parameterized by k and the summed number of ties
in P1 and Py is W[1]-hard, even if |P1 ® Pa| =1 and |Q| =1 and only women have ties in
their preferences.

Second, we reduce ISMFE with ties to ISM-T. The general idea of this parameterized
reduction is to replace a forced pair {m,w} € @ by a gadget consisting of 6(k + 1) agents.
In M7, we match the agents from the gadget in a way such that if m and w are matched
differently in Ms, then, compared to M7, the matching in the whole gadget needs to be
changed, thereby exceeding the given budget k. This reduction implies:
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» Theorem 5 (x). ISM-T parameterized by k and the summed number of ties in Py and P
is W/[1]-hard, even if |P1 @ P2| =1 and only women have ties in their preferences.

We remark that our reduction also implies the W[1]-hardness of ISM-T parameterized
by k if each tie has size at most two and |P; & Ps| = 1.

On the algorithmic side, parameterized by the number of agents with at least one tie
in their preferences in Ps, ISM-T lies in XP. The idea of our algorithm is to first guess
the partners of all agents in My with a tie in their preferences in P, and subsequently
reduce the problem to an instance of WEIGHTED STABLE MARRIAGE, which is polynomial-
time solvable [17]. Note that parameterizing by the summed size of all ties results in
fixed-parameter tractability, as we can iterate over all possibilities of breaking the ties and
subsequently apply the algorithm for ISM.

» Proposition 6 (x). ISM-T parameterized by the number of agents with at least one tie in
their preferences in Po lies in XP. ISM-T parameterized by the summed size of all ties in Py
1s fized-parameter tractable.

5 Master Lists

After having shown in the previous section that ISM-T and ISR mostly remain intractable
even if we restrict several problem-specific parameters, in this section we analyze the influence
of the structure of the preference profiles by considering what happens if the agents’ preferences
are similar to each other. The arguably most popular approach in this direction is to assume
that there exists a single central order (called master list) and that all agents derive their
preferences from this order. This approach has already been applied to different stable
matching problems in the quest for making them tractable [8, 13, 29, 30]. Specifically, we
analyze in Section 5.1 the case where the preferences of all agents follow a single master
list, in Section 5.2 the case where all but few agents have the same preference list, and
in Section 5.3 the case where each agent has one of few different preference lists (which
generalizes the setting considered in Section 5.2).

5.1 One Master List

In an instance of STABLE MARRIAGE/ROOMMATES with agent set A, we say that the
preferences of agent a € A can be derived from some preference list 72* over agents A if the
preferences of a are 77* restricted to Ac(a). If the preferences of all agents in Py can be
derived from the same strict preference list (which is typically called master list), then there
is a unique stable matching in P, which iteratively matches the so-far unmatched top-ranked
agent in the master list to the highest ranked agent it accepts:

» Observation 7. If all preferences in Pa can be derived from the same strict preference list,
then ISR can be solved in linear time.

This raises the question what happens when the master list is not a strict but a weak
order. If the preferences of the agents may be incomplete, then reducing from the NP-hard
WEAKLY STABLE PAIR problem (the question is whether there is a stable matching in an
SM-T/SR-T instance containing a given pair [29, Lemma 3.4]), one can show that even
assuming that all preferences are derived from a weak master list is not sufficient to make
ISM-T or ISR-T polynomial-time solvable.

» Observation 8 (x). ISM-T and ISR-T are NP-hard even if all preferences in Py and Pa
can be derived from the same weak preference list.
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In contrast to this, if we assume that the preferences of agents in Py are complete and
derived from a weak master list, then we can solve ISM-T and ISR-T in polynomial time.
While for ISM-T this follows from a characterization of stable matchings in such instances
as the perfect matchings in a bipartite graph due to Irving et al. [29, Lemma 4.3], for ISR-T
this characterization does not directly carry over. Thus, we need a new algorithm: Assume
that the master list consists of ¢ ties (possibly containing just one agent) and let A; C A be
the set of agents from the ith tie for ¢ € [g]. Distinguishing between several cases, we build
the matching My by dealing for increasing ¢ € [¢] with each tie separately while greedily
maximizing the overlap of the so-far constructed matching with M;. Our algorithm exploits
the observation that in a stable matching, for i € [g], all agents from A; are matched to
agents from A; except if (i) |U;¢;_1) 4;| is odd in which case one agent from A; is matched
to an agent from A;_y, or (ii) if [ ;[ A;| is odd in which case one agent from A; is matched
to an agent from A; 4.

» Proposition 9 (x). If the preferences of agents in Pa are complete and derived from a
weak master list, then ISM-T/ISR-T can be solved in polynomial time.

5.2 Few Outliers

Next, we consider the case that almost all agents derive their complete preferences from a
single strict preference list (we will call these agents followers), while the remaining agents (we
will call those agents outliers) have arbitrary preferences. ISR is fixed-parameter tractable
with respect to the number of outliers, as we show that all stable matchings in a STABLE
ROOMMATES instance can be enumerated in FPT time with respect to this parameter:

» Theorem 10 (x). Given a STABLE ROOMMATES instance (A, P) and a partitioning F'\J S
of the agents A such that all agents from F have complete preferences that can be derived
from the same strict preference list, one can enumerate all stable matchings in (A, P)
in O(n?-|S|181) time. Consequently, ISR is solvable in O(n? - |S|IS!) time, where |S| is the
number of outliers in Ps.

If the master list may contains ties, then enumerating stable matchings becomes a lot
more complicated, as here we have much more flexibility on how the agents are matched.
Thus, we leave it open whether there exists a similar fixed-parameter tractability result for a
weak master list (both in the roommates and marriage setting).

5.3 Few Master Lists

Motivated by the positive result from Section 5.2, in this section we consider the smaller
parameter “number of different preference lists”. Recall that Observation 7 states that if the
preference lists of all agents are derived from a strict master list in a STABLE ROOMMATES
instance, then there exists only one stable matching (even if the preferences of the agents
may be incomplete). This raises the question what happens if there exist “few” master lists
and each agent derives its preferences from one of the lists. To the best of our knowledge,
the parameter “number of master lists” has not been considered before. However, it nicely
complements (and lower-bounds) the parameter “number of agent types” as studied by Meeks
and Rastegari [38]. Two agents are of the same type if they have the same preferences and
all other agents are indifferent between them. Notably, Boehmer et al. [5, Proposition 5]
proved that ISM-T is fixed-parameter tractable with respect to the number of agent types.
Their algorithm also works for ISR-T.
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If the preferences of agents are incomplete, then as proven in Observation 8, ISM-T is
already NP-hard for just one weak master list. Moreover, note that a reduction of Cseh and
Manlove [12, Theorem 4.2] implies that ISR with incomplete preferences is NP-hard even if
the preferences of each agent are derived from one of two weak preference lists. Consequently,
in this subsection we focus on the case with complete preferences.

In contrast to the two fixed-parameter tractability results for the number of outliers
(Theorem 10) and the number of agent types [5], we show that parameterized by the number p
of master lists, ISR is W[1]-hard even if the preferences of agents are complete:

» Theorem 11 (x). ISR is W/[1]-hard parameterized by the minimum number p such that
in Po the preferences of each agent can be derived from one of p strict preference lists, even
if in P1 as well as in Ps all agents have complete preferences.

Containment of this problem in XP is an intriguing open question; in other words, is
there a polynomial-time algorithm if the number of master lists is constant?

Recalling that ISM-T is polynomial-time solvable if agents have complete preferences
derived from one weak master list (Proposition 9), we now ask the same question for ISM-T.
Using a similar but slightly more involved reduction than for Theorem 11, we show that this
problem is W[1]-hard with respect to the number of master lists.

» Theorem 12 (x). ISM-T is W/[1]-hard parameterized by the minimum number p such that
in Po the preferences of each agent can be derived from one of p weakly ordered preference
lists, even if in P1 as well as in P2 all agents have complete preferences.

Again, it remains open whether ISM-T for a constant number of master lists is polynomial-
time solvable or NP-hard.

6 Conclusion

Among others, answering two open questions of Bredereck et al. [7], we have contributed to the
study of the computational complexity of adapting stable matchings to changing preferences.
From a broader algorithmic perspective, in particular, the “propagation” technique from our
XP-algorithm for the number of swaps, and the study of the number of different preference
lists/master lists as a new parameter together with the needed involved constructions for the
two respective hardness proofs could be of interest.

There are several possibilities for future work. As direct open questions, for the para-
meterization by the number of outliers, we do not know whether ISM-T or ISR-T are
fixed-parameter tractable. Moreover, it remains open whether ISR or ISM-T with complete
preferences is polynomial-time solvable for a constant number of master lists.

Finally, it would also be interesting to analyze a variation of ISR or ISM where the
matching in P; is not given, i.e., we have to find two matchings M; and My with |M;AM;| < k
such that M; is stable in P; and M, is stable in P,. Notably, this is a special case of a
multistage [16, 25] variant of stable matching problems and Chen et al. [10] already proved
that this problem is NP-hard for £ = 0 in the bipartite case.
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