47,525 research outputs found

    Internet of Things: Beginning of New Era for Libraries

    Get PDF
    Libraries have adopted information technology be that IT-enabled content development, content management tools, content access and delivery tools or long term presentation tools. Libraries are always in the fore front where the adoption and usage of new technologies are concerned. Internet of Things (IoT) is enabling objects to collect data and transfer the data over a network without human intervention by using internet, sensors, and RFID. It is being used in various fields and is still emerging. Various innovative solutions are created. This paper explores the concept of IoT, its historical background and its potential applications in libraries. Some of the challenges which will be faced by the library professional while implementing it are also discussed

    Integrated survey for the reconstruction of the Papal Basilica and the Sacred Convent of St. Francis in Assisi, Italy

    Get PDF
    The Papal Basilica and the Sacred Convent of Saint Francis in Assisi in Italy are characterized by unique and composite particularities that need an exhaustive knowledge of the sites themselves to guarantee visitor's security and safety, considering all the people and personnel normally present in the site, visitors with disabilities and finally the needs for cultural heritage preservation and protection. This aim can be reached using integrated systems and innovative technologies, such as Internet of Everything (IoE), which can connect people, things (smart sensors, devices and actuators; mobile terminals; wearable devices; etc.), data/information/knowledge and processes to reach the wanted objectives. The IoE system must implement and support an Integrated Multidisciplinary Model for Security and Safety Management (IMMSSM) for the specific context, using a multidisciplinary approach. The purpose of the paper is to illustrate the integrated survey for the reconstruction of the considered site that was necessary to obtain all the necessary information to start to set up the considered IMMSSM and the related IoE based technological system

    An Architecture to Support the Collection of Big Data in the Internet of Things

    Get PDF
    International audienceThe Internet of Things (IoT) relies on physical objects interconnected between each others, creating a mesh of devices producing information. In this context, sensors are surrounding our environment (e.g., cars, buildings, smartphones) and continuously collect data about our living environment. Thus, the IoT is a prototypical example of Big Data. The contribution of this paper is to define a software architecture supporting the collection of sensor-based data in the context of the IoT. The architecture goes from the physical dimension of sensors to the storage of data in a cloud-based system. It supports Big Data research effort as its instantiation supports a user while collecting data from the IoT for experimental or production purposes. The results are instantiated and validated on a project named SMARTCAMPUS, which aims to equip the SophiaTech campus with sensors to build innovative applications that supports end-users

    MONICA in Hamburg: Towards Large-Scale IoT Deployments in a Smart City

    Full text link
    Modern cities and metropolitan areas all over the world face new management challenges in the 21st century primarily due to increasing demands on living standards by the urban population. These challenges range from climate change, pollution, transportation, and citizen engagement, to urban planning, and security threats. The primary goal of a Smart City is to counteract these problems and mitigate their effects by means of modern ICT to improve urban administration and infrastructure. Key ideas are to utilise network communication to inter-connect public authorities; but also to deploy and integrate numerous sensors and actuators throughout the city infrastructure - which is also widely known as the Internet of Things (IoT). Thus, IoT technologies will be an integral part and key enabler to achieve many objectives of the Smart City vision. The contributions of this paper are as follows. We first examine a number of IoT platforms, technologies and network standards that can help to foster a Smart City environment. Second, we introduce the EU project MONICA which aims for demonstration of large-scale IoT deployments at public, inner-city events and give an overview on its IoT platform architecture. And third, we provide a case-study report on SmartCity activities by the City of Hamburg and provide insights on recent (on-going) field tests of a vertically integrated, end-to-end IoT sensor application.Comment: 6 page

    A learning model for battery lifetime prediction of LoRa sensors in additive manufacturing

    Get PDF
    Today, an innovative leap for wireless sensor networks, leading to the realization of novel and intelligent industrial measurement systems, is represented by the requirements arising from the Industry 4.0 and Industrial Internet of Things (IIoT) paradigms. In fact, unprecedented challenges to measurement capabilities are being faced, with the ever-increasing need to collect reliable yet accurate data from mobile, battery-powered nodes over potentially large areas. Therefore, optimizing energy consumption and predicting battery life are key issues that need to be accurately addressed in such IoT-based measurement systems. This is the case for the additive manufacturing application considered in this work, where smart battery-powered sensors embedded in manufactured artifacts need to reliably transmit their measured data to better control production and final use, despite being physically inaccessible. A Low Power Wide Area Network (LPWAN), and in particular LoRaWAN (Long Range WAN), represents a promising solution to ensure sensor connectivity in the aforementioned scenario, being optimized to minimize energy consumption while guaranteeing long-range operation and low-cost deployment. In the presented application, LoRa equipped sensors are embedded in artifacts to monitor a set of meaningful parameters throughout their lifetime. In this context, once the sensors are embedded, they are inaccessible, and their only power source is the originally installed battery. Therefore, in this paper, the battery lifetime prediction and estimation problems are thoroughly investigated. For this purpose, an innovative model based on an Artificial Neural Network (ANN) is proposed, developed starting from the discharge curve of lithium-thionyl chloride batteries used in the additive manufacturing application. The results of experimental campaigns carried out on real sensors were compared with those of the model and used to tune it appropriately. The results obtained are encouraging and pave the way for interesting future developments

    An Advanced Conceptual Diagnostic Healthcare Framework for Diabetes and Cardiovascular Disorders

    Full text link
    The data mining along with emerging computing techniques have astonishingly influenced the healthcare industry. Researchers have used different Data Mining and Internet of Things (IoT) for enrooting a programmed solution for diabetes and heart patients. However, still, more advanced and united solution is needed that can offer a therapeutic opinion to individual diabetic and cardio patients. Therefore, here, a smart data mining and IoT (SMDIoT) based advanced healthcare system for proficient diabetes and cardiovascular diseases have been proposed. The hybridization of data mining and IoT with other emerging computing techniques is supposed to give an effective and economical solution to diabetes and cardio patients. SMDIoT hybridized the ideas of data mining, Internet of Things, chatbots, contextual entity search (CES), bio-sensors, semantic analysis and granular computing (GC). The bio-sensors of the proposed system assist in getting the current and precise status of the concerned patients so that in case of an emergency, the needful medical assistance can be provided. The novelty lies in the hybrid framework and the adequate support of chatbots, granular computing, context entity search and semantic analysis. The practical implementation of this system is very challenging and costly. However, it appears to be more operative and economical solution for diabetes and cardio patients.Comment: 11 PAGE
    • …
    corecore