65 research outputs found

    On Canonical Models for Rational Functions over Infinite Words

    Get PDF
    This paper investigates canonical transducers for rational functions over infinite words, i.e. functions of infinite words defined by finite transducers. We first consider sequential functions, defined by finite transducers with a deterministic underlying automaton. We provide a Myhill-Nerodelike characterization, in the vein of Choffrut’s result over finite words, from which we derive an algorithm that computes a transducer realizing the function which is minimal and unique (up to the automaton for the domain). The main contribution of the paper is the notion of a canonical transducer for rational functions over infinite words, extending the notion of canonical bimachine due to Reutenauer and Schützenberger from finite to infinite words. As an application, we show that the canonical transducer is aperiodic whenever the function is definable by some aperiodic transducer, or equivalently, by a first-order transduction. This allows to decide whether a rational function of infinite words is first-order definable.SCOPUS: cp.pinfo:eu-repo/semantics/publishe

    Towards a Uniform Theory of Effectful State Machines

    Full text link
    Using recent developments in coalgebraic and monad-based semantics, we present a uniform study of various notions of machines, e.g. finite state machines, multi-stack machines, Turing machines, valence automata, and weighted automata. They are instances of Jacobs' notion of a T-automaton, where T is a monad. We show that the generic language semantics for T-automata correctly instantiates the usual language semantics for a number of known classes of machines/languages, including regular, context-free, recursively-enumerable and various subclasses of context free languages (e.g. deterministic and real-time ones). Moreover, our approach provides new generic techniques for studying the expressivity power of various machine-based models.Comment: final version accepted by TOC

    Tight polynomial worst-case bounds for loop programs

    Get PDF
    In 2008, Ben-Amram, Jones and Kristiansen showed that for a simple programming language - representing non-deterministic imperative programs with bounded loops, and arithmetics limited to addition and multiplication - it is possible to decide precisely whether a program has certain growth-rate properties, in particular whether a computed value, or the program's running time, has a polynomial growth rate. A natural and intriguing problem was to move from answering the decision problem to giving a quantitative result, namely, a tight polynomial upper bound. This paper shows how to obtain asymptotically-tight, multivariate, disjunctive polynomial bounds for this class of programs. This is a complete solution: whenever a polynomial bound exists it will be found. A pleasant surprise is that the algorithm is quite simple; but it relies on some subtle reasoning. An important ingredient in the proof is the forest factorization theorem, a strong structural result on homomorphisms into a finite monoid

    Acta Cybernetica : Tomus 4. Fasciculus 3.

    Get PDF

    A partial survey of the uses of algebraic geometry in systems and control theory

    Get PDF

    A partial survey of the uses of algebraic geometry in systems and control theory

    Get PDF
    corecore