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A PAR'l'IAL SURVEY OF 'l'IIE USES OF ALGF.I3HAIC 

GEOMETRY IN SYSTEMS AND CONTROL THEORY 

Michiel Hazewinkel 

PREFACE AND APOLOGY 

This is an expanded version of the talk with this title which I 

gave·at the occasion of the F.Severi centennial conference at 

INDAM in ~orne, April 1970. 

By its very nature algebraic geometry ought to be applicable 

virtually everewhere, but the applied side of the subject has not 

been much in evidence in the last decennia it seems, untill a few 

years ago when two new areas of applicability arose: one of these 

is of course more or less described by the key words: Korteweg-

de Vries equations, solitons, finite gap ope rators, Yang-Mills 

fields, instantons, and a selection of references is [AHS, AHDM, 

DMl, DM2,DMN, BLS, GD, Kri, MT, Ve]; the other one concerns the uses of 

algebraic geometric ideas (especially) and results (to a lesser 

extent) in control and system theory, which is my subject today. 

The word algebraic geo1iletry in the U. tle must be understood 

in a fairly wide sense. For one thing some of the applications 

below rest on the underlying ring theory or commutative algebra 

rather than on algebraic geometry itself; for another many of the 

results have their topological analogues and use differential 

topology rather than algebraic geometry. It is true though that 

for most of the results below the original inspiration came from 

algebraic geometry, even if the final, and for the moment most 

important version (over the reals) bears few or no traces of that 

fact. 

The word partial in the title also reflects that I shall deal 

only with (families of) linear systems, and that I shall not touch 

upon various algebraic, geometric and topological ideas which 
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already play, or are very likely to play an important role in 

especially nonlinear system theory like Lie algebras of vector-

f ields, connections, foliations and (analytic) stratifications. 

Aselection of references dealing also with such aspects of system 

and control theory is [Brol, I3ro2, Bro3, Bru, Her4, Her5, Ell, HH, 

Hir, HKr, HM6, Kre, Lo, toW, JS, MB, MMO, MW, SJ, So4, Sul, Su2, Wi]. 

Finally let me mention the recent survey paper [BF] the paper 

[Haz3], the recent collection [M~, and the reasonably soon to be 

expected proceedings of the NATO-AMS Advanced Study Inst. and 

Summer Scm. on algebraic and geometric methods in linear system 

theory (Harvard Univ.,June 1979) as good sources for similar 

material, discussed in a variety of ways and styles, for those whose 

appetite was awakened by the present paper and for those who could 

not get through it, but still feel they cannot afford to neglect 

the subject entirely. 
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1 . INTRODUCTION 

The basic object under consideration in this lecture is a linear 

dynamical system I:. This is a set of linear 

equations 

( 1. 1 ) 

x(t) = Fx(t) + Gu(t) 

y(t) = Hx(t) 

(continuous time) 

differential or difference 

x(t+1) = Fx(t) + Gu(t) 

y( t) = Hx( t) 

(discrete time) 

where the F, G and H are time independent matrices with coefficients in 

some appropriate field k, and where x(t) E kn = state space, 

u(t) E km = input space or control space, and y(t) E kp = output space. 

We speak of a system of dimension n with m inputs and p outputs. 

Occasionally one adds a direct feedthrough termto y(t), so that then 

y(t) = Hx(t) + Ju(t) in (1.1) instead of y(t) = Hx(t). For the mathematical 

problems discussed below the presence or absence of the term Ju(t) makes 

little difference. Thus a system (whether discrete or continuous time) 

is specified by giving three matrices F, G, H, and possibly a fourth one 

J, of dimensions nxn, nxm, pxn, and p x m. 

One common interpretation of the set of equations (1.1) is in terms 

of some device which accepts input functions u(t) = (u1(t), ... , um(t)) 

and produces output functions y(t)= (y 1(t), ... , yp(t)). 

( 1.2) u, ~ t) 

u ( t) 
m 

: I x(t) 

...___,.,__ Y1 (t) 

...__::_ yp(t) 

Assuming that we start the device at time zero in state x(O) = 0 the 

corresponding input/output map ~: of Z is 

t 
( 1. 3) f.I: u( t) fo--+ y( t) = J HeF(t-T)Gu(1)dT (continuous time) 

0 
t 

HFi-1G, ( 1. 4) f I: u(t) i-+ y(t) = :L A.u(t-i), A. = i = 1, 2, ... 
i=1 

l l 

(discrete time) 

In both cases fL: is completely determined by the matrices Ai' sometimes 

called the Markov parameters of the system. 

Taking the Laplace transform in the continuous time case, and the 

z-transform in the discrete time case,one finds the input/output relations 



( 1. 5) 
) -1 

Y(s) = T(s)U(s), T(s) = H(sl - F G 

where T(s) is called the transfer function (matrix). 
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Two systems t = (F, G, H), l:' = (F', G', H') over k are said to be 

isomorphic if there is an invertible matrix S E GLn(k) such that 
s ( -1 -1) . . . h" d t Z:' = Z: = SFS , SG, HS . This notion of isomorp ism correspon s o 

a base change x' = Sx in state space. It also fits in well with the 

input/output point of view in that the input/output maps of Z: and z: 3 are 

the same for all S E GL (k). The converse is not always true but holds generi
n 

cally, cf. section 3 below. 

In principle thus a linear dynamical system seems a very simple object 

indeed (if taken one at a time) of which it is hard to believe that any 

sophisticated mathematics will be needed to deal with it. To a large 

extend this appears to be true. The fun starts when instead of considering 

single systems (1 .1) one considers families of them; that is one considers 

e.g. real continuous time systems there now the matrices F, G, and Hare 

allowed to vary continuously or polynomially on some extra parameters 

U'" = ( i:r1 ' • • • ' Q'."r) • 

It is when studying families of systems and when trying to extend to 

families various useful known simple system constructions and results 

that we shall employ fairly sophisticated algebraic geometric ideas and 

results like fine moduli spaces, vector bundles, the Quillen-Suslin 

theorem, the quadratic Serre problem, Stein spaces, intersection numbers 

and 1-st Chern numbers. 

One way to look at this study of families is to regard it as a systematic 

investigation to see which of the standard constructions in control and 

system theory are continuous in the system parameters. Viewed in this 

way the study of families (rather than single systems) is obviously 

relevant in an uncertain world full of (small) measurement errors. 

As it happens there are - in this author's opinion - many more 

compelling reasons for studying families rather than single systems. 

Section 2 below is devoted to this. Section 3 discusses moduli (and 

some of their uses) and section 4-10 treat of various standard system 

theoretic notions like feedback, realizations, model matching, pole 

assignment, completely reachable subsystems, •... In each case I shall 

try to describe briefly the system/control theoretic idea, the single 

system solution or construction ~n so far as this has not already been 

done in the basic system thec:·ry section 3) and then discuss the family

wise versions of these (if available). 
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Thus our central object is a family of linear dynamical systems ~' 

that is a system valued function, which we shall regard from different 

viewpoints proceeding along a contour around it. By the time we are 

finished, adapting a method of Henri Petard [Pe] in big game hunting, 

we shall presumably know all about the residue in the middle. 



~~,. Assorted reasons for studying families rather than single systems 

2.1. Families of systems (definition). 

Intuitively a family of systems is a set of equations (1.1) where 

the matrices F,G,H depend in some way on a set of parameters cr. For 

various reasons this definition is not quite general enough, notably 

if one wants to discuss and use universal families of systems (and this 

is not the only reason for considering somewhat more general families). 

A better definition in the topological case) is: 

A family of real or complex systems L over a topological space V 

consists of an n-dimensional real or complex vector bundle E over V, 

a vector bundle endomorphism F: E + E and two vector bundle homomorphism 

G: Vxkm + E, H: E + Vxkp where k = F or C. Taking n independent sections 

of E in a small neighbourhood V' of v E V and writing out the matrices of 

F,G,H with respect to the obvious bases in {v' }xkm, {v'JxkP and the basis of 

E( v') defined by the 11 sections for all v' E V' we see that locally L is 

given by a continuous map into 1 (k) the space of all triples of matrices 
m,n,p 

over k of sizes nxn, nxm and pxn. So locally Lis just like the intuitive 

notimcf a family, but globally it need not be. The family Lis differentiable 

(resp. analytic) if all the ingredients which go into its definition, i.e. 

V,E,F,G,H are differentiable (resp. analytic). 

Similarly an algebraic geometric family of systems L over a scheme V 

consists of an algebraic vector bundle E + V and morphisms of algebraic 

vector bundles F: E + E, G: Vxj,.m + E, H: E + Vx/AP, where /Ai is affine 

i-space. Locally this corresponds to a morphism of schemes V + 

n2+nm+pn . . 
L m,n,p 

where L C::! /A in the obvious way. For every point m,n,p of V with 

residue field k(v) there is an associated system mrer k(v), viz.F(v):E ~ k(v)-+ 

E ® k(v), G(v): k(v)m + E ® k(v), H(v): E ® k(v) + k(v). 

Two families L = (E,F,G,H) and L 1 = (E' ,F' ,G',H') are said to be 

isomorphic if there is an isomorphism of vector bundles cp: E + E' such that 

cpF = F'cp, cpG = G', H'cp = H. 

2.2 Systems over rings. 

The difference discrete time equations (1.1) also make perfect sense 

if the matrices F,G,H are assumed to have their coefficients in a commutative 

ring Rand x(t) E Rn, y(t) ERP, u(t) E Rm. In fact the linear machine 
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(2.2.1) x ( t+ 1 ) = Fx ( t) + Gu( t) , Y ( t) = Hx ( t) 

still makes perfect sense in the more general setting that we have three 

R - modules: U = input module, X = state module, Y = output module, and 

three R - module homomorphisms G: U -+ X, F: X -+ X, H: X -+ Y. 

Note that the input/output operator of the linear machine, cf. (1.4), 

is a convolution operator so that the theory of linear discrete time systems 

also has things to say about e.g. convolutional codes. There are more reasons 

for studying systems over rings, some of which will be touched o.n below: 

cf. also [So 1], [Kam2l. 

Assuming that the input module U and the output module Y are free and 

that the state module X is projective there is an obvious way of associating 

a family of systems over Spee (R) in the sense of 2.1 above to the data 

U,X,Y,F,G,H. Indeed let Ebe the vector bundle associated to the projective 

module X and let F,G,H be the bundle morphisms defined by F,G,H. Then 

(E,F,G,H) is an algebraic geometric family in the sense of 2.1 above. 

For each prime ideal "f:' of R let k(~) be the quotient field of R/'f' 

Then the system over the point p defined by this family is simply given by the 

triple of matrices F('fl) = F ® k('I>), G(~) = G ® k('F>), H('f>) = H i k('f>). 

2.3.Delay-differential systems. 

Consider a real delay differential system, e.g. 

(2.3.1) *1 ( t) = x 1(t-a1) + 2x2 (t) + x2(t-a) + u(t) 

*2( t) = x 1(t) + 2x2(t-a1) + u( t-a2 ) 

Y(t) = 2x1(t-a2 ) + x2 (t) 

where a 1 and a2 are two incommensurable positive real numbers. Introducing 

the delay operators cr 1a(t) = a(t-a1), o2a(t) = a(t-a2 ) we can rewrite (2.3.1) 

formally as 

(2.3.2) :ic(t) = Fx(t) + Gu(t) HY ( t ) = Hx ( t ) 

with the 

(2.3.3) , H = (202 1 ) 

and in turn this triple of matrices can be viewed as a triple of matrices with 

coefficients in the ring JR [cr 1,o2] that is as a system over the ring 

JR [o 1,cr2 ] or equivalently as a family of systems parametrized by the parameters 

cr = (cr 1,cr2 ). Thus the infinite dimensional system (2.3.1) gets turned into a 
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family of finite dimensional systems. That this is not a completely formal 

exercise is shown by a nice paper of Kamen [Ka 1 ] in which he relates the 

spectral theory of (2.3.1) to the commutative algebra which coes into the 

study of (2.3.3). 

One thing which is suggested by this point of view is that two delay

systems I:,I:' like (2.3.1) be considered isomorphic if there is an invertible 

matrix SE Gln (JR[o 1 ,o2]) which takes I into I' ; i.e. they are isomorphic 

if one can be obtained from the other by means of an invertible transformation 

x' = Sx where S may involve delays. This turns out to be precisely the right 

notion isomorphism in connection with degeneracy phenomena for delay

differential eg_uations, cf. [Kap]. Similarly the system-over-rings-as-family_ 

of-systems point of view also seem to suggest useful notions of e.g. complete 

reachability, cf. below in section 10. 

2.4. (Singular) perturbation, deformation, approximation. 

These reasons for studying families depending on a small parameters 
the . . . 

rather than only obJects themselves are almost as old as mathematics itself. 

Certainly (singular) perturbations are familiar topic in the theory of 

boundary values of differential eg_uations. And in the control world O'MalleY,[OMa], 

for instance discusses a singularly perturbed regulator problem which consists 

of the following data 

(2.4.1) :ic 1 A11 ( E) +A12(e:) B1(e:) x 1 ( 0 ,E:) 0 
= x1 x2 + u = x1 (E:) 

d2 A21 ( s) x2 + A22 ( e:) + B2(E:) x2 ( 0 ,e;) 0 
= x2 u = x2 ( e;) 

J( s) T J1 T (,,e;) + T = x 1 (1,e:) rr(E:) x 1(1,e:) + 0 (x1(r,£) Q(E) x 1 u ( t 2£) 

R( e;) u(,,e;) eh 

Where the matrix R(E) is positive definite and where the matrices 

Q(E) and TI(E) are positive semi definite. Here it is desired to find that 

control which drives the initial state (x~(E), x~(E)) to(O,O) in time 1 and 

which minimizes the cost J(E). All matrices may depend on time as well. For 

fixed small E there is a unig_ue optimal solution. Here one is interested 

however in the asymptotic solution as E ~ O, which is, stLll g_uoting [OMa] 

a problem of considerable practical interest, in particular in view of an 

example of Hadlock et al. [HJK] where the asymptotic results are far superior 

to the physically unacceptable results obtained by setting E = O directly 

in ( 2. 3. 1 ) . 

Another interesting perturbation type problem arises maybe when we have 

a system 
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(?. l1. 2) 

where w is some illldesirable noise input, and where F,G 1 ,G2 ,H depend on a 

small parameter E. It is desired to try to remove the influence of the 

noise input w by means of state feedback 

~ y( r t) w( t) 
~ , 

u( t) ~ 

~ L I 
That is one tries to find a matrix L such that in the new system with state 

feedback loop L, which is given by the equations 

(2.4.3) x = (F + GL) x + G1u + G2w , y = Hx 

The disturbances clo not show up any more in the output y. Suppose we can 

solve this for E = O. Can we then find a disturbance decoupler L(E) 

by perturbation methods, i.e. as a power series in e which converges 

(uniformly) for E sm~ll enough and of which the various terms can be 

calculated by successive approximation? 

2.5. There are still more reasons for being interested in families rather 

then single systems. E.g. 2-d and n-d systems which we shall meet briefly 

in section 6.3 below; parameter uncertainty, where one tries to 

perform certain constructions to attain certain desirable properties for 

systems some of whose parameters are uncertain or for systems which have 

parameters which may vary somewhat; cf. also 7 below; identification 

problems; and, not least, time varying systems which can on occasion be 

fruitfully viewed as triples of matrices depending on a parameter t, cf. also 

11.2. below. 



3. A UTTLE BASIC SYSTl~M THEORY. 

In this section we describe briefly as background material and for 

later use a few of the more elementary concepts and results pertaining 

to a single system over a field k. 
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3.1. Complete reachability and complete observability. Let k be a field 

and E = (F,G,H) a linear dynamical system over k. The triple (F,G,H) can 

be interpreted either as a continuous time system (given by differential 

equations) or as a discrete time system (given by difference equations), 

cf. (1.1). Given E one defines the reachability matrix 

(3.1.1) R(E) = R(F,G) = (G 

as the n x (n+l)m matrix consisting of the n x l blocks 

G, FG, ... , FnG. Dually one defines the observability matrix 

H 

HF 

(3.1.2) Q(F,H) = 
HFn 

n as the (n+l)p x n matrix consisting of then+ 1 blocks H, HF, ••. ,HF . 

The system E is said to be completely reachable, abbreviated er, 

if R(E) has its maximal rank n and the system is said to be completely 

observable, abbreviated co, if Q(E) has its maximal rank n. 

These notions have the following interpretation in terms of the sets of 

equations (1.1). The system is er if for every x €kn, there is an 

input function u(t) such that starting in x(O) = 0 at time zero the solution 

of the first equation using this control u(t) passes through x. The 

system is co if for every two states x, x' and input function u(t), the 

two output functions y(t), y' (t) resulting from starting in x, x' at time 

zero and using this input function are equal if and only if x = x'. 

Finally on~ associates to E its Hankel matrix 'Jl(E) which is defined 

as the infinite block Hankel matrix 

Al 
A2 

Az 
A3 

A3 
A4 

(3.1.3) i((E) = A3 A4 AS 
• 
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built from the p x m blocks Ai= HFi-lG, i = 1,2, .•.. Note that 1((L.) 

depends only on the isomorphism class of L:, as l((L:S) = 'il.(GFs- 1 ,SG,s- 1H) = 
'"'1l(F ,G,H) = 1£(L:)). We note that 

':1((l:) = 

H l 
HF j 
HF2 i (G ; FG: F 2G ••• ) 

I 
/ 

I 

so that rank 'JL(L.) < n for a system of dimension n and rank 1tJ:,r.) = n for 

a system r. of dimension n iff r. is both er and co (using the Cayley 

Hamilton theorem). 

3.2. Realization theory. 

Let E EL (k) be a system over k. Then as we have seen, m,n,p 
cf (1.3), (1.4), L: determines an input/output map fr. which is completely 

determined by the infinite sequence of matrices 

(3. 2 .1) 

Inversely let there be given an input/output map fr., i.e. a sequence 

of p x m matrices 

(3.2.2) 

We say that r. realizes c'4 if ACE) =Jf.. An obvious necessary condition 

forA- to be realizable by a finite dimensional system r. is that the 

rank of the Hankel matrix of A-

Al A2 A3 .. · 1 
A2 A3 A4 ... 

'ff <"4) = 
~3 A4 ~5 

J 
. . 

be finite. (In view of the remarks made just above in 3.1). It turns out 

that this condition is also sufficient. Moreover ifcA- is realizable 

then it is realizable by means of a system which is both er and co and 

any two realizations of.A- which are both er and co are isomorphic. 

Note that the condition A.= HFi-i6,i = 1,2,3, ••. is completely 
l. 

equivalent to (power series development around s = 00) 



(3.2.3) 
(IJ 

I 
i=I 

-1 
A. s 

1 
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Thus we also say that l: = (F ,G,H) realizes the proper rational matrix 

function T(s) if 

(3.2.4) T(s) = H(sI-F)-JG 

(It is of course a quite well known and old result that the power 
00 

-1 
l: a.s is a rational function if and only if its associated 

i=I 1 
series 

Hankel matrix has finite rank). 

The rank of the Hankel matrix of cA 1s called the MacMillan degree 

of"4. If T(s) is a proper matrix valued rational function than the 

MacMillan degree of T(s) is that of the sequence..+ determined by 

(development around s = oo) 

(3.2.5) T (s) 
00 

-1 
l: A. s 

i=I 1 

By the above the Mac Millan degree of T(s) 1s the dimension of any 

co and er system which realizes T(s). 

3.3. Invariants and isomorphisms. As has already been noted above in 3.2 

two systems l:, l:' E L (k) which are both er and co are isomorphic m,n,p 
iff they have the same input/output functions, i.e. if and only if 

Tl:(s) = Tl:'(s) or equivalently if and only if Ai(l:) = Ai(l:'), i 1,2,3, ... 

An invariant (for GL (k) acting on L (k) ) is a function 
n S m,n,p 

a: L (k) + k such that a(l:) = a(l:) for all SE GL (k), l: EL (k). m,n,p n m,n,p 

The entries of the matrices A.(l:) are obviously invariants (as functions of 
1 

l:). And under suitable continuity restrictions they are the only invariants. 

Thus if k =JR. or JC the only continuous invariants are the entries of the 

A.(l:) and if k is algebraically closed the only Zariski continuous invariants 
1 

Lm,n,p(k) + k are again the entries of the Ai(l:), which are of course 

morphisms L +A 1 • m,n,p 

3.4. Feedback. Given a system l: = (F,G,H) the introduction of a state 

feedback loop L changes the system to l:(L) = (F+GL,G,H). In terms of 

block diagrams this is often depicted as follows 
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u(t) y(t) 

L 

Quite often, in design problems e.g.,one has obtained a system E of which 

some characteristics are not yet as desired, and for which one still has 

the option of introducing (extra) feedback loops. Mathematically the 

problem thus is to what extent the transformation L:r+- E(L) can 

change the characteristics (invariants) of L:. 

One also considers on occasion output feedback for which the block 

diagram is 

1 • I 
L: 

I u (t) 

I 
y(t) 

) -

E 

L 

which changes E = (F,G,H) to (F+GLH,G,H). And more generally one 

considers dynamic output feedback, where the output y(t) is processed 

through another linear system E' and then fed back into L:. The block 

diagram is of 

) 

y(t) 

If the transfer function of Eis T(s) and that of E' is T'(s), then the 

transfer function of the total system is 

(3.4.l) 
T(s) 

I -T ( s) T I ( s) 

4. FINE MODULI SPACES, UNIVERSAL FAMILIES AND CANONICAL FORMS. 

4.1. The quotient scheme Mco,cr. Let k be any field, then GL (k) acts 
m,n,p n 

on Lcr (k) the set of all linear dynamical systems E = (F,G,H) of 
m,n,p 

er 
dimension n with m inputs and p outputs. Let M (k) be the set of 

m,n,p er 
orbits.· We note that the stabilizer subgroup of each 2: E L (k) is m,n,p 
trivial (Because R(E5) SR(E) and R(E) has full rank), which goes some 

way towards suggesting the following theorem. 
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4.1 .1. Theorem. There exists a scheme Mcr over 7l such that for each m,n,p 
field k the k-rational points of Mcr are precisely the orbits of 

m,n,p er co . 
GL (k) acting on Lcr (k). There is an open subscheme M ' corresponding n m,n,p m,n,p 
to the orbits of er and co systems. 

er nm+pn Locally M is isomorphic to affine space A and the way these m,n,p 
pieces are glued together is very reminiscent of Grassmann varieties. 

For details cf . 

. (Haz 2) for the topological version, [Haz 31 and also rPiHl for thP. r::ic::<=> 

of varieties over a field, and [Haz 6] for the fact that Mcr is defined 
m,n,p 

and does the job over 7l • 

4.2. Universal families. There are a number of universal families of 

systems. Let us start with a topological one 

4.2.1. Theorem. There exist a family (Eu,Fu,Gu,Hu) of real er systems over 

the smooth differentiable manifold Mcr (IR) such that the following 
m,n,p 

universality property hold. For each continuous family L of real er 

systems over a topological space V there is a unique continuous map 

~L such that L is isomorphic to the pullback 
I I I I 

~L fl = (~IEu ,<jJIFu ,<jJIGu •~i:Hu). 

There are corresponding statement for differentiable and real analytic 

families over differentiable and real analytic varieties. (Mcr (IR) is 
m,n,p 

real analytic). There is also an analogous theorem for complex systems. 

On the algebraic geometric side of things we have 

4.2.2. Theorem. There exist an algebraic family Lu of er systems over the 

scheme Mcr such that for every algebraic family L of er systems over m,n,p 
a scheme V there is a unique morphism of schemes rt>~ :

1 
V-+ Mcr such 

t... m,n,p 
that L is isomorphic over V to the pull back family qiL·Lu. 

Here a family L = (E,F,G,H) over a scheme V is said to be er if 

for every vE V the system over v, i.e. the system (E ~ k(v), F :® k(v), 

G ~ k(v), H :® k(v)) over the residue field k(v), is er. 
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4.3. The Kronecker nice selection. Most will agree that the Jordan canonical 

form is a useful gadget when dealing with matrices. What i~ does is select 

one particular element of each orbit of GL OC) acting on M ~),the space n n 
of all n x n matrices, by similarity, i.e. as (S,A)t-+ SAS-I Similarly 

it would be nice to have a canonical form for GL (k) acting on L (k), n m,n,p 
1 Lco,cr(k). F h' h b f 1 h · or at east or one t 1ng t ey can e use u w en trying to m,n,p 

identify a system from its input/output data, because the input/output 

data only specify an orbit, (not the system itself, so that there are a 

number of redundant parameters to get rid off before trying to estimate 

the remaining ones, cf. also[ GW]. One particular canonical form proceeds 

via what is called the Kronecker nice selection, which we now describe. 

It will also be useful in J0.3below when studying feedback. 

Let L = (F,G,H) be a er system over a field k. Consider an array 

of n x (n+l)m dots. For each (i,j), i = 0, •• f , n; J = l, ... , m in 
i this array put a cross at this spot if and only if the column vector F g., 

J 
where 

a 
F gb' 
(i.e. 

g. is the j-th column of 
J 

G, is linearly independant of the ~ectors 

with (a,b) < (i,j) where the order is the lexicographic one 

(a,b) < (i,j).,... a< i or (a= i and b < j)), This yields a pattern 

of n crosses (because rank R(L) is n). For example the result for n = 6, 

m = 4 might be 

(4. 3. I) x 

xxx •. 

x x 

Note that the pattern above has the property that whenever a x appears 

in a row than all positions in this row left of this x are also occupied 

by x's. This is no accident (and it is this property that the word nice 

in the title of this subsection refers to). It follows that the pattern 

obtained is uniquely described by them-numbers K(E) = (K1(E), .•. , Km(E)) 

of x's in each row. This sequence of m numbers K(E), or more precisely 

the corresponding pattern of crosses, is what I call the Kronecker nice 

selection. 

Note that K(ES) = 
discrete invariants. 

K(L) for all S E GL (k) so that these numbers are 
n 
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4.4. Canonical fonns. The Kronecker selection K(l:} defined above now 

can be used to define a canonical form on Lcr (k). We label the m,n,p 
columns of R(l:) = R(F ,G) = (G l FG ! ... ! FnG) by the spots in the 

array of 4.3 above, i.e. by the pairs (i,j), i = O, ... , n; j = 1, ... , m. 

For each subset a of this set of pairs let R(E) be the matrix obtained 
Cl 

from R(F,G) by removing all columns whose index is not in a. Note that 

for all SE GL (k), 
n 

(4.4.1) = SR(l:) 
Cl 

It follows that each orbit of GL (k) in Lcr (k) contains precisely 
n m,n,p 

one element l: such that R(l:)K(E) = In. This defines a canonical form 

(4.4.2) c 
K 

Lcr (k) -+ 
m,n,p 

L er (k), E 1-+
m, n, p 

s E , where S 

This is but one example of a large number of canonical forms in use in 

system and control theory, and one may ask whether this construction 

is continuous. The Jordan canonical form for matrices e.g. is discontinuous 

which severely limits its usefulness for instance in numerical matters,[GWi]. 

Similarly it would be nice to have a continuous canonical form for 

systems for identification and numerical purposes. However, 

4.4.3. Theorem. There exists a continuous canonical form c: Lcr,co(IR.)--+ 
m,n,p 

co er . L ' (IR.) if and only if p = m,n,p or m = 1. 

The~e is a similar statement concerning canonical forms which are 

morphisms on the algebraic varieties Lcr,co(k), k an algebraically closed 
m,n,p 

field. For details and more theorems like this, cf. [Haz2, Haz3]. The 

reason behind this theorem is the following. As is easily seen,a continuous 

canonical form exists on all of Lco,cr(IR.) if and only if the universal 
m,n,p 

bundle Eu restricted to Lco,cr(IR.) is trivial. It turns out that this is 
m,n,p 

the case if and only if m = 1 r/I. p = 1. 



4.5. Pointwise-local isomorphism problems. It is an immediate consequence 

of the fine moduli space theorems 4.2.I, 4.2.2 that if two families rand 

~' of er systems over V are pointwise isomorphic then they are isomorphic 

as families over V. A similar statement holds for families which are co 

everywhere; in fact the whole body of definitions and statements has a 

co (i.e. output) counterpart. 

In general, however, such a statement is definitely false just as 

in the case of matrices depending holomorphi:cally on a parameter with 

respect to similarity, [Wa ]. In analogy with the positive results one 

has in that case 

4.5.1. Theorem. Let r, L 1 be· a two families of dynamical systems over V. 

Suppose that L(v) and r'(v) are isomorphic for all v E V. Suppose moreover 

that the stabilizer subgroup of r(v) has constant dimension as a function 

of v in some neighbourhood of v E V. Then there exists an open neighbourhood 
0 

U of v such that r and r' are isomorphic as families over U. 
0 

The theorem holds both for continuous real families over a topological space 

and for algebraic families over schemes, so in particular for systems over 

rings. Cf. [HP] for details of the proofs and various examples. 
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5. REALIZATION WITH PARAMETERS AND VARIATIOiJS 

5.1. Pointwise realization theory. As was remarked in section 
3 a strictly proper rational matrix function T(s) with coefficients in a field 

k, or equivalently, a sequence of matrices t.A= (A 1,A2, ... ) with finite rank 

Hankel matrix can be realized by me~ns of a finite dimensional system. I.e. 

we can find a E = (F,G,H) over k such that 

(5.1.1) T(s) = H(sI - F)- 1G, 

and it is even possible to find a realization which js co and er. 

A more or less standard way of proving the first statement is as 
1.ank of !die 

follows. The hypothesis that the/Hankel matrix 

Al A2 A3 

'J{ : A2 A3 Atl 

is finite means that there is an r and that there are matrices 

T 1 , ... ,Tr such that the (r+l)-th column of 7l is equal to 

Tr(l-st column) + Tr_1 (2-nd column) + ... T1 (r-th column), which 

means that 

( 5 • 1 • 2 ) A r+i = T A. + T r-lAi+l + ... + TlA . 1' i=l,2, ... r l r+i-

Now let 

0 0 
T r \ (~ \ I . ! ( 5 . 1 • 3 ) 

0 
F 1 • I G, (Al, ... ,Ar) i I = = = 

T 2} 
' l • 

\ • o< 

0 I r 

\o/ 0 0 I T 1/ 
i Then A. 1= !ff G for all i=0,1, ... because (A., ... ,A. 1 )F = li i. i+r-

(A1+1, ... ,Ai+r) by (5.1.2). Thus the system 2: defined by (5.1.?) 
realizes ~ . One then proceeds to find the canonical er subsystem 
E er of the system just constructed, and then constructs the 

canonical co quo tient system of the L er just constructed to find 

a er and co system which (also) realizes cA, cf. 6.2 and JI.I below. 
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5.2. Realization with parameters ([By~). It is not at all 

clear, however, that the realization construction of 5.1 above 

is continuous in the parameters of A. ( or in the parameters of 

T(s)). Also one usually prefers a realization of minimal dimension, 

i.e. a co and er realization, and it is also not clear that the 

construction which associates to a system E its er and co 

subquotient with th~ same input/output map is continuous. This 

question is in fact the topic of section 11 below, cf. also 6.2. 

Let c'f (a) be a family or sequences of matrices depending 

on a parameter with uniformly bounded MacMillan degree, or, 

equivalently, let 
00 

(5.2.1) T (s) = a 
-i 

L: Ai(a)s 
i=l 

be a family of rational proper transfer functions (with the same 

boundedness property). 'fhen an obvious necessary condition for 

the existence of a family L: (a) in the sense of 2.1, which is co 

and er everywhere, such that L:(a) realizes .4-(a) (or, equivalently 

T (s)) for all a is that the MacMillan degree of~ (a) (cf. 3.2 a 
above) be constant as a function of a.This is also sufficient. 

5.2.2.!~~~~~~· Let .A.Ca) be an algebraic (resp. continuous) 

family of sequences of matrices of constant MacMillan degree. Then 

there exists an algebraic (resp.) continuous) family of systems 

t (a) realizing A (a). 

Indeed, one shows without too much difficulty 1> that E 1-1- A<E) 
. co er 

induces an isomorphism of Mm,~,p with the space of all sequences 

of MacMillan degree n. Thus the family cA.Ca) defines a morphism 

into Mco,cr and the pullback of the universal family by means of 
m.n,p 

this morphism is the desired family. 

This does not mean that we can always find a family of co 

and er matrix triples (F(a) ,G(a) ,H(a)) realizing cA.(a). Indeed 

this will be possible if and only if the pullback of the underlying 

bundle Eu of the universal family of systems by means of the 

morphism defined by the family df.(a) is trivial. Yet precisely such 

a family of matrix triples is what is desired on occasion; in 

particular when dl(a) is a family of matrix sequences coming from 

a sequence .,f = (A1 ,A2 , ••• ) of matrices with coefficients in a. 

ring,, R. ,,::.. 
l) (Using the Zariski main theorem as in [By 4], or by constructing local inverses 

[Baz 3)). 
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5.2.3.g~~~!!~£Z· Let R be a ring such that all projective 

modules of rank n are free. Let "4- = (A1 ,A 2 , .•. ) be a sequence 

of matrices with coefficients in R, such that the MacMillan 

degree of "' ( 'f° ) = (A1 ( 'f' ) ,A2 ( 'f' ) , ... ) over the qoutient field 

k(l ) of R/1 is equal to n for all prime ideals ~ . Then there 

exists a triple of matrices (F,G,H) over R,i.e. a system over R, 

which realizes cA- (i.e. such that A. 1 = HF 1G,i=0,1, ... ) and which 
l+ 

is such that (F( 1>) ,G( ''f>) ,H( ~)) is co and er for all 7' . (I.e. we 

have a split realization in the terminology of [So 3]). 

By the Quillen-Suslin theorem the condition on R is in 

particular fulfilled for rings of polynomials over a field, which 

is e.g. the case of interest when discussin~ realization by means 

of delay-differential systems. 

5.3. Realization by means of delay-differential systems. Let 

I:( a) = (F( a ) ,G( a) ,II( a)) be a delay-di.fferential system with 

r incommensurable delays. Here a = (a 1 , ... , a r) and a i stands 

for the delay operator o.z(t) = z(t-a. ), so that we have written 
1 l 

I:( a) as a system over the ring of polynomials k [ 01 , ••• , or]. 

The transfer function of L: ( a) is 

-a s -a s ~ -a1 s -ars -a1 s -a s 
T(s) = H(e 1 , ••. ,e r )(sI - I•(e , ••• ,e ))G(e , .•. ,e r) 

which can be seen as a rational function in s whose coefficients 

are po1ynom1a1s over k in 
-~ls 

e , ... , e 
-'1 ~. 

r 

Now inversely suppose that we have a transfer function T(s) 

which can be written as a rational function in s with coefficients 

which are polynomials in the exponential functions exp(-a1 s), •.. , 

exp(-a s), and we ask whether it can be realized by means of a 
r 

delay-differential system L:( a). Now if the 

then the functions s, exp(-a1 s), ... , exp(-ars) 

a. are incommensurable 
1 

are algebraically 

independant, and there is precisely one transfer function T' (s) = 

'l'' (s; er 1 , ... , a r) whose coefficients are polynomials in the 

a1 , ... , or such that T(s) =T'(s;exp(-a1s, ... ,exp(-ars)). Thus the 

problem is mathematically identical with the one just discussed 

above in 5.2, and by corollary 5.2.3 and the Quillen-Suslin theorem 

we get a positive answer in the case that the MacMillan degree of 

T'(s; o1 , ... ,or) is constant for all complex values of the parameter~ 
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al' ... ' a r. 

5.4. Network synthesis. An n-port is an electronic gadget 

with n pairs of terminals (over which voltages and currents can be 

measured). Ann-port which is constructed on a finite graph 

consisting only of lumped resistors, inductors, capacitators, 

ideal transformers and gyrators can be described by an n xn 

scattering matrix S(p) which essentially, after a normalization 

relates the voltages and the currents across the n ports. The 

matrix S(p) is rational and it is symmetric if no gyrators are 

present. When discussing the inverse problem of how to realize 

an S(p) by means of a network (i.e. the network synthesis problem, 

which has been solved) one hits the following symmetric version of 

the system realization problem discussed above. 

Given a symmetric,rational, proper nxn matrix W(s) (the matrix 

W(s) is related to the scattering matrix S(p) by a simple fractional 

substitution), find an internally symmetric realization, where the 

last phrase means that we want to find a triple (F,G,H) of matrices 

o"f sizes rx r, rx n, n xr such that 

(5.4.1) W(s) = H(sI-F)- 1G, I F = tFI , p,q p,q 
.... 

I G = tH 
p,q 

where the upper ~ denotes transposes, and where I , p+q = r, p,q 
is the standard symmetric form of signature p-q (consisting of 

p +l's and q -l's on the diagonal and zero's elsewhere). Note that 

r and p-q are given by W(s) as the MacMillan degree of W(s) and 

the signature of the Hankel matrix of W(s). 

In [YT] ~!Oula and Tissi show that internally :¥mmetric realizationc: 

of minimal degree always exist (op. cit. lemma 8) and that any two 

of them are transformed into one another by an element of O(p,q) c 

GL ( R ) • 
n 

The situation is now entirely analogous to the one for linear 

dynamical system (realization) theory discussed above, and one can 

ask about fine moduli spaces, etc. In particular one can ask ahout 

the existence of continuous symmetric canonical forms. It turns 
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out that these exLst only i.n the cases where they have long been 

known to exist [ BD] . (The Foster and Caue r canonical form::; for RL 

anr:I nc network::;). Agatn the problem is ruled by a certai r1 untversal 

bundle, wh i eh again is non trivial a::; soon as it has a decent chancE 

to be so. (There seems to be a kind of Murphy's law also i.n this 

hiRhly theoretical branch of electrical engeneering). 

Another question Ylhich it is now natural to ask is whether 

there exist polynomial families of internally symmetric realizatior 

for polynomial families of symmetric matrices W(s). Especially in 

connection with deJay networks, i.e. networks with transmission 

1 ines, [An, Ko , RMY, Yo] . Here instead. of the old Serre problem, < 

hits the quadrati.c analogue which asks whether any quadratic space 

over k [ a 1 , ••. , or] is induced from one over k, [ Ba]. Here the 

r;eneral answer .is 1ep,ative ( [Pa], kdR., r=2), but the answer i 8 ye: 

if r=l ( [Hatl), if k is alr,ebraically closed ( [I{a ]) anrl if the 

quadratic space is not definite ([Qj]). 
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6. 1rnALJ7,NI'JO~\J OVE!{ rn [.Jc~~; ( 2) 

Let cA = (A1 ,A2 , ... ) be a sequence of p xm matri.ces over a 

ring R. Suppose we want to realize ~ over R, i.e. we want to find 

matrices (F,G,H) with coefficients in R such that A. = HFi-lG, 
l 

i=l,2, ••.• One way to tackle this was discussed above and consists 

of treating~ as a family over Spec(R) and using the fine moduli 

space of co and er systems and the Quillen Suslin theorem ([Sus, Qu]). 

The hypotheses to make this work, however, are rather strong: viz. 

the I'1acMillan degree of ~ ( 'y:> ) must be constant as a function of' f' , 
and H must be projective :free in the appropriate di.menc>icms. 

Another way to Het realizations of~ ~oes as follows. Assume 

for simplicity thal R is an inte~ral domain; i.f R is not an inte~ral 

domain but 1. s re<iuced, then these i dea~3 p;eneral i ze rather easily. 

Let K be the quotient fie1d of lL Then c'4 j s realizable over V. 

if and only if the rank of the Hankel matrix of A , viewed as a 

matrix over K is finite. Let d(~) denote this number. Thus we a 

are left with the problem: which integral domains are such that if 

a sequence of matrices over R is realizable over K, then it is 

also real.izable over R ( possibly using higher di.mensional ma trice~-;). 

This method is not partlcularly th~ifty in terms of the dimension 

of the realization obtained, but har.:; the advantar;c of requirinp; far 

weaker hypotheses as we shall see. 

6 .1. The Fatou eropert~. An :Ln te1~ra l domain H i" "' said to be 

Fatou if for every rationa1 function p(s)/q(s), where p ( s) and 

q(s) are polynomials with coefficients .in the quotient field K 

R, such that its expansion p(s)/q(s) == L: 
-i 

ais has all its 

coefficients in R, there exist polynomials p'(s), q'(s) over R 

such that q'(s) has leading coefficient equal to 1 and such that 
-i 

p ' ( ~; ) I q 1 ( s ) = L: a . s 
1-

Fat o u proved in 1906 that the ring of integers 'Z ha;:; this 

of 

t--iCUiJc:rty, ,'/nern . .:e tw:::: 11cifflc. The Fatou property is actually equivalent 

to the realization property: if cJ4.. over R is realizable over K 

then it is realizable over R. 
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For the one inpu~/one output case this is immediate hecause 

firstly the polynomial part of T(s) = L: a.s-i causes no difficulty 
1 

at all, showing that the realization property for the one input/ one 

output case implies the Fatou prop~rty. Secondly, a power series 

E a.s-i is the expansion of a rational function p' (s)/q' (s) with 
l 

the leading coefficient of q'(s) equal to one iff ai+r = trai + ••• 

t 1a. 1 for all 1=1,2, ••• ,(where the tJ. are the coefficients 
i+r-

of q'(s)), and then the realization procedureof 5.1 above gives the 

desired realization. In the more input/ more output case one simply 

observes that T(s) consists of rational functions as entries. 

Realizing each of these we finrl in thecase of three inputs and two 

outputs the 6 realiz2.tion~.; (F .. ,G .. ,II. .), i.=1,2;j=l,2,3, of' 
lJ l.J, !.J 

Ea (i,j)s-r, where a (l,j) is the (J,J)-th coeffleient of A 
r r r 

and T( s) = L: Ars-r. How put all these together in the fol lowing 

way 

Fll 0 0 0 0 0 

1 
Gll 0 0 

0 F12 0 0 0 0 0 G12 0 

0 0 Fl3 0 0 0 0 0 r: ,.:r13 
F = ! G = 

0 0 0 F21 0 0 G21 0 0 

0 0 0 0 F22 0 0 G22 0 

\ 
0 0 0 0 F23! \ 0 G23 \ 0 0 

I 

( H~l H12 H13 0 0 

H:J H = 
0 0 H21 [{22 

Then A = HF'r-lG for all r, and of course this trick works i. n 
r 

general. 

6.1.1. Theorem. ( [RWK ]) • Every noetherian integral domain is -------
Fa Lou. 

Proof ([Sol]). Let cA- be a sequence of pxm matrices over R 

which is realizable over K. 'fhe fir~;t step now consists of the 

following eler,ant 

free state module 

of A , and let X 

realization procedure by means of a not necessaril 

([Rau, Fll, Fl2]).Write down the Hankel matrix '1l 
'.Je the R module r;cnc·rated by the columns of cA-. 

Now define G':Rm -~ X by G'(n.1 , •.. ,a) = a 1 b 1 + ••• +a b, wher( m ... m m 
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wtw f'(~ the l> . 
1 

are the column~> of 'iH. ; <le fine FI : x -+ x by FI ( b . ) = 
J 

H'(b .) be the column vector consisting of the first bj+m' and let 
p entries of 

,] 

b .• (Note that F is well defined because by the 
J 

~'>tructure of the Hankel matrix any linear relation c 1bi + ••• +c b. 
r 1 1 r 

= O implies c 1b. + ••• + crb. = 0.) 
i 1 +m ir+m 

The ~econd ste~ consists in showing that the module X is 

finitely generated. Let v 1 , ••. ,vn be n columns of~ which form 

a basis for X &R K over K. Then every column of X can be written 
-1 

as a sum r d divi, where d. ER and where d ER is the determi.nant 
l 

of a full rank n xn submatrix of the matrix formed by the vi. 
-1 Let 

Then 

X' 
x 

be the R module generated by the vectors d v 1 ,i=l, •.. ,n. 

is a subrnodul.e of the finitely generated module X' and so 

is finitely generated b~cause R is noetherian. 

Finally let Rn---+ X (different n in general) be any 

surjective module homomorphism. Then because Rn is free there are 

homomorphisms F,G,H such that the following diagram is commutative, 

n F Rn 
~R---~ ~ 

Rm G' l l ~ 
~ X F' X ___.--

and then HF i-lG = 0 •F~i-lG' A i' 1 2 prov1· the th r = . , = , , • • • ng eo rem. 
l. 

Not all integral domains are Fatou, cf. [Cha, CCh]. A closely 

related property called strong Fatou is also relevant for system 

theoretic considerations ([SR 2]), and it in turn implies that the 

ring in question is almost projective free.(It suffices to add one 

copy of R to a projective module to make it free). 

6.2. Minimal realizations,([Eil]). Let F:X m 
-+ X, G:R -+ X, 

II: X -+ RP be a (discrete time) system over a ring R whose state 

module is not necessarily free. Define m i G:R [z] -+ X by az .-. 

F1 Ga and define H: X -+- RP[ Fz: ] ] by Hx n n = I HF xz • Then the 

appropriate (and obvious) notions of er and co for systems over rings 

are: the system is (ring) er if G is surjective, and the system 

is (ring) co if Il is injective.(For the family over Spec(R) 
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associated to the system the property "ring er" is equivalent to 

the requirement that every mem:ber of the family be er; but the 

property that every member of the family be co is stronger than 

the propery "ring co".) The system is said to be minimal if it is 

both er and co. 
Now let xcr c x be the image of G. 'fhen G (Rm) c Xcr and 

F(Xcr) cxcr, and the induced er system (Xcr;F,G,H) has the same 

input/output behaviour as the original system (X; F,G,H). More or 

less dually let c be the kernel of R and let Xco be the R 

module Xco = X/C. Now F(C) c C and H(C) = 0 so that we have 

an induced system ( xc 0 ; F, G, H), which is co and whi eh has the same 

input/output behaviour as the original system. 

Performing both constructions we find a co and er system 

((Xcr)co;F,G,H)with the same input/output behaviour as the original 

system; i.e. we find a minimal system. All minimal systems realizin1 

a given A are isomorphic ( so that in particular it does not mattei 

which of the two constructions is carried out first). 

Of course the minimal realization of a r, i ven A need not hav1 

a Cree, or even projective, state module, however, if the family 

cA- ( 'f') has constant MacMillan degree than thf: realization obtained 

by the methods of section 5 above is minimal and the realization 

obtained by the constructions described 

state space module. 

above has a projective 

6.3. 2-d and n-d systems. Consider a linear discrete time 

system with direct feed-through term 

(6.3.1) x(t+l) = Fx(t) + Gu(t), y ( t ) = Hx ( t ) + J u ( t ) 

The associated input/output operator is a corwolut.ion operator, vi 

t 
E A.u(t-i), Ao= J, A. = HFi-lG, 

i=O 1 l 
(6.3.1) y( t) = i=l,2, .•• 

Now there is an obvious more dimensional (north-east causal) 

generalization of such a convolution operator, viz. 

h k 
y(h,k) = I: I: Ai J.u(h-i,k-j), h,k=0,1,2, ••• 

i=O j=O ' 
(6.3.3) 

A ( Gi vane-Roesser) realization of such an opera tor is a "2-d systi 
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x 1 (h+l,k) - F11 x 1 (h,l<) + FL!x 2 (h, k) + c; 1 u ( h, k) 

(6.3.4) x 2 (h,k+l) = r 21 x 1 (h,k) + F22 x 2 (h,k) + G?.u(h,k) 

y(h,k) = l\x1 (h,k) + H: 2x 2 (h,k) + Ju(h,k) 

which yields an input/output operator of the form (6.3.3) with the 

A. . determined by the power series development of the 2-d transfer 
1 ' J 

function T(s 1 ,s 2 ) 

(6.3.5) 

(6.3.6) J 

where Ir is the r xr unit matrix and where n 1 and n 2 are the 

dimensions of the state space vectors x 1 and x 2 • There are obvious 

generalizations to n-J systems. The question now arises whether 

every proper (cf. e.g. [Eisllfor a definition) 2-d transfer function 

can indeed be realized by a set of 11processing equations" like 

(6.3.4). 

One way to appraoch this is to treat one of the s. as a parameter, 
1 

which then gives us a realization problem ove~ a rin~ (or a 

realization problem with parameters). 

More precisely let R be the ring of all proper rational g 
functions in s 1 . Now consider T(s 1 ,s 2 ) as a proper rational function 

in s 2 with coefficients in R • 'l'hif> t:ran::;fer function can he g 
realized over n, r,iving us a quadruple or rnaLrice:; (F(;; 1 ),G(:~ 1 ), g 
H(s 1 ),J(,; 1 )). Each ::if thc~;e matrice~; I:; rroper a~: a function of :; 1 
and hence can be realized by a quadruple of matrices with coefficient:; 

in whatever field we happen to work over. Suppose that 

(FF,GF,HF,JF) realizes F(s 1 ) (FG,GG,HG,JG) realizes G(s 1 ) 

(FH,GH,HH,JH) realizes H(s 1 ) (FJ,GJ,HJ,JJ) realizes J(s 1 ). 

Then, as is easily checked, a realization in the sense of (6.3.4) 

is defined by 
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~HF HG 0 0 l ,• I 
, JG i 
I ' 

~G ~ ~ ; 
(Gl l -\ 

ell F12) :F 0 ' ! 

F = = G = = GG) 

F21 F22 
I G2/ 

GH I 0 FH 0 0 I \ 0 i 

0 I 0 0 0 I' ' \GJ/ ' 'Ji 

II = (Hl !12) ·- (JH I 0 0 HH HJ)' J = JJ 

This is the procedure followed in [Etsl]; a somewhat different 

approach with esse:-itially the same first step and also based on 

realization over rings is used in [ So 2]. 
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7.0U'l'PU'l' FEEJHJ/\.CK, HLEflDl!JC Arm ;)'l'EUJ SPACES 

7.1. Dynamic output feedback. Consider a scalar (for simplicity) 

transfer function T(s) = p(s)/q(s). Then the introduction of a 

dynamic output feedback loop with transfer function L(s) = a(s)/b(s) 

results, as was men~ioned in 3.4 above, in a new system with transfer 

function 

(7.1.1) 

The system 

T(s) 
1-T(s)L(s) 

dcscri.hcd hy 'l'(r;) 

p(s)b(s) 
b(s)q(s)-a(s)p(s) 

= p(~)/q(s), where p(3) and 1(s) arc 

without common factor~;, i~:; f;tat>lc if q(,,) ha~; all it~~ roots in the 

left half plane. 

Now suppose thac the system T(s) depends on some 

only approximatedly known parameters c varyin~ in some compact set 

C; i.e. we have a certain amount of parameter uncertainty. And 

suppose that we want to stabilize T (s) = p (s)/q (s) by means of c c c 
a dynamic output feedback loop L(s) for alll c simultaneously. Then 

our problem is to find polynomials a(s) and b(s) such that all 

the roots of 

(7.1.2) b(s)q (s) 
c 

a ( s) p ( f3) 
c 

are in the left halfplane for all c EC. 

7.2. The blendinrr problem. Com>iclf~r the sinr;le input/si.nr;le 

output control system represented by 

-·-----. J --1 p(s) 

> > 

where the transfer polynomials p(s) and q(s) are given, but there 

ts some uncertaintj' about their parameters, and where it is desired 

to f'i.nd polynom.ials a(s) and b(s) such that the total system has 

only left halfplane zero's, a properbj 'Nhich i.s sornct.Lmes callerl 

minimum phase. 'l'hufi it i:; desired Lo find a(:::;) "'3nrl b(s) such that 
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(7.2.1) a(s)p (s~ + b(s)q (s) 
c c 

has only left halfplane zero's. This has been called the blending 

problem and mathematically it is the same problem as the dynamic 

output stabilization problem of 7.1 above. 

If it ls required that b(s) is .minimum phase ::ilso one speaks 

about the strong blendinp, problem. For the dynamic output feedback 

stabilization variant this corresponds to the requirement that the 

feedback loop system L(s) be itself stable. 

The(strong) blending problem can not always be solved. For 

instance if thereare points d,e in the right half plane such that 

p (d) = p (e) = 0 for all c and such that qc(d) cicles around 
c . c 

zero as c varies, while qc(e) is a fixed constant, then the 

blending problem has no solution (CTal). 

7.3. Connection with Stein spaces. Let E be the right halfplar 

then we want to find polynomials a(s),b(s) such that a(s)pc(s) + 

b{s)qc(s) I: 0 for all sE E and c Ee. Let Tc(s) = pc(s)/qc(s) and 

L(s) = a(s)/b(s). Then we want to find a rational L(H) such that 

Tc(s) I: -L(s) for all ce: C and s e: E. For a fixed c let 

Z 0 = {(s,Tc(s)) I s e: E} c: Ex 12 1(c) 

z~ = {(s,Tc(s~) I s EE, Tc(s)i' 00} c: Ex a: 

and let Z • U0 Zc, Z' = Uc Z~, Y =EX 1!1(1;)'.Z, Y1 = E xa:' z•. We 

have the natural mappings Y + E, Y' + E, induced by (s,w) + s. 

Solving the blending problem now consists of finding a meromorphic 

section of Y. -. E and a holomorphic section of Y' + E gives a 

solution of the strong blending problem. Now it turns out that 

(op. cit.) Y' is a Stein space, which helps in obtaining some positi 

results for the blending problems. 

I should add that in the case that the uncertainty in T (s) is 
c 

of the form T0 (s) = cT(s), where 'f(s) is a fixed rational function, 

so that the uncertainty is just a gain factor, Tannenbaum in op.cit, 

gives a complete soluti~n using very different methods (complex 

interpolation) • 
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In this section I briefly discuss a few variations on the theme 

matriJt polynomials. It will oe clear I nope that tne various morceaux 

mentioned below are intimatealy relatea, ~nough tne overall picture 

does not seem, as yet, to be completely clear. 

8.1. Preliminary remarks concerning matrix polynomials. Let k 

be a field. We denote with kpx m [s] ( resp. kpx m ( s)) the module of 

all p x rn matrices wjth entries in k[s] (resp. k(s)) and with km [s] 

(resp. km(s)) the module of column m-vectors of polynomials (resp. 

rational functions) in s over k. Matrix multiplication makes kpxp ~] 
a ring. An element U(s) of this ring is called unimodular if it is 

* invertible in this ring; i.e. if det(U(s))E k. An element D(s) in 

kpxp[s] is called nonsingular if det(D(s)) 1- O. 

A firstmost useful fact about the ring kpxp[~ is that it is 

a left and right principal ideal ring. Thus in particular any two 

elements A,B have a g-eatest right common divisor D ( that is, there 

are C,C' such that A =CD, B = C'D, and if D' is any other common 

right d.ivisor of A,B then D is a left multiple of D1 ,i.e. of the 

form D = ED' for some E in kpxp[ ~ ). This greatest common 

right divisor 'is simply any generator of the left ideal generated 

by A and B, and is or course determined up to a left unimodular 

factor. Similarly there are left greatest common divisors. As an 

immediate consequence one r,as: 

8.1.1. ~E~E~~!~!~~· Let T(s) E kp~(s) be a matrix of rational 
functions. Then there are N(s) E kpxm [s] and a nonsingular D(s) 

E kmxm[~ such that T(s) = N(s)D(s)-l and such that there are 

A ( s) E km xp [ s] , B ( s) E kmx m [ s] with A ( s) N ( s) + B ( s) D ( s) = I . The sc 
m 

N(s) and D(s) are unique up to a common right unimodular factor. 

One Interesting fact in this connection is that if T(s) is a 
1 strictly proper rational matrix function and T(s) = N(s)D(s)- is 

the factorization of B.~.l above, then the MacMillan degree of T(s) 

is the degree of det(D(s)). 

8.2. The disturbance decoupling problem. Suppose we have a 

control system with an extra noise input; i.e. we have a set of 

equations 

((8.2.1) • x = Fx + Gu + G'~, y = Hx 

(or the discrete time version of this). One now tries to find a 

state space feedback matrix L (er. also the picture in 2.4 above), 
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~;uch tha L for tlie c:>y~> tern with th i ~:; feedback loop 

(8.2.2) ~ = (~+GL)X + Gu + G'w, y = Hx 

the output no longer depends on the noise w. In terms of matrix 

formulas this means that one tries to find a matrix L such that 

H(F+GL)iG' = 0 for ~11 i. 

8.3. The model matching problem. The model matching problem is 

defined as follows: given transfer function matrices T(s), T'(s), 

find a strictly prorer Q(s) such that T' (s)Q(s) = T(s). 

I.e. by first pro~essing our inputs by means of Q(s) and then 

by T'(s) we match exactly the input/output behaviour defined by T(s). 

This problem (MMP) and the disturbance decoupling problem (DDP) 

have been shown to be equivalent in [Eli], in the sense that each 

DDP gives rise to an MMF and vice versa and that the one is solvable 

iff the other is. 

8.4.F mod G invariant subspaces, [Woll. Let (F,G,H) bea system 

of dimension n over a field k. A subspace V ckn is called an 

F mod G invariant subspace if 

(8.4.1) FV c V + <G> 

where <G> = Gkm is the subspace of kn spanned by the columns of S, 

These subspaces are naturally called A mod B invariant subspaces 

by those who write their equations ~ =Ax + Bu, y = Cx rather than 

i = Fx +Gu, y = Hx; a less notation dependant name is sorely needed. 

8.4.2.~E~E~~!~!S?!::· ( [Wol.]). A given DDP hafs a solution iff there 

is an F mod G invariant subspace V such that <G' > cVc Ker H. 

This rests on the observation that V is an F mod G invariant 

subspace iff there is a matrix 

Obviously the sum of two 

L such that (F+GL)V cV. 

F mod iz invariant subspaces is an 

F mod G invariant subspa~e. Thus there is a largest F mod G invaria 

subspace contained in a~y subspace. 

There are still a number of (largely) open problems concerninR 

!:" mod G invariant subspaces. For instance a description of all of the 
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(of' a f~i.v<~n dirnf~n:;ion r) a:;, :">ay, a :;ut):;et of thE; r;ra~·:srn:inn varir;ty 

G {k). Also open is th~ problem of finrting a good minimal F mod G n,r 
invariant subspace which contai.ns a given space. (There need not be 

a smallest one as the intersection of two F mod G invariant subspaces 

need not be F mod G invariant). 

Geometrically F m0d G invariant subspaces V of kn are those 

subspaces with the property that once one is in it one can stay in 

it by a judicious choice of controls. This gives a natural notion 

of an almost F mod G invariant subspace ( as a subspace for which 

once one is in it one can stay arbitrarily close to it), and this 

notion then solves an approximate DDP ([Wi2]). 

8.5. Matrix polynomial factorization. Consider a matrix 

polynomial 

(8.5.1) D(s) = A Sr + 
r 

where the Ai are m x m matrices. Two such matrix. polynomials 

are said to be equivalent if there exi~;t polynomial unimodular 

matrices U(s), V(s) such that D(s) = U(s)E(s)V(s). 

A linearization of D(s) is an (m+l)x(m+l) matrix L such that 

sT 1 - Land D(s) ~r 1 are equivalent. If A is invertible such m+ r 
a linearization always exists. One particular one is obtained as 

-1 follows. Let A! =A A., i=0,1, •.. ,r-1 and substitute 
1 r i 

T . = r-1 
-A! 

1 
in the F matrix of (5.1.3) above to obtain a matrix F(D). Then 

this matrix F(D) is a linearization of dimension rm. Of course 

equivalent matrix polynomials have the same sets of linearizations, 

but here it is also true that all linearizations of n(s) of dimensinn 

rm are similar ( [GLRl] ). Gohberg a.o. ([GLRl-s,GriJR, GKV, GKL]) make 

this notion of linearization a cornerstone of their (spectral) 

analysis of operator polynomials and in their study of factors and 

multiples of such po 1 ynomials. E.g. by theorem 8 of [ GLRl] there is 

a nice correspondence between monic factors of D(s) (still assumin~ 

A to be invertible) and certain F(D) invariant subspaces. 
r 

It is not true however, that every matrix polynomial is 

linearizable in this sense. For instance if A is nilpotent then a 

contradiction is obtain~d by 

the equation (Im + sA) eI 1 

taking determinants on both sides of 

= U(s)(sI 1 - L)V(s). (But it is m+ 
true that one can always find L,M such that (D(s) e r 1 is equivalent 

to L - sM,cf. [ GKL ]. ~ 
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Now U1L; linca_'ization dc;;cribed a~>ove (t)y a block compani()n 

matrix) is a special case of what has been called the Fuhrmann mod~l 

of a matrix polynomial ([ful]), which is what we describe next. 

For each rational function f(s)e k(s) let 1Tf(s) be its 

strictly proper part; i.e. if f(s) = p(s)/q(s), p(s),q(s)E k [s], 

write p(s) = n(s)q(s) + r(s) with degree r(s) < degree q(s) and 

define nf(s) = r(s)/q(s). We use the same notation for the analogouc.; 
map km(s) + km(s). Now let D(s) be a nonsingular matrix polynomial 

(with m x m matricc.s as coefficients) and define 

(8.5.2) 1T D: km [s ] -+ 
rn -1 k [s ] , 1T D f = D 1T ( D f ) 

-1 (If n(f) is the integral part of D f, then 1TDf = f-Dn(f), showing 
that 1T 0 f is indeed polynomial again.) This map is a projection with 
kernel Dkm[~. Its image V(D) is a vectorspace of dimension 

degree det(D(s)). Now ~efine 

(8.5.3) F(D):V(D) ---+V(D), fr+ 1T 0 (sf) 

which gives V(D) a k[s] module structure for which V(D).:::. 
km[s]/Dkm[s] .(Of course, abstractly (V(D), F(D)) is simply this 

quotient module). 

8.5.4. ~~~E~~!!!~~[Ful,theorem 4.~). Let D(s),D' (s) be mx m 
matrix polynomials. Then F(D) and F(D') are similar if and only 

if D(s) and D'(s) are equivalent. 

Thus it is not unreasonable to expect that the invariant 

subspaces of F(D) and the polynomial factors of D(s) correspond. 

This does indeed turn out to be the case'[ Ant, EH]) • The Fuhrmann 

D(s) is also closely related to realization theory. In fact model o:f 

if D(s)-l is proper (and by changinR, i:f necessary, D(s) by a 

unimodular factor this can always be assured) then F(D) is the 
F matrix of a minimal dimensional realization (F,G,H,J) of D(s)- 1 . 

This fact, together v·ith the remark that the F mod G invariant 

subspaces are the (F+GL) invariant subspaces :for some L, lies at the 
basis of a correspondence between factors of D(s) and F mod G 
invariant subspaces ([EH ,FW]). 
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9. THE FEEDBACK GROUP J\ND ITS INVARIANTS 

9. 1. The Cf~cdhack group and the Kronecker indices. In this and 

arid t:he fol lowing subse,~ ti on we consider control sys terns x = Fx + Gu, 

rather than input/output systems x = Fx +Gu, y = lfx, and we consi<ier 

a larger group of t~ansformations than just state space isomorphisms, 

viz. the socalled feed')ack group, which is generated by "base change 

in state space", base change in input space" and state space feedback". 

More precisely let L (k) be the set of all pa i. r:> of matri.ces over m,n 
L er ( k) k of dtrnensions nx n and n x rn and let be the suhset rn,n 

of all completely reachable pairs. Then the feedback p;roup, actinp; 

on thef3e spaces i!.:; r;ene ~'a ted hy the t rans format ions 

(9.1.1) ( F, G) !-+- (S- 1 FS,G), SEGL(k) (~;ta te r>pace base chanw:) 
(F,C;T- 1 ) 

n 
(9.1.2) ( F, G) ,___.. 

' 
TEGL(k) (input space hase chanr~e) m 

(9.1.3) (F,G) I--+ (F+GL,G) 
' 

LE kmx n (state space feedback) 

This group is readi. ly seen to be a 1 inear algebraic group, viz. the 

closed subgroup of GL m+n of all matrices of the form 

acting as follows 

~), (F,G)) ~ 
Let ~( F, G) be the Kronecker n.ice selection deftned in 4. 3 abov(-: 

(which was i.ndependant of the matrix H). Now let K(F,G) = ( Kl (F,G), 

••• , K (F,G)) be the set of numbers ~(F,G) arranged according m 
to magnitude with the largest one first. So in the example of 4.3 

above we have Kl = 3, 

We claim that t~e 

~=2, K 3 =1, K 4 =0. 

K. (F,G) are invariant under the feedback 
l 

group. This can be seen ~s follows. Let di be the dimension of the 

subspace of kn generatect by the colur.i:1s of the matrices G,FG, •.. , 
Fi-1,c . '-'• l.=1,2, ••• ,n. Then the di are clearly invariant under the 

tran~formations (9.1.1) - (9.1.3). But the ct 1 determine the K i 
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e. =d. - d. 1 , i=2, ••• ,n, e 1 = d 1 • Then 
l. l 1-

is as follows.Let 

the number of e i which are~ 1, K 2 is the number of e. whi(:h 
1 

are ~ 2, ••• , K 
m 

is the number of e. which are > m. (And inversely 
l 

the Ki 

Thus the 

determine the ei by analogous rules and hence the di.) 

K. are inJeed invariants. 
l 

9.2. The block companion canonical form. In this subsection we 

show how all the elements in O(~ ), which is t~e set of all (F',G) 
'\, '\, 

such that K (F,G) = i< , can be brought into a certain special form by 

transformations which Jary continuously ·t1ith the paraMeters of (F,G) 

(as long as (F,G) varies within a fixed O(~ )), a result which we 

shall also need in section 10 below. We shall assume that Kl+ ... 

+ K = n, which is equivalent to O(~ ) c Lcr , and which is m m,n 
necessary for the arguments below. The "proof" is by a, hopefully, 

sufficiently complicated example. For even more details cf. [ Haz3, 

Kal ].In fact below there are already more details than is normally 

appropriate for a survey type paper, for which I apologize. We shall 

need however, the fact that this construction is continuous in section 

10 below to give a new proof of a theorem of Chris Byrnes. In view of 

the plethora of constructions in the field which are discontinuou~ 

it seemed worthwhile to make it absolutely clear that this one is 

continuous for a change. 

For the sufficiently complicated example we shall take m=4, 
'\, 

n=6 and K = (2,3,0,1), so that the corresponding pattern of dots 

and crosses looks like 

x 

x 
(9.2.1) 

x 

By the de.finition 

a relation 

(9.2.2) 

where the sum on 

x 

x 

of 

the 

x 

the pattern '\· 
K 

k a .. 
1,1 

left runs over 

> (k,j) in the lexicogrtiphic order 

we 

all 

on 

(J is the set of all pairs (i,j), i = 0,1, 
m,n 

have for each i = 1,2,3,4 

( k, j) € 
'\, 

such that ( '\, . ) 
K K i' l 

J m,n' cf. 4.3 above. 

... , n; j = l ' ... , m). 
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A fir:;t prelirnin<lry :~tcp i:; now to find an m xrn m;:i.trix 'l'(F,<;) 

which ls upper diaRonal (with ones on the dlaRonal) auch that Lf we 

write down the corresponding relations for the pair (F,G') = 
k '\, 

(F,GT(F,G)) then (9.2.2) has a.. = 0 for all k > K. •• In our 
l. .J - l 

example the relevant four relations are 

(9.?.3) 

Sote that for example the third relation does not involve ~4 by the 
'\, 

definition of K. In this case •r(F,G) .is tne rnatri.x 

(9.2.4) T(F,G)= r~ 
0 

0 a11) a31 

1 0 
a:32 a42 

\: 0 1 0 

0 0 i I 
Note that we are only using those k '\, 

a .. for which k = K 1·, .l J 
T(F,G) comes out to be upper diagonal beca.use in (9.2.2) 

if ( k, j) > ( ~. , i), and 'f:J..nal ly note that a transformation 
- 1 

note that 
k 

aij = 0 
(F,G) H 

(F,GT) does not change ~ provided T is upper diagonal (even 

though in general a base change transformation in input space does 

change the Kronecker selection ~ even lf it leaves the Kronecker 

indices unchanged). Now let G' = GT(F,G), then an easy check shows 

that in the relations for the pair (F,G') corresponding to (9.2.?) 

we have k = that 

(9.2.5) 

where now the sum runs ov~r all (j,k) E 

define a new basis (b 1 , ••• ,bn) of kn 

this basis F and G' look like 

~for which k< ~ .• We now 
l. 

such that with respect to 
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0 0 

(: 0 0 

0 0 

0 0 0 
G" = (9.2.6) F" = 

0 1 0 0 4: ___ ·_ 
o o I o 1 

0 0 

0 0 0 1 0 0 0 0 

llE \ 0 1 0 
i 
\ 

\ 0 0 0 

To this end we use the relations (9.2.S) which written out in 

example result 

and a.~ with 

from the formulas (9.2.3) by replacinr.; g . wit 

i lJ 
a42 = o. 

,k 
aij 

Now define 

bl = FgJ_ 

b2 = g' 
1 

b3 
2 

= F g' 
2 

b4 = Fg'2 

b5 = g2 

b6 = g' 4 

+ 

for 
'\, 

k < K., and by 
l 

, l I 
allgl + I 1 I 

a12g?. 

+ ,2F I 
a22 8 2 + I 1 I 

a21g-1 + 

+ I 2 I 
a22g2 

settinr, 
0 • 1. 0 

a31 = a32 = 

I 1 I 
a 22g2 

Note that the three groups of basis vectors b 1 ,b 2 ; b 3 ,b 4 ,b 5 ; 
'\, '\, '\, 

(corresponding to the three nonzero K1 , K2 , K4 ) are ot 

by "dividing as best as one can" the left hand sides of the f 

second; fourth equation of (9.2.3)' by F,F 2 F,F 2 ,F3 ; F. 

Now let L be the 4 x 6 matrix whose first row is the 

row of F", whose second row is the fifth row of F11 , whose tl 

row is zero, and whose f0urth row isequal to the sixth row o: 

'Then (F 11 -G 11 L,G") looks like (9.2.6) with all the JE 1 s repla1 

zero's. 

Finally let S be the permutation matrix consisting of 

columns e 3 ,eg,e 1 ,e 2 ,e3 ,e6 
vectors in k , and let T 

where the e. are the standard 
1 

be the 4 x 4 perrnu tat i.on matrix 

by the standard basis vectors of k 4 in the order 1,2,4,3. T 
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0 1 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 

SF"S-l 
0 0 0 0 0 0 1 0 0 0 

= 0 0 0 0 1 0 
SG"T = 0 0 0 0 

0 0 0 0 0 0 \·6--b-· 0 0 
n--·- ... "_'"_ ~ .. 

0 0 ') 0 0 0 1 0 

matrices deper.d only on the Kronecker indices Kl' K2' K3' 

9.2.8. 2~E~!!!~l ([Bru2, WM, Ros, Kal]). The Kronecker indices 

are the only invaria;nts of the feedback group acting on 

For results concerning the feedback group acting on Lcr 

Lcr • 
m,n 

m,n,p 
cf. e.g. [w~ . The form (9.2.7) has been called Brunovsky canonical 

form. 

9.2.9. ~~~!E~· Not.e that on 0( ~), the set of all pairs (F,G) 
'\, '\., 

such that K ( F, G) = K the construct ion is clearly continuous. On 

K4 • 

0( K ), the orbit of the feedback group labelled by K, the construction 

is in fact not continuous in general. 

9.2.10. ~~~!£~.The quotient map 

if the set of Kronecker indices {K} 

Lcr ~ {K} is continuous 
m,n 

is given the topology belonging 

to the partial order ( K > K' ) ..,. ( K 1 .:_ Kl 
K l + K 2 and • • • and K 1 + + K m < K l 
this is then in fact the quotient topology. This 

and Kl + K 2 .:_ 

+ • • • + K ' ) , and m 
is the same order 

of partitions of n as turns up in the study of degeneration of 

vectorbundles over algebraic varieties ([Sh, theorem 3]), which fact 

is explained by what comes next in subsection 9.3; it is also the 

same order which turng up in the theory of the representation of the 

symmetric groups ([Sn,LV~.])an 11accident", which still needs explaining; 

and it is also the deg.:meration order among the orbits whose 

closure contains zero for SL acting on its Lie algebra by the n 
adjoint action, ([ Ge'l'.', Hesl ) • Cf. Bry for yet more occurences of this 

partial order in various parts of mathematics. 
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)' -· (l·',<;,11) E Lcr,co(r) ti(~ :i 1:r :uid r:o inp1J~,/out;riut, ;;y:.:;tr~rn, ::i.r1rJ let 
rn,n,p 

'l'):(:~) lw iL:; Lran:;f'(~r f'urict.ion, and wril.P 

(9.3.1) 

with N(s) and D(s) right coprime matrices of respective dimensions 

p xm and m xm, D(s) nonsingular; cf. 8.1 above. 

Let G be th3 complex Grassmannn variety of complex m-planes 
m,m+p 

in complex m+p spar.e. Define 

(9.3.2) cpl: : p 1 ( r: ) -+ 

by the formula 

G m,m+p 

{ (N(s)u,D(s)u) I u E:C} 
(9.3.3) {(O,u)j uE:C} 

This defines a continuous, and ln fact a holomorphic morphism. 

9.3.4. ~E2E~~!!!~~' ([HM3] ). The MacMillan degree of TE(s), 

i.e. the degree of det D(s), 

the intersection number of 

i.e. the dimension of L, is equal to 

<PE (P 1 (:r:: )) with the hyperplane at 

infinity in G m,m+p 

Let E' + G m,m+p be the canonical m-dimensional bundle over 

the Grassmann va~iety whose fibre over x is the m-plane represented 

by x, and let E over r + be the dual vectorbundle. Define E(E) over 
l m,m p 

P (IC) as the pullback of E bv means of cl>r.Now by [Gro] every holomorphic 

m-dimensional bund-le-E over.the. Riemann-s-phe-£e-P 1-(K;). splits as a sum of line 

bundles and is classified (up to isomorphism) by m integers K(E) = 

(K 1 (E), ••• ,Km (E)), K1 (E) .:::_ •• ·2. Km (E), where the Ki (E) are the degrees of the 

line bundles in question. 

9.3.5. !~~~!~~· ((H~3]). K(E) = K(E(E)). 

9.4. The KronecLer matrix pencil of a ~trol_~i_stem. A pencil 

of matrices over a field k is a polynomial matrix of degree 1 

(9.4.1) K(s) = A + Bs 
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Two such pencils K,~' are said to be equivalent if there exist 
"bl t · PE kmxm, QEkrx r suc-h that K' PKO K k invert1 e ma rices · = . ranee er 

( [Kr~) classified such pencils, cf. also [Ga, Herl]). Now let 

L = (F,G) be a control system and associate to it the pencil 

(9.4.2) KL(s) = ( G ! 
j 

sI - F) 

Let L:' = (F' ,G') be a second control system. Partitioning Q as 

indicated below and considering the equation 

(9.4.3) (G' r1I - F' ) = P ( G 

readily follows that Q21 0, 0 22 
-1 that G' PGQ11' it = = p so = 

F' = PFP-l - PGQ12' so that the pencils K (s) and 
L 

K (s) 
L' 

are 

equivalent iff the cont1·ol systems L: and L: ' are feedback 

equivalent, i.e. equivalent under the feedback group, 

Most of the invariants of Kronecker for the classification of 

matrix pencils are zer0 for pencils of the form (9.4.2). The 

remaining ones are 

the numbers K1 ( L: 

indices" for K ( 

certain nonnegative integers which are precisely 

) , ••• , K ( L: ) ( [ Ka]J) , whence the names "Kronecker m 
L:) and "Kronecker selection" for 'i2' ( L: ) • 
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10. POLE PLACEMENT AND COEFFICIENT ASSIGNABILITY 

lU.l. Coefficient assignability over a field. Let R be a 

ring and let 2:: = (F,G,h) be a system over R. Let x (2:: ) = x (F) = 

det(sI - F) ( the characteristic polynomial of E). The system 
n 

is said to be coefficient assignable if for all a 1 , ..• ,an E R 

there is a state feedtack matrix L such that 

A slightly weaker property is pole assignability which means that 

.for all b 1 , ••• ,b 0 E: R there is an L such that 

X (F + GL) = (s-b 1 ) (s-b ) 
n 

) -1 
Because TL (s) = H\sI-F G these properties (and their 

weaker variants of ~.hlch stabilizability, cf. 7.1 above, .is one) 

say things about how th~ poles of the transfer function can be 

shifted. Over a field things are quite clear 

10.1.1.~!~E~~!~!~~,[Wo2]. Let k be a field, then a system 

over k is pole assignable iff it is coefficient assignable 

iff it is er. 

This follows fairly immediately from the Brunovsky canonical 

form discussed above in 9.2. 

There are of co~rse entirely straiRhtforward definitions of 

pole assignability an1 coefficient assignabllity for families 

of systems which fit with the ones for systems over rings when 

a system over a ring is viewed as a family. 

10.2. Pole placement over a ring. Over a ring R things are 

not so simple, and in f~ct largely unsettled. Two easy facts are 

10.2.1.Lemma. If m = 1 then coefficient assignability is 

equivalent to er (meaning that R(F,G) defines a surjective map 

Rr - Rn, r = m(n+l)). 

10. 2. 2. Lemma. If' 2:: over R is pole assignable then E is er. 
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Jn general it is not known whether er implies pole assignabjlity, 

but over a ring with only finitely many maximal ideals it is still 

lrue that er implies coefficient assignabili ty ([ Sol] ) , which 

takes care of the c~se of linear sequential circuits (where R is 

finite). For R = k[ cr] . poynomials in~ variable over a field, 

Steve Morse ([Md) has shown that er implies pole assignability, 

a result which then (cf. section 2 above) also says things about 

the stabilization of delay-differential systems with only one delay 

operator. Morse's result holds more generally over principal ideal 

domains. There is also a simple example that shows that over 

k~] er need not imply coefficient assignability. 

Apart from a r'~sul t for polynomial fami 1 ies (and more generally 

for systems over rings 1vhich are projective free) wh] eh we describe 

below this is about all that is known. Let me rema~k though that 

when m =1 and I is not er, Wyman in [Wy] describes the extent 

to which the system fai~s to be coefficient assignable in terms of 

a certain Ext group. 

10.3. Coefficient assignability for polynomial families. In this 

subsection I give a new proof of the following theorem of Chris 

Byrnes. 

10.3.1. .'.!~~~!:~~· [By4J. Let I[o] bt:: a polynomial family of 

systems over a field k parametrized by 0 1 , •.. , or (or, equivalently 

let I be a er system ever k [a 1 , •.. , crr] (Quillen-SusU.n theorerr:)). 

Suppose that the sets of Kronecker indices of I ( cr ) are constant 

as functions of a for all values of oE kr, where k is the 

algebraic closure of k. Then L:(tr)is coefficient assignable. 

Proof. Let I = (F,G,H) and let d. ( a ) 
l 

for all cr E kr be 

the dimension of the subspace of 

matrices G(cr ) , F( a )G( cr ) , , F( cr 

the hypothesis that the K. (cr ) = K. (I 
1. 1. 

spanned by the coluMns of the 

)i-lG( cr). Then, cf. 9.1 above, 

(cr)) are constant implies 

that the d. ( a) are also constant. For i=l this means that 
l 

E1 = { (cr , < G( cr )>} , VJ"here < M > is the subspace spanned by the 

columns of the matrix M, is a vector subbundle of the trivial 

n dimensional bundle over affine r space. Dy the Quillen-Suslin 

theorem this means that there is an invertible matrix T1 with 

coefficients in k[ o ] such that the first d 1 columns of G( cr)T 1 
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are linearly independant for all a . Uecause d 2 (a ) is also 

constant E2 = { (a, <G( a), F( a )G( a)>} is also a vectorbundle 

and applying the Quillen-Suslin theorem again we have that the quotien 

bundle E2/E 1 is free. This one is generated fibre wise by the first 

d 1 columns of F( a )G( a ) mod < G( a)>, which means that there is a 

matrix T 2 with coefficients in k[ a] of the form 

where T~ is a ct 1 x d 1 matrix, such that the first ct 2-ct 1 colummns 

of F( a )G( a) T1 T2 generate the fibre at a of E2 /E 1 , and because 

T2 , so to speak, only acts on the first ct 1 columns it is still 

true that the first ct 1 columns of G(O ) generate the fibres of 

E1 . In terms of the Kronecker selection this means that after two 

base changes in input s~ace we have arranged things in such a way 

"" that the first two columns of the Kronecker selection K ( L: (a ) ) 

for all a E kr look like 

y x 

d2 - dl 

dl x x 

x • 

x • 

• • 

• • 
Continujng in this way (the next matrix, '1'3' is of the form 

T 
3 = (:3 :J 

with T~ a (d2-ct 1 ) x (d 2-ct1 ) matrix) we see that by a polynomial 

base change T in input space we can uee to it that the Kronecker 

selection of (F( a) ,G( a )T) is constant. BL'.t then, by means of th 

construction which we so elaboraledly described in 9.? abov~we can 

bring Z(o) in the Brunov~ky canonical form (9.2.7) by means of 
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polynomial base changes and polynomial feedback. A further polynomial 

feedback operation chan puts preci!~ely those polynomials in the 'It -

f;poL:; in (9.:J.G) which wt~ need, prov:in1r, the theorer;1. 

The original proof of thh:; theorem ([ By4]) rel.ies instead of on 

the Quillen-Suslin theorem on results of Hanna (Dia~ ) on decomposition 

of vector bundles whic'.1 are applied to the family of Martin-Hermann 

bundles (cf. 9.3 abov~) which is defined by the family E (a ). 
Of course the proof Given above works over any ring over which all 

finitely generated r rejective bundles arc free; the same proof also 

gives, of course, resul~s for continuous (differentiable) families 

over homotopically trivial spaces (manifolds) 

Uy the in terpre tat ion of delay-cl L fferen t ial sys terns a~; po lynorn i.al 

families of systems, theorem 10.3.1 tells us thinRs about the 

stabilization of delay systems (which are in principle infinite 

dimensional gadgets, showing the power of the family interpretation) 

For these sys terns the pr·oof of the theorem has the fol lowing corollary. 

10.3.2. ~~~~!!~~l· If E (cr) is a delay-differential system such 

that the conditions of the theorem hold for the associated 

polynomial family or systems, then the system E(a) is up to feedback 

equivalent to a system involving no delays. 

10.4.Pole placement for delay systems. Let E(cr) be a 

delay-differential SJstem. Assume, which .is reasonable and even 

customary in many cases, that all the functions x(t),u(t), y(t) 

are zero for t far enough in the past. Then it makes perfect sense 

to talk about base changes and feedback by means of matrices which 

are power series over the real number~.:; in the delay operatorrs a 1 , .. , 

~ . Now this ring of power series is local and hence certainly r 
projective free so that the proof of theorem 10.3.1 gives 

coefficient assignabllity and stabilization results for delay 

sys terns for which the two Kronecker indices K Q ( E ) and K(E 0 ) 

are equal. Here KQ( E) is the set of Kronecker indices of E(a) 

considered as a system over the quotient field R ( a 1 , ••• , crr) 

and K( l: 0 ) H> the set of Kronecker indices of the resj_dual ':>Yc.3tern 

over :R obtained from L: ( a ) by ;,;etting all the a i equal to 0. 



l l. 'l'i!!•; "l;fd!Ofl I C'/\l." CO!l]Pl.E'l'IO:l,Y l!l<A<:ll/\llU: ;;tJW;Y~i'l'EIJJ. 

11. l. er f z or 

:;y;;Lern over a field k. Let 

be a = (F,G,li) 

H(F,G):kr-+ n 
k ' 

over fields. Let z 
xcr be the image of 

F(Xcr) c Xcr, G(krn) c r = m(n+l). then obviously Xcr, so that there 

xcr = (Xcr;F' ,G',H') which is called the is an induced subsystem 

canonical er 3ubsystem of Z • In terms of matrices this means that 

there is an SE GL (k) such that z8 has the form 
n 

(11.1.1) 

zc:r, Lhe canonical er ;:;ur)E.>y.:-;tern. Tlt1~ word:~ 

Kalman "decomposition"a1e aL';O u:>cd :in thi~> context. There i;; Fl. dual 

construction relatinr; to co and combining these two con<:>truction.:-:; 

"decomposes" the system into four par Le;. 

In this section we examine whether this construction can be 

~lobalized,i.e. we ask whether thjs construction is continuous, and 

we ask whether something similar can be done for time varyinr; 

linear dynamical systems. 

11.2. xcr for time varyin~ systems. Now let Z = (F, 1::;,fi) be 

a time vary:in1~ system,i.e. the coefficjenU; of the matricc~::; F,G,Il 

are alowed to vary, say continuosly, with time. Vor time varyinp 

::-;ystems the controlaoility mF:ltr:Lx It( L.: ) = l\(F,r;) mu:;t bf: red(d'inr1 rJ 

a~; fol low:> 

(11.2.1) R(F,G) - (G(O) G(l)} ••• G(n)) 

where 

(11.2.2) • 
G(O) =G; Gli) = VG(i-1) - G(i-1) 

where the denotes differentiat:Lon with resnect to t· 1 r' ime, f'l.c:; usua 

Note that this gives back the old R(F,G) if f,G do not depend 

on time. The syf;tem is seid to he er if this matrix H( l:) ha::-; ful 1 

rank. TheHe seem to be the appropriate notion~ for time varyin~ 

systems; cf. e.g. [We, Haz5] for ;;,ome ::;upporli.nE re::1ult;; f"or thi~> 

claim. 
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" >:'' 
w i Lll 

s ( -1 • -1 -1 l: = SFS 1- SS , SG,llS ) 

i'Jote that R ( l: hence transforms as 

(11.2.4) 

11.2.5. ~~~~!:~~· Let l: be a Lime varying system with 

continuously varying parameters. SuppoHc that rank R(I is 

constant as a function of t. Then there exists a continuous time 

varying matrix S, invertible for alJ. t, such that IS has the form 

(11.1.1) with (F 11 ,G1 ,H1 ) er. 

Proof. Consider the subbundlc of the trivial (n+l)m 

dimensional bundle over the real line ~enerated by the rows of 

H( l: ) • This is a vectorbundle becaur;e of the rank assumption. 

This bundle i~ trivial. It follows that there exist r sections 

of the bun<J 1 e, where r = rank H ( I) , wh i. eh are 1 i nearly i ndepcndan t 

everywhere. The continuou~; sections of Lhe bundle are of the form 

I: a.(t)z.(t), where z 1 (t), ••• ,zn(t) 
l L 

are the rowo.; of R ( l: ) and 

t . Let b 1 ( t ) , ... , b r ( t ) the a.(t) A.re continuous functions of 
1 

be the r everywhere linearly indepcndant sections and let 

a .. (t)z.(t), j=l, ..• ,r; i=l, .•. ,n. 
Jl l 

E' be the r dimensional subbundle of the trivial bundle 

E of dimension n over the real line ~enerated by the r row vectors 

a.(t) = (a. 1 (t), ••• ,a. (t)). Because the quotient bundle E/E' is 
J J Jn 

trivial we can complete the r vectors a 1 (t), .• ,ar(t) to a sytem 

set of n vectors a 1 (t), ••. ,an(t) such that the determinant of the 

matrix formed by these vectors is nonzero for all t. Let s 1 (t) be 

the matrix formed by these vectors, then s1 R( I) has the property 

that for all t its first r rows are linearly independant and 

that it is of rank r for all 

continuous functions cki(t), 

zk(t) = l: ck 1 (t)zj_(t), where 

rfow let 

t. It follows that there are unique 

k=r+l, ... ,n; i=l, •.• ,r such that 

z '. ( t) 
.J 

is the j-th row of s 1 R( I ) • 

where C(t) is the (n-r) xr matrix with entries cki(t). 
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Then S( L) == s 2 (t)s1 (t) is the desired transformation matrix ( as 

follows from the transformation formula (11.2.4)). 

Virtually the ~ame arguments ~ive a smoothly varying S(t) 

j f the coefficients of L: vary smoothly in time, and give a polynomial 

S(t) if the coefficients of L: are polynomials in t ( where in the 

latter case we need the constancy of the rank also for all complex 

values of t and use that projective modules over a principal ideal 

ring are free J. 

11.3. E er for fami.lie;;,For farnilie[:-: of ~;yst.cm~; tht!~;e tcchniqucc; 

~!,i vc 

11.3.1. Theore~. Let E be a continuous family paramHtrizerl -------
by a contractible toppl0gical space (resp. a differentiable family 

parametrized by a contractible manifold; resp. a polynomial family). 

Suppose that the rank of R( E) is constant as a function of the 

parameters. Then there exists a continuous (resp. differentiable; 
s 

resp, polynomial) family of invertible matrices S such that L: 

has the form (11.1.1) with (F11 ,G1 ,H 1 ) a family of er systems. 

The proof is virtually the same as the one given above of theorrn 

11.2.5; in the polynomial case one of course relies on th0 Quillen

Suslin Lheorem again to conclude that the appropriate bundles are 

trivial. Note also that, inversely, the existence of an S a~ ln the 

theorem implicf; that the rank of R( L: ) i:; corrntant. 

For delay-differential Bys terns thL; gives a "Kalman dccornpo::;i tion 

provided the relevant, obviously necessary rank condition is met. 

There is also again ~ power series version of this result (as in 10.4) 

which requires a far weaker hypothesis. 

Another way of provin~ theorem 11.3.1 for systems over certain 

rings rests on the followinR lemma which is also a basic tool in 

the study of isomorph!sms of famili.cs in [HP] and which implies a 

generalization of the main lemma of [O~ concerning the solvability 

of sets of linear equations over rings. 
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nilpolenl:; f- 0) and lc;t; /1 l>r: a rnaLrix over fL Suppo:::;c that I.he 
rank of' /l.('f') over the quotient field of R/'/' is conBLant as a 
function of ? for all prime ideals ' . Then Im(A) and Coker(A) 
arc projective modules. 

Now let l: over R be such thaL rank R(L:(r)) is constant, 
and let R be projective free (i.e. all finitely generated projective 
modules over R are free). Then Im R ( L: ) c Rn is projective 
hc:nce free. Tak:lng a ba:.:; i :::; of Im R ( L: ) and extendinE it to a 
basis of all of Rn, which can be done because Rn/Im R( L:) = 
Coker R( l: ) is projective and hence free, now r,ives the desired 
matrix S. 

There is a complete set of dual Lheorems concerning co. 

and 
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