7 research outputs found

    Tisa: Toward Trustworthy Services in a Service-Oriented Architecture

    Get PDF
    Verifying whether a service implementation is conforming to its service-level agreements is important to inspire confidence in services in a service-oriented architecture (SoA). Functional agreements can be checked by observing the published interface of the service, but other agreements that are more non-functional in nature, are often verified by deploying a monitor that observes the execution of the service implementation. A problem is that such a monitor must execute in an untrusted environment. Thus, integrity of the results reported by such a monitor crucially depends on its integrity. We contribute an extension of the traditional SoA, based on hardware-based root of trust, that allows clients, brokers and providers to negotiate and validate the integrity of a requirements monitor executing in an untrusted environment. We make two basic claims: first, that it is feasible to realize our approach using existing hardware and software solutions, and second, that integrity verification can be done at a relatively small overhead. To evaluate feasibility, we have realized our approach using current software and hardware solutions. To measure overhead, we have conducted a case study using a collection of Web service implementations available with Apache Axis implementation

    Abstract Program Slicing: an Abstract Interpretation-based approach to Program Slicing

    Get PDF
    In the present paper we formally define the notion of abstract program slicing, a general form of program slicing where properties of data are considered instead of their exact value. This approach is applied to a language with numeric and reference values, and relies on the notion of abstract dependencies between program components (statements). The different forms of (backward) abstract slicing are added to an existing formal framework where traditional, non-abstract forms of slicing could be compared. The extended framework allows us to appreciate that abstract slicing is a generalization of traditional slicing, since traditional slicing (dealing with syntactic dependencies) is generalized by (semantic) non-abstract forms of slicing, which are actually equivalent to an abstract form where the identity abstraction is performed on data. Sound algorithms for computing abstract dependencies and a systematic characterization of program slices are provided, which rely on the notion of agreement between program states

    Chopping: A generalization of slicing

    Get PDF
    A new method for extracting partial representations of a program is described. Given two sets of variable instances, source and sink, a graph is constructed showing the statements that cause definitions of source to affect uses of sink. This criterion can express a wider range of queries than the various forms of slice criteria, which it subsumes as special cases. On the standard slice criterion (backward slicing from a use or definition) it produces better results than existing algorithms. The method is modular. By treating all statements abstractly as def-use relations, it can present a procedure call as a simple statement, so that it appears in the graph as a single node whose role may be understood without looking beyond the context of the call

    A survey of program slicing techniques

    Get PDF

    Maximal incompleteness as obfuscation potency

    Get PDF
    Obfuscation is the art of making code hard to reverse engineer and understand. In this paper, we propose aformal model for specifying and understanding the strength of obfuscating transformations with respect toa given attack model. The idea is to consider the attacker as an abstract interpreter willing to extractinformation about the program\u2019s semantics. In this scenario, we show that obfuscating code is making theanalysis imprecise, namely making the corresponding abstract domain incomplete. It is known thatcompleteness is a property of the abstract domain and the program to analyse. We introduce a frameworkfor transforming abstract domains, i.e., analyses, towards incompleteness. The family of incompleteabstractions for a given program provides a characterisation of the potency of obfuscation employed in thatprogram, i.e., its strength against the attack specified by those abstractions. We show this characterisationfor known obfuscating transformations used to inhibit program slicing and automated disassembly

    Abstract Program Slicing: An Abstract Interpretation-Based Approach to Program Slicing

    Get PDF
    n the present article, we formally define the notion of abstract program slicing, a general form of program slicing where properties of data are considered instead of their exact value. This approach is applied to a language with numeric and reference values and relies on the notion of abstract dependencies between program statements. The different forms of (backward) abstract slicing are added to an existing formal framework where traditional, nonabstract forms of slicing could be compared. The extended framework allows us to appreciate that abstract slicing is a generalization of traditional slicing, since each form of traditional slicing (dealing with syntactic dependencies) is generalized by a semantic (nonabstract) form of slicing, which is actually equivalent to an abstract form where the identity abstraction is performed on data. Sound algorithms for computing abstract dependencies and a systematic characterization of program slices are provided, which rely on the notion of agreement between program states

    Information Flow Control with System Dependence Graphs - Improving Modularity, Scalability and Precision for Object Oriented Languages

    Get PDF
    Die vorliegende Arbeit befasst sich mit dem Gebiet der statischen Programmanalyse — insbesondere betrachten wir Analysen, deren Ziel es ist, bestimmte Sicherheitseigenschaften, wie etwa Integrität und Vertraulichkeit, für Programme zu garantieren. Hierfür verwenden wir sogenannte Abhängigkeitsgraphen, welche das potentielle Verhalten des Programms sowie den Informationsfluss zwischen einzelnen Programmpunkten abbilden. Mit Hilfe dieser Technik können wir sicherstellen, dass z.B. ein Programm keinerlei Information über ein geheimes Passwort preisgibt. Im Speziellen liegt der Fokus dieser Arbeit auf Techniken, die das Erstellen des Abhängigkeitsgraphen verbessern, da dieser die Grundlage für viele weiterführende Sicherheitsanalysen bildet. Die vorgestellten Algorithmen und Verbesserungen wurden in unser Analysetool Joana integriert und als Open-Source öffentlich verfügbar gemacht. Zahlreiche Kooperationen und Veröffentlichungen belegen, dass die Verbesserungen an Joana auch in der Forschungspraxis relevant sind. Diese Arbeit besteht im Wesentlichen aus drei Teilen. Teil 1 befasst sich mit Verbesserungen bei der Berechnung des Abhängigkeitsgraphen, Teil 2 stellt einen neuen Ansatz zur Analyse von unvollständigen Programmen vor und Teil 3 zeigt aktuelle Verwendungsmöglichkeiten von Joana an konkreten Beispielen. Im ersten Teil gehen wir detailliert auf die Algorithmen zum Erstellen eines Abhängigkeitsgraphen ein, dabei legen wir besonderes Augenmerk auf die Probleme und Herausforderung bei der Analyse von Objektorientierten Sprachen wie Java. So stellen wir z.B. eine Analyse vor, die den durch Exceptions ausgelösten Kontrollfluss präzise behandeln kann. Hauptsächlich befassen wir uns mit der Modellierung von Seiteneffekten, die bei der Kommunikation über Methodengrenzen hinweg entstehen können. Bei Abhängigkeitsgraphen werden Seiteneffekte, also Speicherstellen, die von einer Methode gelesen oder verändert werden, in Form von zusätzlichen Knoten dargestellt. Dabei zeigen wir, dass die Art und Weise der Darstellung, das sogenannte Parametermodel, enormen Einfluss sowohl auf die Präzision als auch auf die Laufzeit der gesamten Analyse hat. Wir erklären die Schwächen des alten Parametermodels, das auf Objektbäumen basiert, und präsentieren unsere Verbesserungen in Form eines neuen Modells mit Objektgraphen. Durch das gezielte Zusammenfassen von redundanten Informationen können wir die Anzahl der berechneten Parameterknoten deutlich reduzieren und zudem beschleunigen, ohne dabei die Präzision des resultierenden Abhängigkeitsgraphen zu verschlechtern. Bereits bei kleineren Programmen im Bereich von wenigen tausend Codezeilen erreichen wir eine im Schnitt 8-fach bessere Laufzeit — während die Präzision des Ergebnisses in der Regel verbessert wird. Bei größeren Programmen ist der Unterschied sogar noch deutlicher, was dazu führt, dass einige unserer Testfälle und alle von uns getesteten Programme ab einer Größe von 20000 Codezeilen nur noch mit Objektgraphen berechenbar sind. Dank dieser Verbesserungen kann Joana mit erhöhter Präzision und bei wesentlich größeren Programmen eingesetzt werden. Im zweiten Teil befassen wir uns mit dem Problem, dass bisherige, auf Abhängigkeitsgraphen basierende Sicherheitsanalysen nur vollständige Programme analysieren konnten. So war es z.B. unmöglich, Bibliothekscode ohne Kenntnis aller Verwendungsstellen zu betrachten oder vorzuverarbeiten. Wir entdeckten bei der bestehenden Analyse eine Monotonie-Eigenschaft, welche es uns erlaubt, Analyseergebnisse von Programmteilen auf beliebige Verwendungsstellen zu übertragen. So lassen sich zum einen Programmteile vorverarbeiten und zum anderen auch generelle Aussagen über die Sicherheitseigenschaften von Programmteilen treffen, ohne deren konkrete Verwendungsstellen zu kennen. Wir definieren die Monotonie-Eigenschaft im Detail und skizzieren einen Beweis für deren Korrektheit. Darauf aufbauend entwickeln wir eine Methode zur Vorverarbeitung von Programmteilen, die es uns ermöglicht, modulare Abhängigkeitsgraphen zu erstellen. Diese Graphen können zu einem späteren Zeitpunkt der jeweiligen Verwendungsstelle angepasst werden. Da die präzise Erstellung eines modularen Abhängigkeitsgraphen sehr aufwendig werden kann, entwickeln wir einen Algorithmus basierend auf sogenannten Zugriffspfaden, der die Skalierbarkeit verbessert. Zuletzt skizzieren wir einen Beweis, der zeigt, dass dieser Algorithmus tatsächlich immer eine konservative Approximation des modularen Graphen berechnet und deshalb die Ergebnisse darauf aufbauender Sicherheitsanalysen weiterhin gültig sind. Im dritten Teil präsentieren wir einige erfolgreiche Anwendungen von Joana, die im Rahmen einer Kooperation mit Ralf Küsters von der Universität Trier entstanden sind. Hier erklären wir zum einen, wie man unser Sicherheitswerkzeug Joana generell verwenden kann. Zum anderen zeigen wir, wie in Kombination mit weiteren Werkzeugen und Techniken kryptographische Sicherheit für ein Programm garantiert werden kann - eine Aufgabe, die bisher für auf Informationsfluss basierende Analysen nicht möglich war. In diesen Anwendungen wird insbesondere deutlich, wie die im Rahmen dieser Arbeit vereinfachte Bedienung die Verwendung von Joana erleichtert und unsere Verbesserungen der Präzision des Ergebnisses die erfolgreiche Analyse erst ermöglichen
    corecore