
Under consideration for publication in Formal Aspects of Computing

Maximal incompleteness as obfuscation potency
Roberto Giacobazzi1 and Isabella Mastroeni and Mila Dalla Preda
Università degli Studi di Verona, Verona, Italy
and 1 IMDEA Software Institute, Madrid, Spain

Abstract.
Obfuscation is the art of making code hard to reverse engineer and understand. In this paper, we propose

a formal model for specifying and understanding the strength of obfuscating transformations with respect
to a given attack model. The idea is to consider the attacker as an abstract interpreter willing to extract
information about the program’s semantics. In this scenario, we show that obfuscating code is making
the analysis imprecise, namely making the corresponding abstract domain incomplete. It is known that
completeness is a property of the abstract domain and the program to analyse. We introduce a framework for
transforming abstract domains, i.e., analyses, towards incompleteness. The family of incomplete abstractions
for a given program provides a characterisation of the potency of obfuscation employed in that program,
i.e., its strength against the attack specified by those abstractions. We show this characterisation for known
obfuscating transformations used to inhibit program slicing and automated disassembly.

Keywords: Abstract interpretation, static program analysis, program semantics, program transformation,
lattice theory, closure operators, code obfuscation.

1. Introduction

Obfuscation is the production of misleading, ambiguous and plausible but confusing information as an act
of concealment or evasion [BN15]. In this scenario, code obfuscation is the art of making programs hard
to understand and to reverse engineer with the purpose of concealing information such as cryptographic
keys or critical data/control structures [CN09]. An obfuscator is a semantics-preserving transformation that,
while preserving the input/output program relation, makes its internal structure and behavior extremely
hard to analyse. While a corpus of results has been obtained on the theoretical foundation of code and
circuit obfuscation as cryptographic transformations (e.g., see the impossibility result in [BGI+12] and re-
cent achievements on indistinguishability obfuscation in [GGH+13]), little is known from the perspective of
programming languages.

Attacking code means interpreting code, with the intention of extracting and exploiting its extensional
properties from their intentional representation. The idea is that, because of time/space and effectiveness
constraints, when dealing with complex programs, the attack is necessarily approximated. An attack is

Correspondence and offprint requests to: Prof. Roberto Giacobazzi, University of Verona and IMDEA Software Institute. Email:
roberto.giacobazzi@univr.it

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Catalogo dei prodotti della ricerca

https://core.ac.uk/display/217554098?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 R. Giacobazzi and I. Mastroeni and M. Dalla Preda

therefore the combination of a number of automatic and semi-automatic tools (e.g., see the IDA Pro suite of
tools) such as: static and dynamic analyses, SAT solvers, theorem provers, program monitors, disassemblers,
decompilers, program slicers, code profilers and tracers, emulators etc. All these tools involve approximate
automatic interpretation. Any attack is therefore inherently based on approximated interpretation. In this
context, protecting programs from an attacker means making the approximate interpretation, on which the
attacker is based, harmless.

This idea has been studied in [DG09, JGM12, GM12]. As an intuitive example, if the attacker is a finite
state automaton, it is always possible to transform any program P into an equivalent program P ′ which
is obscure for such an attacker. This can be obviously obtained by embedding a push-down automaton
in P computing data beyond the size of the finite state automata modelling the attacker. The Pumping
Lemma can therefore be used as a simple example of what such an attacker cannot observe about the
transformed (obscured) program. By following this simple argument, the notion of approximate obfuscation
has been introduced in [Gia08], and it has been specified mathematically in [JGM12] in terms of abstract
interpretation [CC77, CC79b].

An attacker is an abstract interpretations of the program on an abstract domain of approximate data.
It is known (see [CC79b]) that the precision of an abstract interpretation is determined by the chosen
abstract domain. For this reason we identify attackers with abstract domains. In this scenario, obfuscating
a program with respect to an attacker specified as an approximate (abstract) interpreter means making
this interpreter imprecise [Gia08]. This is precisely modelled by the notion of incompleteness of an abstract
interpretation [GRS00]. An abstract interpretation is complete for a program P if no error is made by the
abstract interpreter with respect to the abstraction of the concrete interpretation. Given a program P and
an abstract domain A we use JPKA to denote the abstract interpretation of P on the abstract domain A,
i.e., its abstract computation, and we use A(JPK) to denote the abstraction of the concrete semantics of P
on the abstract domain A. We have completeness when A(JPK) = JPKA. Consider, for instance, the simple
program P : x = a ∗ b, multiplying a and b, and storing the result in x. An attacker observing the sign
abstraction A = {>,−, 0,+,⊥} is able to catch, with no loss of precision, the intended sign behavior of
P because the sign abstraction A is precise for integer multiplication. If we replace P with O(P): x = 1;
if b ≤ 0 then {a =−a; b =−b}; while b 6= 0 {x = a+ x; b = b− 1}; x = x− 1; we obfuscate the observer A
because the rule of signs is incomplete for integer addition, in particular we observe that when a = − and
b = +, then x = + (being A(1) = +) and a + x is the sum of a negative number with a positive one, and
therefore we lose the sign information.

In this paper, we are interested in modelling the potency of an obfuscation. This means that, given
a program P , we characterise the family of attackers for which P is maximally obscure, i.e., such that
the abstract interpretation of P is maximally incomplete. These attackers represent the potency of the
obfuscation employed in P . We introduce abstract domain transformers that maximize the incompleteness
of the corresponding abstract interpreter. This means that, if A is an abstract domain and JPKA is a complete
abstract interpretation of P on the abstract domain A, i.e., A(JPK) = JPKA, then it is possible to transform
A into an abstract domain I(A) such that JPKI(A) is maximally incomplete, and therefore imprecise. The
process of making an abstraction incomplete is indeed the inverse of the completeness refinement. This is
achieved by considering the adjoint operations of the completeness refinement transformations introduced
in [GRS00]. In particular, we introduce the notion of incomplete compressor which removes, from a given
abstract domain A, those elements that are useful for improving the precision of an abstract interpretation
on A. Although clearly contradictory with respect to the common practice in program analysis, which is
achieving precision, making abstractions incomplete provides an unexpectedly useful model for understanding
code obfuscation, in particular when modelling the potency or strength of an obfuscation. In this setting, we
prove that, the more an attacker A is close to the maximally incomplete domain I(A) for a given obfuscated
code O(P), the more O is a successful code obfuscation.

Interestingly, the abstract domain compression that computes the maximally incomplete domain I(A)
associated with an attacker A suggests the design of O, i.e., it identifies precisely the information on which
the obfuscation O has to act in order to successfully obfuscate P with respect to A. We apply this idea to
known obfuscation of code used to prevent known techniques for program analysis and understanding, such
as program slicing and disassembly. In this setting we are able to prove that what these obfuscating trans-
formations do is precisely inducing the maximal degree of incompleteness in the analysis of the obfuscated
code. This paper makes the following contributions:

Maximal incompleteness as obfuscation potency 3

• The definition of domain transformers that make a domain maximally incomplete for the analysis of a
given program (extended and revised version of [GM12])

• The characterisation of the potency of code obfuscation in terms of incomplete abstract domains as
obtained by our transformers:

– We provide a formal characterisation for the potency of an obfuscating transformer with respect to a
program semantics and to an abstract analysis (the attacker) of the considered semantics.

– We validate the proposed characterisation by formally proving the potency of known obfuscating
transformations in inhibiting program slicing and automatic disassembly.

– We discuss how our framework can be used for building, in a semi-automatic way, an obfuscator able
to defeat a given attacker. This point relies on the notion of code obfuscation as partial evaluation of
distorted interpreters introduced un [JGM12].

The paper is structured as follows. In Section 2, we give the basic mathematical notation, a brief intro-
duction to abstract interpretation, adjoint closure operators, soundness and completeness and semantics for
a simple imperative language. In Section 3, we introduce the incomplete compression of an abstract domain
and prove its basic algebraic properties. We also prove that incompleteness cannot be systematically derived
by expanding abstract domains. In Section 4, we apply incomplete compressors to formalize a characterisa-
tion of the potency range of a given obfuscation and then we use this framework for measuring the strength
of known obfuscations preventing program slicing and disassembling. In Section 5 we discuss how the theo-
retical investigation of this paper can be used to provide insights on how to build an obfuscator that defeats
a given attacker.

2. Preliminaries

We consider the standard abstract domain definition as formalized in [CC77] and [CC79b] in terms of
Galois connections. It is well known that this is a restriction for abstract interpretation because relevant
abstractions do not form Galois connections and Galois connections are not expressive enough for modelling
dynamic fix-point approximation, e.g., by fix-point widening [CC92b]. In this section we introduce the basic
mathematical background concerning Galois-connection based abstract interpretation, residuated closures,
fix-point soundness and completeness.

2.1. Basic lattice and fix-point theory

If S and T are sets, then ℘(S) denotes the powerset of S , |S | the cardinality of S , SrT the set-difference
between S and T , S ⊂ T strict inclusion, S × T the cartesian product, and for a function f : S → T
and X ⊆ S , f (X)

def
= {f (x) | x ∈ X }. By g ◦ f we denote the composition of the functions f and g , i.e.,

g ◦ f
def
= λx .g(f (x)). In the sake of simplicity, in the following we will omit parentheses when composing

functions. 〈P ,≤〉 denotes a poset P with ordering relation ≤, while 〈C ,≤,∨,∧,>,⊥〉 denotes a complete
lattice on the set C , with ordering ≤, least upper bound (lub) ∨, greatest lower bound (glb) ∧, greatest
element (top) >, and least element (bottom) ⊥. In the following, we will often abuse notation by denoting
as C the complete lattice. Often, ≤P will be used to denote the underlying ordering of a poset P , and
∨C , ∧C , >C and ⊥C to denote the basic operations and elements of a complete lattice C . The notation
C ∼= D denotes that C and D are isomorphic ordered structures. Let P be a poset and S ⊆ P . Then,
max(S)

def
= {x ∈ S | ∀y ∈ S . x ≤P y ⇒ x = y} denotes the set of maximal elements of S in P ; also, the

downward closure of S is defined by ↓S def
= {x ∈ P | ∃y ∈ S . x ≤P y}, and for x ∈ P , ↓x is a shorthand for

↓{x}, while the upward closure ↑ is dually defined. In a complete lattice 〈C ,≤,∨,∧,>,⊥〉 an element x ∈ C
is meet-irreducible if x 6= > and if x = y ∧ z then x = y or x = z . Namely, x is meet-irreducible if it cannot
be obtained as glb of two other elements. We denote with Mirr(C) the set of meet-irreducible elements of
lattice C .

We use the symbol v to denote pointwise ordering between functions: If S is any set, P a poset, and f , g :
S → P then f v g if for all x ∈ S , f (x) ≤P g(x). An operator f : P−→P is extensive if ∀x ∈ P . x ≤P f (x).
It is reductive if ∀x ∈ P . x ≥P f (x). Let C and D be complete lattices. Then, C m−→D and C c−→D denote,

4 R. Giacobazzi and I. Mastroeni and M. Dalla Preda

respectively, the set and the type of all monotone and (Scott-)continuous functions from C to D . Recall that
f ∈ C c−→D if and only if f preserves lub’s of (nonempty) chains if and only if f preserves lub’s of directed
subsets. Also, f : C → D is (completely) additive if f preserves lub’s of all subsets of C (emptyset included),
while co-additivity is dually defined. The additive lift of f : C → D is a function f a : ℘(C) → ℘(D) such
that f a def

= λX . { f (x) | x ∈ X }.
lfp(f) and gfp(f) denote respectively the least and greatest fix-point, when they exist, of an operator f

on a poset. The well-known Knaster-Tarski’s theorem states that any monotone operator f : C m−→C on a
complete lattice C admits both least and greatest fix-points, and the following characterisations hold:

lfp(f) =
∧

C

{x ∈ C | f (x) ≤C x} and gfp(f) =
∨

C

{x ∈ C | x ≤C f (x)}.

Let us note that if f , g : C m−→C and f v g then lfp(f) v lfp(g). It is known that if f : C c−→C is continuous
then lfp(f) = ∨i∈Nf i(⊥C), where, for any i ∈ N and x ∈ C , the i -th power of f in x is inductively defined
as follows: f 0(x) = x ; f i+1(x) = f (f i(x)). Dually, if f : C → C is co-continuous then gfp(f) = ∧i∈Nf i(>C).
{f i(⊥C)}i∈N and {f i(>C)}i∈N are called, respectively, the upper and lower Kleene’s iteration sequences of
f . The set of all finite sequences (traces) over an alphabet Σ is denoted Σ+. If σ, σ′ ∈ Σ+ then σσ′ ∈ Σ+ is
the concatenation of the two sequences.

2.2. Abstract domains individually and collectively

Concrete domains represent collections of computational objects on which the concrete semantics and models
are defined. These include standard data-types (e.g., heap, stack, numerical types), control-flow structures,
etc. Abstract domains are collections of approximate objects, representing properties of concrete objects
in a domain-like structure. The relation between concrete and abstract domains can be specified in terms
of Galois connections, and this sets up the so called standard adjoint framework of abstract interpretation
[CC77]. The adjoint presentation is a relatively restrictive view of abstract interpretation. Weaker frameworks
could involve the weakening of the relation between concrete and abstract domains, e.g. in [CC92a], or
sophisticated fix-point iteration strategies by fix-point widening on approximate domains [CC92b]. In this
paper we consider abstractions in the standard adjoint framework, which provides the richest mathematical
environment for proving properties about abstractions. More formally, if 〈C ,≤,>,⊥,∨,∧〉 is a complete
lattice, a pair of monotone functions α : C m−→A and γ : A m−→C forms an adjunction or a Galois connection
if for any x ∈ C and y ∈ A: α(x) ≤A y ⇔ x ≤C γ(y). α [resp. γ] is the left- [right-]adjoint to γ [α] and it
is additive [co-additive], i.e., it preserves lub’s [glb] of all subsets of the domain (emptyset included). Let
us recall that the right adjoint of a function f , when it exists, is defined as f +

def
= λx .

∨ { y | f (y) ≤ x }.
Conversely the left adjoint of a function f , when it exists, is defined as f −

def
= λx .

∧ { y | x ≤ f (y) }. In
Galois connections γ− = α and α+ = γ. Abstract domains can be also equivalently formalized as closure
operators on the concrete domain [CC79b]. An upper [lower] closure operator ρ : P−→P on a poset P

is monotone, idempotent, and extensive [reductive]. Closures are uniquely determined by their fix-points
ρ(C). In the following, we will often use closures both as functions and as sets (viz., domains). Given
X ⊆ C , the least abstract domain containing X is the least closure including X as fix-points, which is
the Moore-closure or Moore family of X defined as: M(X)

def
= {∧S | S ⊆ X }. Dual Moore-closures and

families are defined by duality. It turns out that 〈ρ(C),≤〉 is a complete meet subsemilattice of C (i.e.,
∧ is its glb), but, in general, it is not a complete sublattice of C , since the lub in ρ(C) — defined by
λY ⊆ ρ(C). ρ(∨Y) — might be different from that in C . In fact, ρ(C) is a complete sublattice of C if and
only if ρ is additive. The set of all upper [lower] closure operators on P is denoted by uco(P) [lco(P)]. The
lattice of abstract domains of C , is isomorphic to uco(C), (cf. [CC77, Section 7] and [CC79b, Section 8]).
Recall that if C is a complete lattice, then 〈uco(C),v,t,u, λx .>, id〉 is a complete lattice, where id

def
= λx .x

and for every ρ, η ∈ uco(C), x ∈ C and {ρi}i∈I ⊆ uco(C) (where I is a set of indexes that identify a
subset of the closure operators of uco(C)) we have that: ρ v η if and only if ∀y ∈ C . ρ(y) ≤ η(y) if and
only if η(C) ⊆ ρ(C); (ui∈I ρi)(x) = ∧i∈I ρi(x); (ti∈I ρi)(x) = x ⇔ ∀i ∈ I . ρi(x) = x ; λx .> is the top
element and λx .x is the bottom element. Thus, the glb in uco(C) is defined pointwise, while the lub of
a set of closures {ρi}i∈I ⊆ uco(C) is the closure whose set of fix-points is given by the set-intersection

Maximal incompleteness as obfuscation potency 5

∩i∈I ρi(C). In the following, we will make use of the following basic properties for ρ, η ∈ uco(C) and Y ⊆ C :
ρ(∧ρ(Y)) = ∧ρ(Y); ρ(∨Y) = ρ(∨ρ(Y)); η v ρ ⇔ ηρ = ρ ⇔ ρ ◦ η = ρ. Some of the most important
operations on upper closure operators are: Reduced product [CFG+95] and pseudo-complement [CFG+95].
The reduced product is the glb operator u on uco(C) and it is typically used to combine known abstract
domains in order to design new abstractions. Pseudo-complement corresponds to the inverse of reduced
product, namely an operator that, given two domains C v D , gives as result the most abstract domain
C 	 D , whose reduced product with D is exactly C , i.e., (C 	 D) u D = C . The pseudo-complement of
an abstract domain D is defined as: C 	D

def
= t { E ∈ uco(C) | D u E = C }. In the adjoint framework of

abstract interpretation, A1 is more precise (viz. more concrete) than A2 (i.e., A2 is an abstraction of A1) if
and only if A1 v A2 in uco(C) if and only if A2 ∈ uco(A1).

2.3. Adjoining closure operators

In the following we will make an extensive use of adjunction, in particular of closure operators. Janowitz
[Jan67] characterised the structure of residuated (adjoint on a complete lattice) closure operators by the
following basic result (see also [BJ72]).

Theorem 2.1. [Jan67, Theorem 2.10]
Let f : C −→ C be a residuated map, i.e., 〈f , f +〉 is a pair of adjoint operators on the complete lattice C ,
then

(1) f ∈ uco(C) ⇔ f + ∈ lco(C) ⇔ f ◦ f + = f + ⇔ f + ◦ f = f

and

(2) f ∈ lco(C) ⇔ f + ∈ uco(C) ⇔ f ◦ f + = f ⇔ f + ◦ f = f +

Dually, if f : C −→ C is a dual-residuated1 map and f − is its left-adjoint (defined in the previous section),
then [MG15]

(3) f ∈ uco(C) ⇔ f − ∈ lco(C) ⇔ f ◦ f − = f ⇔ f − ◦ f = f −

and

(4) f ∈ lco(C) ⇔ f − ∈ uco(C) ⇔ f − ◦ f = f ⇔ f ◦ f − = f −

Let τ ∈ lco(C). By Theorem 2.1, if τ− exists then τ−(τ(X)) = τ(X) and τ(τ−(X)) = τ−(X). This means
that τ− is such that both τ and τ− have the same sets of fix-points, namely τ− extends any object X to the
largest object Y such that τ(Y) = Y . Conversely, the right adjoint of τ , when it exists, is quite different. By
Theorem 2.1, we have that if τ+ exists then τ+(τ(X)) = τ+(X) and τ(τ+(X)) = τ(X). In this case τ+(X)
is not a fix-point of τ . Instead, it is the least element Y such that τ(X) = X = τ(Y). The following result
strengthen Theorem 2.1 by showing the order-theoretic structure of residuated closures.

Proposition 2.2. [MG15] Let τ ∈ lco(C) and η ∈ uco(C).

1. If 〈τ−, τ〉 and 〈η, η+〉 are pairs of adjoint functions then

τ− = λX .
∧{τ(Y)|τ(Y) ≥ X } and η+ = λX .

∨{η(Y)|X ≥ η(Y)}.
2. If 〈τ, τ+〉 and 〈η−, η〉 are pairs of adjoint functions then

τ+ = λX .
∨{Y |τ(Y) = τ(X)} and η− = λX .

∧{Y |η(X) = η(Y)}.
In particular this result leads to the observation that the existence of adjunction is related to the notion

of closure uniformity. Uniform closures have been introduced in [GR98] for specifying the notion of abstract
domain compression, namely the operation for reducing abstract domains to their minimal structure with
respect to some given abstraction refinement η ∈ lco(uco(C)). An upper closure η is meet-uniform [GR98]
if η(

∧{Y |η(X) = η(Y)}) = η(X). Join-uniformity is dually defined for lower closures. Well-known non-co-
additive upper closures are meet-uniform, such as the downward closure ↓ of a subset of a partially ordered
set [GR98].

1 Defined by duality.

6 R. Giacobazzi and I. Mastroeni and M. Dalla Preda

>

⊥

0+0−

0

Sign

D1

D2 D3

D7

D4

D8D6

D11

D5

D9

D12

D10

D13

D14

(a)

D1

D2 D4 D5

D7 D8 D9

D12
D6 D10

D11 D13

D14

D3

(b)

Fig. 1. Lifted lco(Sign).

It is known that any ρ ∈ uco(C) is join-uniform and the set of meet-uniform upper closures uco∗(C)
is a Moore-family of uco(C). Dually, the same holds for lower closure operators, namely τ ∈ lco(C) is
meet-uniform and the set of join-uniform lower closures lco∗(C) is a Moore-family of lco(C). As observed
in [GR98] when only uniformity holds, the adjoint function may fail monotonicity. In [GR98] the authors
proved that the adjoint function is monotone on a lifted order induced by τ . Given a partial order ≤, its
lifted version is ≤τ⊆ C × C , defined as: ∀x , y ∈ C : x ≤τ y ⇔ (τ(x) ≤ τ(y)) ∧ (τ(x) = τ(y) ⇒ x ≤ y).
≤τ is such that ≤⇒≤τ . The following result is immediate by [Jan67] and Proposition 2.2.

Proposition 2.3. [MG15] Let τ ∈ lco(C) [η ∈ uco(C)]. 〈τ, τ+〉 [〈η−, η〉] is a pair of adjoint closures on the
lifted order if and only if τ is join-uniform [η is meet-uniform].

Example 2.4. Consider the Sign domain in Figure 1, uco(Sign) is the set of all possible abstractions of
Sign, namely the set of all Moore families over Sign, and it is given by the following domains:

D1 = {>} D2 = {>, 0+} D3 = {>, 0} D4 = {>,⊥}
D5 = {>, 0−} D6 = {>, 0+,⊥} D7 = {>, 0+, 0} D8 = {>, 0,⊥}
D9 = {>, 0−, 0} D10 = {>, 0−,⊥} D11 = {>, 0+, 0,⊥} D12 = {>, 0+, 0−, 0}

D13 = {>, 0−, 0,⊥} D14 = D

Consider the domain transformer τa = λX . X u D7 that, given an abstract domain in uco(Sign) computes
its glb with the domain D7, namely it returns the most abstract domain that expresses the information of
both the input domain X and domain D7. The lco domain with respect to the lifted order vτa of the uco
standard order v, is depicted in Fig 1(a), where the circled domains are the fix points. Note that, the lifted
order re-order the uco, by ordering the elements in terms of their transformations (leaving unchanged the
order among elements with the same transformation). Hence, for instance, D4 vτa D7 (even if they are not
comparable with respect to v), since τa(D4) = D11 v D7, while D6 vτa D4, D8 vτa D4 and D11 vτa D4,
precisely as it happens with v, since all these domains have the same transformation τa .

Figure 1(b) provides another example of lifted order vτb , where τb = λX .X uD3. It is worth noting that
both the domain transformers are join-uniform, implying additivity on the lifted lco(Sign), namely admitting
right adjoints.

2.4. Soundness and completeness

Let f : C m−→D be a semantic function defined over some concrete domains C and D . Let an abstract
interpretation be specified by Galois connections with abstract domains ρ(C) and η(D) corresponding to
closure operators ρ ∈ uco(C) and η ∈ uco(D) respectively, and by a corresponding abstract semantics
f] : ρ(C) m−→η(D). Then, f] is sound for (or is a correct approximation of) f if η ◦ f v f] ◦ρ. This holds

Maximal incompleteness as obfuscation potency 7

if and only if η ◦ f ◦ ρ v f]. The function η ◦ f ◦ ρ is called best correct approximation of f in ρ and η.
Whenever f : C m−→C and f] : ρ(C) m−→ρ(C), f] is fix-point sound for f if ρ(lfp(f)) ≤ lfp(f]). A sound over-
approximation intuitively means that no error can be missed by the analysis, i.e., the approximate semantics
includes a full coverage of all possible concrete computations, e.g., the collections of all reachable states. As
we recalled in the introduction, a well-known basic result of abstract interpretation [CC79b, Theorem 7.1.0.4]
states that soundness implies fix-point soundness. It is worth remarking that fix-point soundness is in general
a strictly weaker property than soundness.

Precision of an abstract interpretation is typically defined in terms of completeness [CC79b]. Depend-
ing on where we compare the concrete and the abstract computations we obtain two different notions of
completeness [GRS00, GQ01]. If we compare the results in the abstract domain, we obtain what is called
backward completeness (B-completeness), while, if we compare the results in the concrete domain we ob-
tain the so called forward completeness (F -completeness). Formally, if f : C m−→C and ρ ∈ uco(C), then
ρ is B-complete for f if ρ ◦ f ◦ ρ = ρ ◦ f , while it is F -complete for f if ρ ◦ f ◦ ρ = f ◦ ρ. A complete
over-approximation means that no false alarms are returned by the analysis, i.e., in B-completeness the ap-
proximate semantics computed by manipulating abstract objects corresponds precisely to the abstraction of
the concrete semantics, while in F -completeness the concrete semantics does not lose precision by computing
on abstract objects. The problem of making abstract domains B-complete has been solved in [GRS00] and
later extended to F -completeness in [GQ01]. Let f : C1−→C2 and ρ ∈ uco(C2) and η ∈ uco(C1). 〈ρ, η〉 is a
pair of B[F]-complete abstractions for f if ρ ◦ f = ρ ◦ f ◦ η [f ◦ η = ρ ◦ f ◦ η]. A pair of domain transformers
has been associated with any completeness problem, which are respectively a domain refinement and sim-
plification [GR97]. In [GRS00] and [GQ01], a constructive characterisation of the most abstract refinement,
called complete shell , and of the most concrete simplification, called complete core, of any abstract domain,
making it F or B-complete for a given continuous function f , is given as a solution of simple abstract
domain equations given by the following basic operators:

RF
f

def
= λX .M(f (X)) RB

f
def
= λX .M(

⋃
y∈X max(f −1(↓y)))

CF
f

def
= λX . { y ∈ L | f (y) ⊆ X } CB

f
def
= λX .

{
y ∈ L

∣∣ max(f −1(↓y)) ⊆ X
}

Following [GRS00], given a pair of abstract domains 〈ρ, η〉 and a concrete function f , the B-complete shell of
〈ρ, η〉 with respect to f is the most concrete β w ρ such that 〈β, η〉 is B-complete for f , and the B-complete
core that is the most abstract β v η such that 〈ρ, β〉 is B-complete. It is possible to obtain the dual notions
of F -complete shell and F -complete core by refining the output abstraction ρ and by simplifying the input
abstraction η in order to gain F -completeness. It has been proved in [GRS00]that B[F]-complete core and
shell can be obtained as follows:

B-complete core: CB,η
f (ρ)

def
= ρ t CB

f (η) B-complete shell: RB,ρ
f (η)

def
= η u RB

f (ρ)

F -complete core: CF ,ρ
f (η)

def
= η t CF

f (ρ) F -complete shell: RF ,η
f (ρ)

def
= ρ u RF

f (η)

When η = ρ, we need a fix-point iteration on abstract domains. For instance RF
f (ρ) = gfp(λX . ρ u RF

f (X))
with RF

f (ρ) ∈ lco(uco(C)) which is called absolute F -complete shell . By construction if f is additive then
RB

f = RF
f + [GQ01]. This means that when we have to solve a problem of B-completeness for an additive

function then we can equivalently solve the corresponding F -completeness problem for its right adjoint. The
following example from [GQ01], exemplifies the duality of forward and backward completeness.

Example 2.5. Assume S be the domain in Figure 2, which is an obvious abstraction of 〈℘(Z),⊆〉 for the
analysis of integer variables and sq : ℘(Z) → ℘(Z) be the square operation defined as follows: sq(X) ={
x 2 | x ∈ X

}
for X ∈ ℘(Z). The arrows in Figure 2 (a) and (b) show the function sq]. Let ρS ∈ uco(℘(Z))

be the closure operator associated with S. The best correct approximation of sq in S is sq] : S → S such
that sq](X) = ρS(sq(X)), with X ∈ S. It is easy to see that the abstractions ρa = {Z, [0,+∞], [0, 10]} (black
dots in Figure 2 (a)) and ρb = {Z, [0, 2], [0]} of S (black dots in Figure 2 (b)), respect the following facts:
ρa = {Z, [0,+∞], [0, 10]} is F -complete but not B-complete on the concrete domain S for sq] (for instance
ρa(sq](ρa([0]))) = [0,+∞] but ρa(sq]([0])) = [0, 10]) and ρb = {Z, [0, 2], [0]} is B-complete but not F -
complete on the concrete domain S for sq] (for instance ρb(sq](ρb([0, 2]))) = Z but sq](ρb([0, 2])) = [0, 10]).

8 R. Giacobazzi and I. Mastroeni and M. Dalla Preda

•

•

•

•

•

•

Z

[0,+∞]

[0, 10]

[0, 2]

[0]

[−∞, 0]

•

•

•

◦

◦

◦��

^^

^^ ww

aa

aa

Z

[0,+∞]

[0, 10]

[0, 2]

[0]

[−∞, 0]

•

◦

◦

•

•

◦��

^^

^^ ww

aa

aa

Z

[0,+∞]

[0, 10]

[0, 2]

[0]

[−∞, 0]

S = ρS(℘(Z)) (a) (b)

Fig. 2. The abstract domain S and two abstractions

〈σ, skip〉 ⇓ 〈σ, skip〉 (Fix-point)
JeKσ = n ∈ Val

〈σ, x := e〉 ⇓ 〈σ[x 7→ n], skip〉

〈σ, st〉 ⇓ σ′

〈σ, st ; C 1〉 ⇓ 〈σ′, C 1〉

JeKσ = true

〈σ, if e then C 0 else C 1 fi〉 ⇓ 〈σ, C 0〉

JeKσ = false

〈σ, if e then C 0 else C 1 fi〉 ⇓ 〈σ, C 1〉

JeKσ = true

〈σ,while e do C endw〉 ⇓ 〈σ, C ;while e do C endw〉

JeKσ = false

〈σ,while e do C endw〉 ⇓ 〈σ, skip〉

Table 1. Small-step operational semantics of L

2.5. Programming language and semantics

For abstract interpretation, one needs a fine-grain small-step semantics containing program points or similar
syntactic information to which abstract values can be bound. Consider a simple imperative language L:

C ::= skip | x := e | C 0; C 1 | while e do C endw | if e then C 0 else C 1 fi

A notational convenience: write case e of v1 : C 1; . . . ; vn : C n to stand for a chain of if − then − else
on mutually exclusive values (the vi are the possible values that e can take, and Ci is the corresponding
program fragment to execute). In Table 1 we consider the standard operational semantics of the language.
Let PL be a set of programs in the language L, Var(P) the set of all the variables in P (analogously Var(e)
is the set of variables used in an expression e), and PLP be a set of program points of P ∈ PL containing a
special notation ε for the empty program point, Val be the set of values, and M def

= Var(P)−→Val be a set
of possible program memories. When a statement st belongs to a program P we write st ∈ P, then we define
the auxiliary functions StmP : PLP → PL be such that StmP(l) = c if c is the statement in P at program
point l (denoted l.c) and PcP = StmP−1 : PL → PLP with the simple extension to blocks of instructions
PcP(st ; C) = PcP(st) where st ∈ P. Then, let σ ∈ M, we define the semantics of L in Table 1, where x
are variables, e are (arithmetic and boolean) expressions, J·K is the evaluation of expressions, and where we
write 〈σ, C 〉 ⇓ 〈σ′, C ′〉 for the execution of C in the memory σ. We can formally characterise the small-step
operational semantics of programs. Let D = M× PL be the set of states, containing the actual memory and
the code to execute, and 〈σ, C 〉 ∈ D. fL : D−→℘(D) is such that:

fL(〈σ, C 〉) = { 〈σ′, C ′〉 | 〈σ, C 〉 ⇓ 〈σ′, C ′〉 }
It is worth noting that for deterministic programs, like L, this set contains only one state. We abuse notation
by denoting as fL also its trivial additive lift on ℘(D). We define the small-step program semantics as the
fix-point of the transfer function fL starting from a set of initial states S ∈ ℘(D): JPK(S)

def
= lfpS fL ∈ ℘(D).

Maximal incompleteness as obfuscation potency 9

In the following, when we consider the semantics of a program P starting from any possible initial memory
state of P we simply write JPK, denoting the set

{
lfp〈σ, P〉 fL | σ ∈M

}
.

3. Making abstract interpretations incomplete

As proved in [GRS00], completeness is a property concerning uniquely the abstract domain and the (concrete
semantics of the) program to be analysed (see [GLR15] for a recent account on proving abstract interpreta-
tions completeness). Therefore,f make an abstract interpretation complete (respectively incomplete) we may
only act on the abstract domain (e.g., by abstraction refinements) or by code refactoring (see [LL09] for an
example of code transformations that improves the precision of given analyses). Our aim is to model the
potency of an (obfuscated) program P . Therefore the program here is fixed, and understanding the potency
of the obfuscations employed in P means understanding what makes an abstract domain imprecise (viz.,
incomplete) for P . This corresponds precisely to remove all the elements in the abstract domain that may
be introduced by the completeness refinement for P . Following this observation, we introduce the idea of
incomplete domain compressor : The most abstract domain having a given complete refinement, namely the
right adjoint of the complete shell refinement viewed as an abstract domain transformer. In this section we
prove that the incomplete compressor exists under weak hypotheses and that it induces incomplete abstract
interpretations for programs in our simple imperative programming language.

3.1. Simplifying abstractions

In the following, we show that a complete shell always admits a right adjoint. Indeed, by Proposition 2.3 the
right adjoint of an lco exists if and only if the lco is join-uniform. At this point, since complete shells have the
form of pattern completion we show that pattern completion domain transformers are always join-uniform.

Lemma 3.1. Let C be a complete lattice and η ∈ uco(C) then the pattern completion function fη
def
= λδ.δuη

is join-uniform.

Proof. We have to prove that fη(t{ δ ∈ uco(C) | fη(δ) = fη(ρ) }) = fη(ρ). In other words we have to prove
that t{ δ ∈ uco(C) | fη(δ) = fη(ρ) } u η = ρ u η.
In the sake of simplicity, let {δi}i∈Z def

= { δ ∈ uco(C) | fη(δ) = fη(ρ) }, then we want to prove that if ∀i , j ∈
Z .δi u η = δj u η then (

⊔
i∈Z δi) u η = δj u η. Note that, δj v

⊔
i∈Z δi hence the v relation holds. We have

to prove the other inclusion, namely that ∀x ∈ δj u η then x ∈ (
⊔

i∈Z δi) u η.
First of all let us note that ifMi

def
= Mirr(δiuη) then ∀j .Mi ⊆ δjuη. This implies that ∀j .⋃i∈Z Mi ⊆ δjuη. But

then ∀y ∈ ⋃i∈Z Mi we have y ∈ δj or y ∈ η, being y meet-irreducible, which implies that ∀y ∈ (
⋃

i∈Z Mi)rη
we have y ∈ ⋂i∈Z δi . At this point the following implication holds

∀i ∈ Z . x ∈ δi u η ⇒ ∃Y ⊆ Mirr(δi u η) s.t.
∧
Y = x

⇒ ∃Y ⊆ ⋃i∈Z Mi s.t.
∧

Y = x
⇒ ∃Y ⊆ ⋃i∈Z Mi , Y r η ⊆ ⋃i∈Z Mi r η ⊆ ⋂i∈Z δi s.t.

∧
Y = x

⇒ ∃Y ⊆ η ∪⋂i∈Z δi s.t.
∧
Y = x

⇒ x =
∧
Y ∈M(η ∪⋂i∈Z δi) = M(η ∪⊔i∈Z δi) = (

⊔
i∈Z δi) u η

Note that, the domain transformers defined in Example 2.4 are exactly of this form, and indeed, the fact
that they admit right adjoint on the lifted orders depends precisely on the fact that these transformers are
join-uniform by Lemma 3.1.

3.1.1. Forward incomplete compressor

Consider F -completeness, i.e., ρ ◦ f ◦ η = f ◦ η with ρ, η ∈ uco(C), C complete lattice, and f : C −→ C ,
denoting also its additive lift to ℘(C). The complete shell is RF

f ,η which refines the output domain by adding
all the f -images of elements of η to ρ. Hence, by Lemma 3.1, we have the following result.

10 R. Giacobazzi and I. Mastroeni and M. Dalla Preda

Proposition 3.2. RF
f ,η = λρ. ρ uM(f (η))2 is join-uniform on uco(C).

Proof. Trivially by Lemma 3.1

Being RF
f ,η join-uniform, its right adjoint exists (Proposition 2.3). We show that, under specific hypotheses,

the right adjoint can be characterised as the following transformer:

URF
f ,η

def
= λρ.M(Mirr(ρ uM(f (η))) rM(f (η)))

This transformation first erases all the elements that we should have to avoid if we want to loose precision
for the computation of function f , and then by the Moore-family completion adds only those necessary for
obtaining a Moore-family, i.e., an abstract domain. We call this transformation incomplete compressor. We
first prove a lemma providing a necessary results for the following proposition. This lemma is a particular
case of the result in [FR96] which allows us to remove the hypothesis of meet-generation necessary in general
for characterising pseudo-complement as set difference.

Lemma 3.3. Let α, β ∈ uco(C) be abstract domains, then M(Mirr(αuβ)rβ) is the most abstract domain
such that M(Mirr(α u β) r β) u β = α u β, i.e.,

M(Mirr(α u β) r β) = (α u β)	 β.
Proof. Let us first prove that M(Mirr(α u β) r β) u β = α u β. It is clear that one inclusion is trivial, since
if x ∈M(Mirr(α u β) r β) then it must be in Mirr(α u β) ⊆ α u β.
Let us prove the other inclusion. Suppose x ∈ α u β.
• Let x ∈ Mirr(αuβ) and x ∈ αrβ3. Then x ∈ Mirr(αuβ)rβ, and therefore x ∈M(Mirr(αuβ)rβ)uβ;
• Let x ∈ Mirr(αuβ) and x ∈ β. Then trivially it is in any set in product with β, i.e., M(Mirr(αuβ)rβ)uβ;
• Let x /∈ Mirr(α u β). Then there exists Z ⊆ Mirr(α u β) such that

∧
Z = x . Let (Z ∩ α) r β = Z1 and

Z ∩ β = Z2.

– If Z2 = ∅ then Z ⊆ α and Z ∩ β = ∅ implying that Z ⊆ Mirr(α u β) r β, hence x =
∧

Z ∈
M(Mirr(α u β) r β) u β;

– If Z2 6= ∅, being Z a set of meet-irreducible any of its element can be generated in α u β by meet,
hence all its elements are either in α or in β, i.e., Z = Z1 ∪ Z2.Then Z1 ⊆M(Mirr(α u β) r β), being
a set of meet-irreducible elements of α, while Z2 ⊆ β, hence Z = Z1 ∪ Z2 ⊆M(Mirr(α u β) r β) ∪ β.
Namely, x =

∧
Z ∈M(Mirr(α u β) r β) u β.

Let us prove now that it is the most abstract domain with this property. Namely, suppose there exists ρ
such that ρ u β = α u β, we prove that ρ v M(Mirr(α u β) r β). Let us consider x ∈ M(Mirr(α u β) r β),
we prove that x ∈ ρ. The hypothesis on x implies that x ∈M(Mirr(αu β)r β)u β = αu β = ρu β, namely
x ∈ ρ u β and x ∈ α u β.
• Suppose x ∈ Mirr(α u β). Then, since x ∈ M(Mirr(α u β) r β), being x meet-irreducible, we have
x ∈ Mirr(αu β)r β, namely x /∈ β. At this point, being αu β = ρu β we have also that x ∈ Mirr(ρu β),
namely x ∈ ρ or x ∈ β, but we have just proved that x /∈ β, hence x ∈ ρ.
• Let x /∈ Mirr(α u β), then x /∈ Mirr(α u β) r β, but by hypothesis x ∈ M(Mirr(α u β) r β), hence

there exists Z ⊆ α, with Z ∩ β = ∅, such that
∧
Z = x . Finally, Z ⊆ α u β = ρ u β with Z set of

meet-irreducible that are not in β. Hence, Z must be subset of ρ, which implies that also x =
∧

Z ∈ ρ.

Proposition 3.4. URF
f ,η = (RF

f ,η)+.

Proof. By Proposition 3.2, we have that R def
= RF

f ,η is join-uniform. Hence, by Proposition 2.2, we can char-
acterise its right adjoint as

R+ = λρ.
⊔
{ δ | R(δ) = R(ρ) } = λρ.

⊔
{ δ | δ uM(f (η)) = ρ uM(f (η)) }

2 f (η) stands for f (η(C))
3 Note that if x ∈ Mirr(α u β), then x is meet-irreducible, therefore it must be in α or in β.

Maximal incompleteness as obfuscation potency 11

T

[-∞,16]

[-∞,15]

[-∞,4]

[-∞,2]

[-∞,-1]

[-∞,-4]

[0,+∞]

[1,+∞]

[2,+∞]

[3,+∞]

[9,+∞]

[12,+∞]

[0,16]

[0,4]

[-4,0]

[1,4]

[3,4]

[1,16]

[3,16]

[12,16]

[9,16]
[0,2]

[1,2]

[2,16]

[2,4]

[2,2]
[2,3] [4,9]

[2,9]

[-4,1]

T

[-∞,16]

[-∞,15]

[-∞,4]

[-∞,2]

[-∞,-1]

[-∞,-4]

[2,+∞]

[3,+∞]

[12,+∞]

[3,4]

[3,16]

[12,16]

[2,16]

[2,4]

[2,2]
[2,3]

Fig. 3. Abstract domain and transformation of Example 3.5

By join-uniformity we know that R ◦ R+(ρ) = R(ρ). Hence

R+(ρ) ∈ { δ | δ uM(f (η)) = ρ uM(f (η)) }
and by definition of R+ this means that it is the most abstract domain such that R+(ρ) uM(f (η)) = ρ u
M(f (η)). At this point we can observe that this is precisely the pseudo-complement (ρuM(f (η)))	M(f (η))4.
By Lemma 3.3 we conclude that (ρ uM(f (η)))	M(f (η)) = M(Mirr(ρ uM(f (η))) rM(f (η))).

Example 3.5. Consider the example in Figure 3 on the left. The square operation sq(X) =
{
x 2 | x ∈ X

}

for X ∈ ℘(Z) is depicted with arrows on the lattice of integer intervals Int, which is defined as usual as
Int def

= { [a, b] | a, b ∈ Z } ∪ { [−∞, b] | b ∈ Z }∪ { [a,+∞] | a ∈ Z } [CC77]. In this case, the best cor-
rect approximation of sq in Int is sq] : Int→ Int such that sq](X) = Int(sq(X)), with X ∈ Int. Note
that, by definition of sq], we trivially have Int ◦ sq] ◦ Int = sq] ◦ Int, i.e., F -completeness. For instance
sq]([3, 4]) = [9, 16] ∈ Int. Let us transform the output Int domain in order to induce incompleteness, namely
let us derive the forward incomplete compression of Int. Note that, Mirr(Int) = { [−∞, b] | b ∈ Z } ∪
{ [a,+∞] | a ∈ Z } [GRS00], in the picture collected in the open lines, and that

M(sq](Int)) =
{

[a2, b2] | a, b ∈ Z
}
∪
{

[a2,+∞] | a ∈ Z
}
w Int.

are depicted with circled lines.
Hence, we have that Int′ def

= URF
sq],Int

(Int) = M(Mirr(Int) rM(sq](Int)) namely

Int′ = M({ [−∞, b] | b ∈ Z } ∪
{

[a,+∞]
∣∣ a ∈ Z,@c ∈ Z. a = c2

}
)

=
{

[a, b]
∣∣ a, b ∈ Z,@c, d ∈ Z. a = c2 ∨ b = d2

}
∪

{ [−∞, b] | b ∈ Z } ∪
{

[a,+∞]
∣∣ a ∈ Z,@c ∈ Z. a = c2

}

depicted on the right in Figure 3. So, for instance, we have that sq]([3, 4]) = [9, 16] /∈ Int′, meaning incom-
pleteness.

Note that, this transformation does not always generate an incomplete domain. The following result
provides the formal conditions that have to hold in order to induce incompleteness, namely in order to
guarantee the existence of incomplete compression. The domains that does not satisfy these conditions
are complete and are complete shells of only themselves, namely we cannot find a unique most concrete
simplification which is incomplete.

Theorem 3.6. Let η, ρ ∈ uco(C) and f : C −→ C . URF
f ,η(ρ) (here denoted UR) is such that UR(ρ)◦ f ◦η 6=

f ◦ η if and only if one of the following conditions hold:

1. ρ ◦ f ◦ η 6= f ◦ η, i.e., ρ was incomplete before simplification;
2. M(f (η)) ∩Mirr(ρ) 6= ∅;

4 If C is a meet-semilattice with bottom, then the pseudo-complement of x ∈ C , when it exists, is the unique element x∗ ∈ C
such that x ∧ x∗ = ⊥ and such that ∀y ∈ C . (x ∧ y = ⊥)⇒ (y ≤ x∗).

12 R. Giacobazzi and I. Mastroeni and M. Dalla Preda

Proof. (⇒) Suppose (∗) Mirr(ρ)∩M(f (η)) = ∅ and suppose (∗∗) ρ◦ f ◦ η = f ◦ η. Note that, by [GRS00] we
know that if ρ◦ f ◦η = f ◦η then ρ vM(f (η)). Then we have ρuM(f (η)) = ρ, hence Mirr(ρuM(f (η))) =
Mirr(ρ). But then, by hypothesis (∗∗) we have that Mirr(ρuM(f (η)))rM(f (η)) = Mirr(ρ)rM(f (η)) =
Mirr(ρ), namely UR(ρ) = ρ. At this point, we also trivially have that UR(ρ) ◦ f ◦ η = f ◦ η.

(⇐) Suppose UR(ρ) ◦ f ◦ η = f ◦ η, by [GRS00] this means that UR(ρ) vM(f (η)). Hence

M(f (η)) w UR(ρ) = M(Mirr(ρ uM(f (η))) rM(f (η)))
w M(Mirr(ρ)) = ρ

since Mirr(ρ) ⊆ Mirr(ρ uM(f (η))) rM(f (η)), namely (again by [GRS00]) we have that ρ ◦ f ◦ η = f ◦ η.
At this point, this last condition implies that UR(ρ) = M(Mirr(ρ)rM(f (η))). Hence, if ∃ x ∈M(f (η))∩
Mirr(ρ) 6= ∅, but then we would have that x /∈ UR(ρ) (since being x ∈ Mirr(ρ) cannot be generated by M
starting from a subset of Mirr(ρ)). Moreover, x ∈ f (η) because x is meet irreducible in ρ and M(f (η)) ⊆ ρ,
hence x cannot be generated byM also in f (η). But this would imply that on x ∈ f (η) we have that UR(ρ)
is not complete, which is against the hypothesis. Therefore we also have that M(f (η)) ∩Mirr(ρ) = ∅.

In the following examples, we show the meaning of these conditions.

Example 3.7. Consider the Sign domain in Figure 1. Consider a complete shell such that M(f (η)) = D7,
then the completeness transformer is R = λX .X uD7. The resulting lco on the corresponding lifted order is
in Figure 1(a), where the circled domains are the complete ones, i.e., {D7,D11,D12,D14}. All of them contain
the meet-irreducible elements of D7 (condition (2) of Theorem 3.6 is satisfied) and therefore we can find the
incomplete compression of any domain, e.g., UR(D12) = D5.

Theorem 3.6 says that some conditions have to hold in order to have a unique incomplete simplification,
this does not mean that we cannot find anyway an incomplete simplification, even if it is not unique. Consider
the following example.

Example 3.8. Consider again the domain in Figure 1 and suppose the shell now is R = λX .X u D3. The
lifted lco is depicted in Figure 1(b). In this case the complete domains are {D3,D7,D8,D9,D11,D12,D13,D14}.
We can observe that not all of them have meet-irreducibles in common with D3. In particular, D12 and D14

are shell only of themselves. In this case, we could only choose one of the closest complete domains that
contains meet-irreducible elements of D3, e.g., for D14 we can choose between D11 or D13, and then we can
transform one of the chosen domains for finding one of the closest incomplete domains, i.e., D6 or D10.

Absolute incomplete compressor. We can exploit the previous transformation relative to a starting
input abstraction ρ, in order to characterise the abstract domain which is incomplete for a given function,
both in input and in output. This is possible without fix-point iteration since, the domain transformer reaches
the fix-point in one shot. The following lemma provides a property needed for proving the following theorem.

Lemma 3.9. Let α, β ∈ uco(C), then we have that M(Mirr(α u β) r β) = α iff Mirr(α) ⊆ Mirr(α u β) and
β ∩Mirr(α) = ∅.

Proof. Note that, by construction M(Mirr(α u β) r β) w α, we have to prove the other inclusion. Sup-
pose (1) Mirr(α) ⊆ Mirr(α u β) and (2) β ∩ Mirr(α) = ∅. We observe that condition (1) implies that
Mirr(α) r β ⊆ Mirr(α u β) r β, but by condition (2) we have that Mirr(α) = Mirr(α) r β. Hence
α = M(Mirr(α)) ⊆ M(Mirr(α u β) r β), namely α w M(Mirr(α u β) r β). Therefore, we have that (1)
and (2) implies the equality.
We have to prove now the other implication. If condition (2) does not hold then α = M(Mirr(α)) ⊂
M(Mirr(α)rβ) ⊆M(Mirr(αuβ)rβ), if condition (1) does not hold thenM(Mirr(α)rβ) ⊂M(Mirr(αuβ)rβ),
in any case we cannot have the equality.

Theorem 3.10. Let f : C −→ C be a monotone function, ρ ∈ uco(C).
Let UR(ρ)

def
= URF

f ,ρ(ρ) ∈ uco(C) be an incomplete compression of ρ such that we have UR(ρ) 6= >. Then
UR(ρ) ◦ f ◦UR(ρ) 6= f ◦UR(ρ).

Proof. If UR is an incomplete compression then the conditions of Theorem 3.6 hold and UR(ρ) ◦ f ◦ρ 6= f ◦ρ.
Let us prove that UR is idempotent, namely UR(UR(ρ)) = UR(ρ). Let ρ1

def
= UR(ρ) 6= >, now we want to find

the simplification of ρ1 that makes UR(ρ1) ◦ f ◦ρ1 6= f ◦ρ1 to hold. This corresponds to use the new abstract

Maximal incompleteness as obfuscation potency 13

domain ρ1 as the input domain, and compute the abstraction of ρ1 in output inducing incompleteness.
Let us prove that UR(ρ1) = ρ1. Consider Lemma 3.9, where α = ρ1 and β = M(f (ρ1)). Then we have
that UR(ρ1)

def
= M(Mirr(ρ1 uM(f (ρ1))) r M(f (ρ1))) = ρ1 iff (1) Mirr(ρ1) ⊆ Mirr(ρ1 uM(f (ρ1))) and (2)

M(f (ρ1)) ∩Mirr(ρ1) = ∅.
Let us prove (1). Note that, Mirr(ρ1) = Mirr(ρ)rM(f (ρ)), hence we have to prove that Mirr(ρ)rM(f (ρ)) ⊆
Mirr(ρ1 uM(f (ρ1))). Suppose, ad absurdum, that there exists x ∈ Mirr(ρ) r M(f (ρ)) (then x ∈ ρ1 and
x ∈ Mirr(ρ), i.e., @y1, y2 ∈ ρ. x = y1 ∧ y2) such that x /∈ Mirr(ρ1 uM(f (ρ1))). The first condition implies
that x /∈ M(f (ρ)) and, by monotonicity x /∈ M(f (ρ1)), since M(f (ρ1)) w M(f (ρ)). Now since x ∈ ρ1 we
have x ∈ ρ1 uM(f (ρ1)) but by hypothesis we have also that x /∈ Mirr(ρ1 uM(f (ρ1))), hence there exist
y1, y2 ∈ ρ1 uM(f (ρ1)) such that x = y1 ∧ y2. We cannot have y1, y2 ∈ ρ1 since x ∈ Mirr(ρ1), and we cannot
have y1, y2 ∈ M(f (ρ1)) since otherwise x ∈ M(f (ρ1)). Hence, y1 ∈ ρ1 and y2 ∈ M(f (ρ1)). These imply that
y1 ∈ ρ v ρ1 and y2 ∈ M(f (ρ)) v M(f (ρ1)), but this imply that x is not meet-irreducible in ρ uM(f (ρ)),
hence by construction x cannot be meet-irreducible in ρ1. Therefore, condition (1) holds. Consider now (2),
then for what we observed before x ∈M(f (ρ1)) implies x ∈M(f (ρ)), which implies x /∈ Mirr(ρ) rM(f (ρ)).
On the other hand, if x ∈ Mirr(ρ) rM(f (ρ)) then x /∈M(f (ρ)) which implies x /∈M(f (ρ1)).

Note that, if UR(ρ) = > we cannot find the absolute incomplete compressor since > ◦ f ◦> = > ◦ f always
holds.

Example 3.11. Consider the situation described in Example 3.5, and compute the absolute incomplete
compressor URF

sq],Int’
(Int′). We show that, as stated in Theorem 3.10 , the fix point is reached at the first

step. Recall that:

Mirr(Int′) = { [−∞, b] | b ∈ Z } ∪
{

[a,+∞]
∣∣ a ∈ Z,@c ∈ Z. a = c2

}

M(sq](Int′)) =
{

[a2, b2]
∣∣ a, b ∈ Z,@c, d ∈ Z. a = c2 ∨ b = d2

}
∪{

[−∞, b2] | b ∈ Z
}
∪
{

[a2,+∞]
∣∣ a ∈ Z,@c ∈ Z. a = c2

}

Now we show that Theorem 3.10 holds. Observe that Mirr(Int′) ⊆ Mirr(Int′ uM(sq](Int′)), since by con-
struction if x ∈ Mirr(Int′) then we also have x ∈ Mirr(Int), on the other hand M(sq](Int′)) ⊆ Int, therefore
x remain meet-irreducible also in the reduced product. Therefore,

Mirr(Int′) = Mirr(Int′) rM(sq](Int′)) ⊆ Mirr(Int′ uM(sq](Int′)) rM(sq](Int′))

namely Int′ w URF
sq],Int’

(Int′), and since by construction we have the other inclusion, we showed the equality,
i.e., URF

sq],Int’
(Int′) = Int′.

Example 3.12. Consider the ρb domain in Figure 2(b).
Then Mirr(ρb) = {[0,+∞], [−9, 0], [0, 9]} and M(sqS(ρb)) = {Z, [0,+∞], [0, 99], [0]}.

S′
def
= URF

sqS,ρb
(ρb) = M(Mirr(ρb uM(sqS(ρb))) rM(sqS(ρb)))

= M(Mirr(ρb) rM(sqS(ρb))) = M({[0,+∞], [−9, 0], [0, 9]}) = {Z, [−9, 0], [0, 9], [0]}
Finally, we can easily check that S′ ◦ sqS ◦S′ 6= sqS ◦S′.

3.1.2. Backward incompleteness compressor

In this section, we show that all the results holding for F -completeness can be instantiated also to B-
completeness. First of all, by Lemma 3.1 we have that

Proposition 3.13. RB
f ,ρ is join-uniform on uco(C).

Proof. Trivially by Lemma 3.1.

This result tells us that also the B shell admits right adjoint, and as before, its adjoint can be characterised
as a pseudo-complement in the following way.

Proposition 3.14. Let Rf
def
= λδ.M(

⋃
y∈δ max(f −1(↓ y))) ∈ uco(C), then we have that

URB
f ,ρ

def
= λη.M(Mirr(η u Rf (ρ)) r Rf (ρ)) = (RB

f ,ρ)
+.

14 R. Giacobazzi and I. Mastroeni and M. Dalla Preda

Proof. Analogous to Proposition 3.4.

Finally, also for B-completeness we can prove that the B-incomplete compressor exists iff some conditions
hold, as stated in the following theorem.

Theorem 3.15. Let η, ρ ∈ uco(C) and f : C −→ C . URB
f ,ρ(η) (here denoted simply UR) is such that

ρ ◦ f ◦ UR(η) 6= ρ ◦ f iff one of the following conditions hold:

1. ρ ◦ f ◦ η 6= ρ ◦ f , i.e., η was incomplete before simplification;
2. Rf (ρ) ∩Mirr(η) 6= ∅;

Proof. Analogous to Theorem 3.6.

Finally, we can characterise also the absolute B-incomplete compressor.

Theorem 3.16. Let f : C −→ C be a monotone function, η ∈ uco(C).
Let UR(η)

def
= (RB

f ,η)+(η) ∈ uco(C) be an incomplete compressor such that we have UR(η) 6= >. Then
UR(η) ◦ f ◦UR(η) 6= UR(η) ◦ f .

Proof. Analogous to Theorem 3.10.

3.2. Refining abstractions: Incomplete expanders

If we consider the other direction, when we want to transform the input abstraction, it is well known that,
for inducing F [B] completeness we can simplify the domain by erasing all the η-elements whose f [inverse]
image goes out of ρ. In this case, we are considering the completeness core CF

ρ,f [CB
η,f]. If we aim at inducing

incompleteness we should add all the elements such that the f [inverse] image is out of ρ, i.e., { x | f (x) /∈ ρ }
[
{
y
∣∣ max { x | f (x) ≤ y } 6⊆ η

}
]. We wonder whether this transformation always exists.

Unfortunately, the following result implies, by Proposition 2.3, that we cannot find the most concrete ab-
straction that refines ρ and which is incomplete.

Theorem 3.17. The operator CF
ρ,f [CB

η,f] is not meet-uniform.

Proof. Let us consider the closure η def
= {>, x , y , x ∧ y ,⊥} and ρ ∈ uco, suppose {f (>), f (x ∧ y)} ⊆ ρ and

suppose {f (x), f (y), f (⊥)} ∩ ρ = ∅. Then C(η) = { z | f (z) ∈ ρ } = {>, x ∧ y}.
Consider now the following abstractions of η: δ1

def
= {>, x} and δ2

def
= {>, y}, we have that C(δ1) = C(δ2) =

{>} 6= C(δ1 u δ2) = C({>, x , y , x ∧ y}) = {>, x ∧ y}.

4. Modelling the potency of code obfuscation

In this section, we show how the theoretical results described in the previous section can be used in the
field of code obfuscation in order to certify the potency of an obfuscator and to provide insights on how
to build an obfuscator that defeats a given attacker. To this end, we consider a program P ∈ PL and its
denotational, i.e., I/O, semantics JPK, computed as fix-point of the language interpreter operation fL, namely
JPK =

{
lfp〈σ, P〉 fL | σ ∈M

}
, where M is the set of memories (see Section 2.5 for the formal details).

Let us recall that the aim of an obfuscator is to modify a program in order to make it more difficult
to analyse while preserving its functionality [CTL98]. In [JGM12], the authors interpret these features,
specifying when a program transformation is an obfuscator, in the semantic setting. Following this view, we
obtain the following characterisation of an obfuscator:

• An obfuscation transformerO has to preserve the denotational semantics of programs, namely the denota-
tional semantics of a program P and of its obfuscated version O(P) have to be the same, i.e., JPK = JO(P)K.

• An obfuscator has to add confusion with respect to some properties that are revealed by the non-
obfuscated program P, thus generating an obfuscated program O(P) from which the same properties
cannot be precisely extracted. Let ρ, η ∈ uco(Σ) and assume that the pair of abstractions 〈ρ, η〉 is
B-complete for JPK. This means that this pair of properties can be precisely extracted form the non-
obfuscated program P, namely ρ(JPK) = JPK〈ρ,η〉 def

=
{

lfp〈σ, P〉ρ ◦ fL ◦η | s ∈ Σ
}
. Obfuscator O obfuscates

Maximal incompleteness as obfuscation potency 15

〈ρ, η〉 when JPK〈ρ,η〉 @ JO(P)K〈ρ,η〉, which holds if and only if ρ(JO(P)K) @ JO(P)K〈ρ,η〉, being JPK〈ρ,η〉 =
ρ(JPK) = ρ(JO(P)K) [Gia08]. In other words, a property is obfuscated if and only if it is incomplete for
the obfuscated program.

In the following, in Section 4.1 we present our attack model, next in Section 4.2 we describe how we can
characterise the potency range of an obfuscator thanks to the incompleteness results of Section 3 and then
we conclude by providing examples of how this charaterization works in the case of obfuscations that aim at
obstructing program slicing (Section 4.3) and static disassembly (Section 4.4).

4.1. Attack Model

Automatic reverse-engineering techniques typically consist in static program analysis (e.g., data flow analysis,
control flow analysis, alias analysis, program slicing) and dynamic program analysis (e.g., dynamic testing,
profiling, program tracing). Hence, we have two kinds of attacks: one that executes the program, collects
computational traces, and then analyses these traces looking for invariants, and the other that statically
analyses the code. In other words, dynamic attacks can extract properties of the execution traces, for instance
by using data mining techniques, while static attacks analyse the code looking for dynamic properties without
executing the program. It is well known [CC77, CC79b] that static analysis can be perfectly modelled in
the context of abstract interpretation, where a property is extensionally represented as the set of all the
data satisfying it and describes the abstraction of the corresponding data. In particular, static analysis is
performed as an abstract execution of programs, namely as the (fix-point) semantic computation on the
approximated/abstract data expressing the property of interest. Instead, dynamic analysis can be modelled
as an approximated observation of the concrete execution since it describes partial knowledge of the real
execution. In the following, we model a property as the function η mapping data to the minimal property
containing it. This implies that η is extensive (i.e., X ⊆ η(X)), namely it approximates by adding noise,
it is idempotent since the whole approximation is added in one shot and finally it is monotone, preserving
the approximation order. Namely, it is an upper closure operator and the framework beneath is abstract
interpretation [CC77, CC79b]. As seen in the previous sections the set ℘(Σ∗) can be used to represent the set
of possible program semantics, where Σ denotes the set of possible program states. Thus, we view attacks,
i.e., static program analysers, as properties of program states that model the abstract domain of computation
of program semantics, namely as an analysis over the program semantics.

4.2. Modelling the obfuscation potency range

In [Gia08] and in [JGM12] the objective is to provide an incompleteness-driven construction of a potent
obfuscator, while here we aim to use this incompleteness-based characterisation for "measuring" potency. In
fact, we aim at defining formal domain transformers inducing incompleteness that allow us to systematically
characterise a range of analyses that are made incomplete, and therefore imprecise, by the performed code
obfuscation. In particular, if A is a closure operator that models an attacker that can succeed in extracting the
desired information, then the incomplete compression UR(A) (defined in the previous section) characterises
the most abstract domain such that any abstract analysis between A (excluded) and UR(A) (included) is
obfuscated. We describe in details how to extract the range of attackers that are defeated by an obfuscation
with respect to a given semantics. We consider the following general scenario where:

• S
def
= PL → D is a program (semantic) observation on the set of denotations D. For instance in [JGM12]

we consider S = J·KCFG as the function modelling programs as control flow graphs;
• O : Progr → Progr is an obfuscation transformer, designed for deceiving observations of S(P), for instance

when dealing with CFG we consider obfuscations obscuring the control structure of a program [JGM12];
• A is the analysis the attacker may perform on the given model, i.e., an abstraction of S(P).

Our goal is to formally characterise the potency range of the given obfuscator O on the considered model S,
namely we aim at characterising the most precise analysis, namely attacker, A unable to disclose a precise
information from the abstraction S of the obfuscated program. In order to characterise the potency of
an obfuscation technique, we consider the completeness equation given before, instantiated to the pair of
abstractions 〈id,A〉, meaning that, when completeness holds, the analysis A is able to disclose precisely the

16 R. Giacobazzi and I. Mastroeni and M. Dalla Preda

same information revealed by the considered (concrete) semantics. In the following, we have to consider two
different equations of completeness, depending on the way S is computed. If the abstract program semantics
of a program P = O(P) is obtained simply as a function of the program, then

∀P ∈ O(PL). S(P) = S ◦A(P)

means precisely that, the attacker A wins, being able to observe of the semantics of the obfuscated program
P exactly what the program semantics itself makes available, at least on the considered model.
While, if S is computed as fix-point of a (semantic) operator ϕL, inductively defined on the language structure
and on the set of states ΣS, i.e., S

def
= λP ∈ PL.

{
lfp〈σ, P〉ϕL | σ ∈ ΣS

}
, then the attacker analysis has to be

included in the fix-point computation, namely

∀P ∈ PL.
{

lfp〈σ, P〉ϕL | σ ∈ ΣS

}
=
{

lfp〈σ, P〉ϕL ◦A | σ ∈ ΣS

}

In this case, the meaning is the same as before, only the way the semantics are computed is changed.
This completeness equation, allows to characterise the potency range for the obfuscator O since all the at-
tackers between the most concrete complete shell [GRS00] (excluded) and the most abstract incomplete
compression (Section 3) are attackers against which the obfuscator is potent. In our case, the input obser-
vation is the identity and therefore also the completeness shell is the identity, and the semantic function
is fS = ϕL (in the case where S is computed inductively on the language structure) or fS = S (otherwise).
Hence, the potency range of O is modelled as the set of the analyses defeated by O, i.e.,

PotO,S
def
=
{
A
∣∣ A v URB

fS,id
(id)

}

It is clear that, if we have a starting attack analysis A on which focusing the characterisation, then the same
set can be computed parametrically on A:

PotAO,S
def
=
{
A
∣∣∣ RB

fS,id
(A) @ A v URB

fS,id
(A)

}

This not the first attempt to model potency by means of abstract interpretation. In [DG05], the basic
idea is to define potency in terms of the most concrete output observation left unchanged by the obfuscation,
i.e., δO such that δO(JPK) = δO(JO(P)K). The set of all the obfuscated properties, making the obfuscator
potent, is determined by all the analyses { A | A not more abstract than δO }.
At this point, we compute the incomplete compressor for this equation in order to characterise the most
concrete abstraction A making completeness fail, namely the maximal (most abstract) observation for which
the obfuscator is potent. In fact, incompleteness means that the attacker A on the obfuscated program
discloses an imprecise approximation of the information concerning the program semantics. The following
example uses the proposed approach in order to identify the range of potency of a data obfuscation techniques
with respect to the computation of the square function.

Example 4.1. Let us consider data obfuscation, and in particular the incompleteness characterisation pro-
vided in [JGM12]. This obfuscation technique is based on the encoding of data [DTM07]. In this case obfus-
cation is achieved by data-refinement, namely by exploiting the complexity of more complex data-structures
or values in such a way that actual computations can be viewed as abstractions of the refined (obfuscated)
ones.

The idea consists in choosing a pair of statements cα and cγ such that cγ ; cα ≡ skip. This means that
both cα and cγ are statements of the form:

cα ≡ x := G(x) and cγ ≡ x := F (x),

for some function F and G . A program transformation O(P)
def
= cγ ; τx (P); cα is a data-type obfuscation for

data-type x if O(P) ≡ P, where τx adjusts the data-type computation for x on the refined type (see [DTM07]).
It is known that data-type obfuscation can be modelled as adjoint functions (Galois connections), where

cγ represents the program concretizing, viz. refining, the datum x and cα represents the program abstracting
the refined datum x back to the original data-type. As proved in [Gia08], this is precisely modelled as a pair
of adjoint functions: α : Val−→Val< and γ : Val<−→Val relating the standard data-type Val for x with its
refined version Val<. For instance, consider

P = x := x + 2; , cα ≡ x := x/2 and cγ ≡ x := 2x ,

Maximal incompleteness as obfuscation potency 17

•

•

•

•

•

•

•

•

Z

[0,+∞]

[0, 99]

[0, 9]

[0]

[−∞, 0]

[−99, 0]

[−9, 0]

•

•

•

◦

•

◦

◦

•

��

^^ nn

^^ nn ww

aa

aa

Z

[0,+∞]

[0, 99]

[0, 9]

[0]

[−∞, 0]

[−99, 0]

[−9, 0]

i = ρi(℘(Z)) (a)

Fig. 4. The abstract domain i and its abstraction ρa

then we have τx (P) = x := 2(x/2 + 2), namely x := x + 4, therefore:

O(P) ≡ x := 2x ; x := x + 4; x := x/2.

Consider now a slightly more complex example, for instance the program:

P =

[
x := 1; s := 0;
while x < 15 do s := s + x ; x := x + 1; endw

Then

τx (P) =

[
x := 2; s := 0;
while x < 30 do s := s + x/2; x := x + 2; endw

where α, γ, Val , and Val< are the most obvious ones. In [JGM12], given ρ ∈ uco(Val), we showed that
this obfuscation can be modelled as a distorted self interpreter adding dummy uses of a specific syntactic
operation op, for whose semantics the abstraction ρ is incomplete. Let op such a syntactic operation of the
language L. Then we can compute the maximal (most abstract) incomplete observation for this particular
operator w.r.t. the completeness equation

JopK = JopK ◦ρ

where S = J·K and A = ρ. Again, in this case we look for the most concrete observation unable to disclose
precisely the information released, in this case, by the concrete semantics J·K. Let i be the domain in Figure 4
and opP = sq∗

def
= ρi ◦ sq , then ρa = {Z, [0,+∞], [0, 99], [−9, 0], [0]} (black dots in Figure 4 (a)) is not B-

complete on the concrete domain i for sq∗. Then the refined domain

ρ′
def
= RB

JopPK
(ρa) = {Z, [0,+∞], [0, 99], [0, 9], [−9, 0], [0]}.

is complete for opP by construction, hence it can be used for characterising the potency of the obfuscation
technique consisting in using the operator opP in a program.

At this point, we can compute

UR(ρ′) = UR(ρa) = M(Mirr(ρ′ u RJsq∗K(ρ
′)) r RJsq∗K(ρ

′)) = M(Mirr(ρ′) r RJsq∗K(ρ
′)).

where RJsq∗K(ρ
′) = {Z, [0, 9], [−9, 0], [0]}. Hence, the resulting incomplete compression is the domain UR(ρ′) =

{Z, [0,+∞], [0, 99]}. In this way, we provide a model of the potency of the obfuscation technique since we
know that all the analyses between ρ′ (excluded) and UR(ρ′) (included) are made imprecise by the performed
code transformation.

4.3. Obfuscating Program Slicing

In this section, we describe slicing [HRB90, Wei81] as an abstraction of a program semantics constructing the
program dependency graph (PDG for short). In particular, we show that slicing obfuscation [MDT07] against

18 R. Giacobazzi and I. Mastroeni and M. Dalla Preda

attackers performing slicing analyses, is potent when there are syntactic dependencies between variables that
do not correspond to semantic dependencies. For instance, in the assignment y = x + 1 there is a semantic
dependency of y on x , while in y = x + 5 − x there is a syntactic dependency between y and x , such that
the value of y does not depend on x . Let us provide a brief overview on program slicing [Wei81] and on the
way slices are computed in [HRB90].

Definition 4.2 ((Semantic) Program slicing). For a variable v and a statement (program point) s (final
use of v), the slice S of program P with respect to the slicing criterion 〈s, v〉 is any executable program such
that S can be obtained by deleting zero or more statements from P and if P halts on input I then the value
of v at the statement s, each time s is reached in P, is the same in P and in S . If P fails to terminate then s
may be reached more times in S than in P, but P and S execute the same value for v each time s is executed
by P.

The standard approach for characterising slices is based on PDG [HRB90]. A program dependence graph
[GL91] PP for a program P is a directed graph with vertexes denoting program components and edges denoting
dependencies between components. The vertexes of PP, Nodes(PP), represent the assignment statements and
control predicates that occur in P. In addition Nodes(PP) includes a distinguished vertex called Entry denoting
the starting vertex. An edge represents either a control dependence or a flow dependence. Control dependence
edges u −→c v are such that (1) u is the Entry vertex and v represents a component of P that is not nested
within any control predicate; or (2) u represents a control predicate and v represents a component of P
immediately nested within the control predicate represented by u. Flow dependence edges u −→f v are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that uses x , and (3)
Control can reach v after u via an execution path along which there is no intervening definition of x . Finally,
on these graphs, a slice for a criterion 〈s, v〉 is the sub-graph containing all the vertexes that can reach
s via flow/control edges. It is worth noting that these slices are characterised by means of syntax-based
dependencies, therefore in general they are not the smallest program fragments satisfying Definition 4.2
[MZ08].

Example 4.3. Consider the following programs [RT96] and note that P2 is a slice of P1.

P1

1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

1.x := 0 ;

4.y := x ;

Below, we find a representation of the program de-
pendence graph of P1. In this representation, we have
only control and flow dependence edges, without dis-
tinction. In this graph we can note that slice P2 (with
criterion the value of y) can be computed by follow-
ing backwards the edges starting from node y := x ,
the final definition of y .

12

from P and if P halts on input I then the value of v at the statement s , each time s is
reached in P, is the same in P and in S . If P fails to terminate then s may be reached
more times in S than in P, but P and S execute the same value for v each time s is
executed by P .

A program dependence graph GP for a program P is a directed graph with vertices
denoting program components and edges denoting dependences between components.
The vertices of GP, Nodes(GP), represent the assignment statements and control predi-
cates that occur in P. In addition Nodes(GP) includes a distinguished vertex called Entry
denoting the starting vertex. An edge represents either a control dependence or a flow
dependence. Control dependence edges u −→c v are such that (1) u is the Entry vertex
and v represents a component of P that is not nested within any control predicate; these
edges are labeled with true; or (2) u represents a control predicate and v represents a
component of P immediately nested within the control predicate represented by u , the
label is the corresponding value of the predicate. Flow dependence edges u −→f v) are
such that (1) u is a vertex that defines variable x (an assignment), (2) v is a vertex that
uses x , and (3) Control can reach v after u via an execution path along which there is
no intervening definition of x . Finally, on these graph a slice for a criterion

Example 26. Consider the following simple programs [22]:

P1

1.x := 0 ;
2.i := 1 ; 3.while i > 0 do i := i + 1 ;
4.y := x ;

P2

x := 0 ;
w := 1 ;
y := x ;

P3

1.x := 0 ;

4.y := x ;

In Fig. ?? we find a representation of the program dependence graph of the program
P1. In this representation we have only control and flow dependence edges, without
distinction. Note that P3 is a slice of both P1 and of P2. In Fig ?? we can note that slice
P3 (with criterion the value of y) can be computed by following backwards the arcs
starting from node y := x , the definition of y .

Entry

x := 0 i := 1 while i > 0

i := i + 1

y := x

Fig. 3. Program dependence graph of P1.Before defining formally the construction of the program dependency graph, we can observe that the notion of
slicing given in Definition 4.2 is strongly based on a notion of dependency between statements, and therefore
between variables of the program [MZ08]. For this reason, we first need to formalize the notion of dependence
that we use in the following:

Definition 4.4 (Semantic dependencies). [MZ08]5 Let x ∈ Var, Y ⊆ Var. We say that an expression e
depends on x , written x ∈ Dep(e), if ∃σ1.σ2 ∈M. ∀y 6= x . σ1(y) = σ2(y) ∧ JeKσ1 6= JeKσ2.

In the following, we extend this notion directly to the statement containing an expression. In particular,
we say that a statement c depends on Y ⊆ Var, written Y ⊆ Dep(c), if for each y ∈ Y there exists an
expression e in the statemet c such that y ∈ Dep(e).

5 In [MZ08], this notion of dependency can be tuned depending on the degree of precision we need in the characterisation of
the slicing, moving towards abstract slicing.

Maximal incompleteness as obfuscation potency 19

original(){
1.int c, nl = 0, nw = 0, nc = 0, in;
2.in = false;
3.while ((c = getchar()) != EOF){

4.nc++;
5.if(c == ‘ ’ || c ==‘\n’ || c == ‘\t’) in = false;
6.elseif(in == false) {in=true; nw++;}
7.if(c == ‘\n’)nl++;
}

8.out(nl,nw,nc); }

obfuscated(){
1.int c, nl = 0, nw = 0, nc = 0, in;
2.in = false;
3.while ((c = getchar()) != EOF){

4.nc++;
5.if(c == ‘ ’ || c ==‘\n’ || c == ‘\t’) in = false;
6.elseif(in == false) {in=true; nw++;}
7.if(c == ‘\n’){if(nw <= nc)nl++};
8.if(nl > nc) nw = nc+nl;
9.elseif(nw > nc) nc = nw - nl;
}

10.out(nl,nw,nc); }

Fig. 5. Original and obfuscated programs.

or-slice-nl(){
1.int c, nl = 0;
3.while ((c = getchar()) != EOF){

7.if(c == ‘\n’)nl++;
}

8.out(nl); }

or-slice-nw(){
1.int c, nw = 0, in;
2.in = false;
3.while ((c = getchar()) != EOF){

5.if(c == ‘ ’ || c ==‘\n’ || c == ‘\t’) in = false;
6.elseif(in == false) {in=true; nw++;}
}

8.out(nw); }

Fig. 6. Slices of the original program.

Program slicing obfuscation: Introducing fake dependencies.

Program slicing obfuscation consists in a program obfuscation deceiving the program slicing transformation
technique [MDT07]. Since, as we have seen above, program slicing is based on the notion of dependency
between variables and expressions, intuitively it is clear that, if we aim at deceiving this analysis technique,
we have to introduce in the program useless (syntactic) dependencies that do not affect the semantics, we
call these dependencies fake dependencies. A fake dependence is precisely a syntactic dependence between
variables that do not correspond to semantic dependence. The introduction of such dependencies could be
realized, for instance, by modifying an assignments x := e by using some irrelevant variable z in the following
way: x := (z + e)− z . Its effect would be that a naive program flow analyser would think that all assigned
values depended on variable z .

Example 4.5. In order to explain the idea of slicing obfuscation, let us consider the word count program
[MDT07] given in Figure 5 (where getchar() returns the next char in a file, while out is the procedure
output instruction), on the left. It takes in a block of text and outputs the number of lines (nl), words (nw)
and characters (nc). Suppose the slicing criterion is (nl , 8), then the slice is on the left in Figure 6, while if
the criterion is (nw , 8) then the slice is on the right.

Let us introduce some fake dependencies. In particular, we modify line 7 adding an opaque predicate
which is always true and we add lines 8 and 9 with opaque predicates that are always false. The obfuscated
program is given in Figure 5, on the right.

In this way semantically we do not change the dependencies but a syntactic analysis would observe that
nl, nw and nc depend one on the others. Hence, the new slices are in Figure 7.

Semantic PDG as abstraction of program semantics.

In this section, we characterise the PDG construction as an abstract interpretation of a program. In other
words, we define the abstract interpreter whose fix point computes the program PDG. Let us first define a
semantic function, similar to graph semantics [JGM12] which, instead of computing the control flow graph,
computes the PDG obtained by including only semantic dependencies among variables.
We consider here an approximation of PDG given in the literature [RY89] as we will show later. A PDG Pl

is defined as a pair 〈Nodes(Pl),Arcs(Pl)〉. In particular, we have two kinds of edges, the control dependence
edges Control(Pl) and the flow dependence edges Flow(Pl), hence Arcs(Pl) = Control(Pl) ∪ Flow(Pl). Let

20 R. Giacobazzi and I. Mastroeni and M. Dalla Preda

obf-slice-nl(){
1.int c, nl = 0, nw = 0, nc = 0, in;
2.in = false;
3.while ((c = getchar()) != EOF){

4.nc++;
5.if(c == ‘ ’ || c ==‘\n’ || c == ‘\t’) in = false;
6.elseif(in == false) {in=true; nw++;}
7.if(c == ‘\n’){if(nw <= nc)nl++};
}

10.out(nl); }

obf-slice-nw(){
1.int c, nl = 0, nw = 0, nc = 0, in;
2.in = false;
3.while ((c = getchar()) != EOF){

4.nc++;
5.if(c == ‘ ’ || c ==‘\n’ || c == ‘\t’) in = false;
6.elseif(in == false) {in=true; nw++;}
7.if(c == ‘\n’){if(nw <= nc)nl++};
8.if(nl > nc) nw = nc+nl;
}

10.out(nw); }

Fig. 7. Slices of the obfuscated program.

us denote by PDG the set of program dependency graphs, ordered by set inclusion on the sets of nodes and
arcs. Formally, PDG = (℘f (N) × ℘f (N × N),≤PDG)6, where P ≤PDG P′ if and only if Nodes(P) ⊆ Nodes(P′)
and Arcs(P) ⊆ Arcs(P′). It is worth noting that PDG is not a complete lattice (see also [Rep91]) since we
can find an infinite ascending chain whose union is an infinite set, not belonging to the domain, for the same
reason this domain has no meet irreducible elements. Hence, in order to have a complete lattice, we need
to fix the program of interest, and indeed only referring to a particular program we can characterise the
potency of slicing obfuscation on the program. Let us define the PDG PP in the following way

NodesP
def
= { l ∈ N | StmP(l) ∈ P } ⊆ N as the set of all the locations of P

ControlP
def
= { 〈l1, l2〉 | Stm(l1) ∈ {if,while} and Stm(l2) is nested in l1 }

FlowP
def
= NodesP ×NodesP

where we recall that StmP : N −→ P is the function s.t. StmP(l) is the statement in program point l . At this
point, we define the complete lattice 〈PDGP,≤PDG,PP,∅,∨PDG,∧PDG〉 parametric on the program P, where
PDGP

def
= { P ∈ PDG | Nodes(P) ⊆ NodesP,Control(P) ⊆ ControlP,Flow(P) ⊆ FlowP }. We can observe that

the top of this lattice is precisely the PDG of the program P where all the possible dependencies are consid-
ered in the flow edges. In other words, they are all the PDGs where all the possible dependencies, but one,
are included in the graph, or the PDGs missing the last executable node.

At this point, we define the program semantics generating the PDG of a program while interpreting
the program. Given a program P, its semantics is defined by means of a transition system 〈ΣP, p〉 with
ΣP = Σ ∪ {P} and transition function p. The states have the form 〈σ, 〈l , l ′〉,Pl ,Dl〉 ∈ Σ, where σ ∈M is the
memory, namely the actual values of program variables, 〈l , l ′〉 ∈ N× N is a pair of program points, l is the
executed statement in P and l ′ is the next statement to execute in P, Pl ∈ PDGP is the PDG of P computed
upto program point l , and Dl is a definition function associating, at the program point l , with each variable,
the program point where the variable has been defined

Dl : Var −→ N s.t. Dl(x) = n where n is the program point where x is defined

For instance, in Example 4.3, D4(x) = 1 while D4(y) = 4. Note that, the characterisation of Dl may be
ambiguous or imprecise in the case when we have more than one definition of the same variable in the
program. In general, we can avoid this ambiguity by supposing the programs translated in their single static
assignment (SSA) form [CFR+91], where each variable is defined precisely once, in one single program point.

Finally, we have to define the transition function generating dependency-based PDG of P. By dependency-
based we mean that the flow edges will be generated by considering semantic dependencies, the ones defined
in Definition 4.4. First of all, for each program point l ∈ N we have to define the following auxiliary maps:
Dep(l) denotes the set of variables the statement in l depends on, while Use(l) denotes the set of variables
used in l , and it is defined by structural induction in Table 2.

6 By ℘f (X) we denote the domain of all the finite subsets of X .

Maximal incompleteness as obfuscation potency 21

Use(skip) = ∅ Use(x := e) = Var(e) Use(C 1; C 2) = Use(C 1) ∪ Use(C 2)

Use(while e do C endw) = Var(e) ∪ Use(C) Use(if e then C 0 else C 1 fi) = Var(e) ∪ Use(C 1) ∪ Use(C 2)

Table 2. The inductive definition of Use

Dep : N −→ ℘(Var) s.t. Dep(l) =
⋃

e∈StmP(l)
Dep(e) and

Use : N −→ ℘(Var) s.t. Use(l) =
⋃

e∈StmP(l)
Var(e)

where e ∈ StmP(l) means that the expression e is syntactically present in the statement StmP(l), and Dep(e)
is defined in Definition 4.4. In general, Dep(l) ⊆ Use(l), if there are no fake dependencies we have the equality.
Another necessary function for characterising the history of computation, is the function determining the
sequence of program points executed: NextP : M× PLP → PLP

NextP(σ, l) = l ′ iff fL(〈σ, StmP(l)〉) = 〈σ′, C 〉 ∧ PcP(C) = l ′

NextP(σ, l) = l if l is the last statement of P (In this way we can reach a fix-point.)

The dependency-based transition function is p(〈σ, 〈l1, l2〉,Pl1 ,Dl1〉) = 〈σ′, 〈l2, NextP(σ′, l2)〉,Pl2 ,Dl2〉 where
σ′ is the memory modified by executing statement in l1, NextP computes the following statement to execute,
Dl2 = Dl1 [Dx = l2] if Stm(l2) = x := e (it is Dl1 otherwise), and Pl2 is computed as follows:

Nodes(Pl2) = Nodes(Pl1) ∪ {l2} ∪ { l | Stm(l2) ∈ {if,while} and Stm(l) is nested in l2 }
Control(Pl2) = Control(Pl1) ∪ { 〈l2, l〉 | Stm(l2) ∈ {if,while} and Stm(l) is nested in l2 }

Flow(Pl2) = Flow(Pl1) ∪ { 〈Dl1(x), l2〉 | x ∈ Dep(l2) }
In other words, 〈n, l ′〉 ∈ Flow(Pl) if there exists x ∈ Var such that x ∈ Dep(l ′) ∩ { x | Stm(n) = x := e }.
It is worth noting that, if we reach the end of the program then NextP(σ, l) = l , and consequently also p
reaches the fix point.

The PDG operational semantics is JPKPDG
def
=
{

lfp〈σ, P〉 p | σ ∈ Σ
}
. Intuitively, by using this transition

function we compute the PDG with flow edges considering only those variables an expression depends on. In
fact, Flow(Pl2) is obtained by adding to Flow(Pl1) the flows from the variables in Dep(l2). In general, this is
more precise than the standard construction of the PDG, which is provided in terms of the variables used in
an expression. This suggests us that we can generalize this construction in terms of an abstraction of states
given in terms of abstraction of the flow edges.

In order to be as general as possible, consider a function F : N −→ ℘(Var) such that Dep(l) ⊆ F(l), that
approximates the variables a program point depends on, and the corresponding abstractions αF

s : ΣP −→
℘(ΣP) (denoting also its additive lift), αF

p : PDGP −→ PDGP, and αF
f : ℘(FlowP) −→ ℘(FlowP) defined as

follows:
αF
s(〈σ, 〈l , l ′〉,Pl ,Dl〉) def

= 〈σ, 〈l , l ′〉, αF
p(Pl),Dl〉

αF
p ∈ uco(PDGP), α

F
p(Pl) = P′l such that Nodes(P′l) = Nodes(Pl) and

Control(P′l) = Control(Pl) and Flow(P′l) = αF
f (Flow(Pl))

def
= { 〈Dl(x), l ′〉 | l ′ ∈ Nodes(Pl), x ∈ F(l ′) }

where αF
f ∈ uco(℘(FlowP)). It is clear that αF

s induces an abstraction on states in the sense that it considers
more abstract PDG in the domain PDGP, since we consider only F such that ∀l ∈ N. F(l) ⊇ Dep(l), namely
F approximating the dependency function used for computing Pl . For instance, if Flow(Pl) is the one above,
defined in terms of Dep, and F = Use, then the resulting function αUse

s is an abstraction of states in this sense.

Potency of slicing obfuscation

The characterisation of the PDG semantics of a program can be exploited in order to provide a formal
characterisation of when a PDG semantics is precise with respect to the slicing analysis and, on the contrary

22 R. Giacobazzi and I. Mastroeni and M. Dalla Preda

how we can deceive slicing by obfuscating a program. This can be done by considering a B-completeness
formulation of the notion of precision, namely we provide a completeness equation characterising when an
abstraction αF

s is precise: Let us define JPKα
F
s

PDG
def
=
{

lfp〈σ, P〉p ◦αF
s | σ ∈ Σ

}
|PDG

, where 〈σ, 〈l , l ′〉,Pl ,Dl〉|PDG =

Pl , and JPKPDG
def
= JPKid

PDG, then the abstraction αF
s is precise with respect to the dependency observation if

the following completeness equation holds

JPKPDG = JPKα
F
s

PDG (1)

corresponding to the general approach provided, with S = J·KPDG, while A = αF
s . We use this equation for

proving that the syntactic PDG-based computation of slices [HRB90] can be modelled in this framework by
considering the abstraction U

def
= αUse

s , and that it is inherently incomplete in presence of fake dependencies.
The following lemma tells us that the transition function p preserves strict inclusions between PDGs.

Lemma 4.6. Let P1,P2 ∈ PDGP such that P1 <PDG P2, σ ∈M, 〈l , l ′〉 ∈ N×N and Dl a definition function
for P, then p(〈σ, 〈l , l ′〉,P1,Dl〉)|PDG < p(〈σ, 〈l , l ′〉,P2,Dl〉)|PDG .

Proof. Suppose P1 <PDG P2, it means that Nodes(P1) ⊂ Nodes(P2), or Control(P1) ⊂ Control(P2) or
Flow(P1) ⊂ Flow(P2). In any case, by definition, we can observe that p can only enlarge these sets, and
since we are precisely in the same program point of P, it modifies the PDGs in the same way, therefore
preserving the strict inclusion.

The following lemma tells us that the PDG computed on a portion of a program P, which does not contain
fake dependencies, is the same even if we use the transition function abstracted by U.

Lemma 4.7. A program P has no fake dependencies upto program point l if and only if

p(〈σ, 〈l , l ′〉,Pl ,Dl〉)|PDG = p ◦U(〈σ, 〈l , l ′〉,Pl ,Dl〉)|PDG .

Proof. Trivial since, without fake dependencies, we can prove inductively on the syntax that, for each l ∈ N,
Use(l) = Dep(l), hence the functions p and p ◦U compute precisely the same PDG.

The following lemma says that, if we compute the PDG by the abstract transition function then we obtain
the same set of flow edges computed by abstracting the flow edges generated by the transition function p.

Lemma 4.8. Let PUse
l be the PDG computed by using the abstract transition function p ◦U, namely built

step by step by using Use, while Pl is the PDG computed by using p. Then Flow(PUse
l) = Flow(U(Pl)).

Proof. Consider 〈l1, l2〉 ∈ Flow(PUse
l), then ∃x ∈ Use(l2) ∩ { x | StmP(l1) = x := e }, but then l1 = Dl(x),

which implies that 〈l1, l2〉 ∈ Flow(U(Pl)) by definition.
Let 〈l1, l2〉 ∈ Flow(U(Pl)), then l2 ∈ Nodes(Pl), x ∈ Use(l2) and n = Dl(x), but this means that x ∈
Use(l2) ∩ { x | StmP(l1) = x := e }, namely 〈l1, l2〉 ∈ Flow(PUse

l).

The following result proves that when a program P has fake dependencies then the syntactic computation of
the PDG is incomplete, namely less precise than the semantic PDG computation.

Proposition 4.9. Let P a program with fake dependencies, then JPKPDG < JPKUPDG.

Proof. Suppose P contains its first fake dependency at the program point l , namely P = P′; c; P′′ with
l = PLP(c), where P′ does not contain fake dependencies. Let l ′ the last program point of P executed before
l . Then, by Lemma 4.7, given σ ∈ M computed by p upto l ′, we have that Pl′ = PUse

l′ . At this point, we
consider p(〈σ, 〈l ′, l〉,Pl′ ,Dl′〉) and p ◦ U(〈σ, 〈l ′, l〉,PUse

l′ ,Dl′〉), and we observe that these computation differ
only in the computation of the set of flow edges. In particular, by Lemma 4.8 we have that Flow(PUse

l) =
{ 〈Dl(x), l〉 | x ∈ Use(l) }, but then we have

Flow(Pl) = { 〈Dl(x), l〉 | x ∈ Dep(l) } ⊂ { 〈Dl(x), l〉 | x ∈ Use(l) } = Flow(PUse
l)

since Dep(l) ⊂ Use(l) due to the fake dependency in l . Hence, Pl <PDG PUse
l . But this, by Lemma 4.6, implies

that also the resulting PDGs strictly preserve the same relation, namely JPKPDG < JPKUPDG.

Theorem 4.10. JPKPDG = JPKUPDG if and only if P does not contain fake dependencies.

Proof. The (⇐) direction comes from Lemma 4.7, while the (⇒) direction comes directly from Proposi-
tion 4.9.

Maximal incompleteness as obfuscation potency 23

Note that, the presence of fake dependencies generates incompleteness since JPKPDG considers flow edges not
concerning all the used variables. For instance in y := x + z − x we have an edge from the definition of z to
the expression x + z − x but not from the definition of x , which is a fake dependence, and which is instead
considered when abstracting by αUse

s .
In the following, we show how we can use the incompleteness compressor on the above equation in order

to characterise the potency of slicing obfuscation.

Theorem 4.11. Given a program P, the incomplete compressor with respect to the domain PDGP is the
abstraction αF

s with F(l) = NodesP, adding all the possible flow edges between all the nodes of the PDG,
namely between all the instructions of P.

Proof. In order to prove the thesis, we have to identify precisely the portion in αF
s that approximated the

flows. Let s = 〈σ, 〈l , l ′〉,Pl ,Dl〉 be a state, pSP denotes the function p specialised on the portion of the input
consisting in σ, 〈l , l ′〉, Dl , Nodes(Pl) and Control(Pl), namely the only unknown input is Flow(Pl). Then we
observe that:

JPKPDG(s) 6= JPKα
F
s

PDG(s) iff pSP(Flow(Pl))|Flow 6= pSP ◦α
F
f (Flow(Pl))|Flow

Consider URB
pS
P ,id

(id) on uco(FlowP), by Proposition 3.14 we have that

URB
pS
P ,id

(id) = M(Mirr(id u RB
pS
P
(id)) r RB

pS
P
(id)) = M(Mirr(FlowP) r RB

pS
P
(id))

where RB
pS
P
(id) = M(

∨
P∈PDG max(pSP

−1
(↓P)) and

∨
is a shorthand for

∨
PDG. At this point, in order to

understand these elements we observe that pSP
−1 goes back one step of execution for each PDG in ↓P. Let us

observe that, in order to compute the PDG semantics, we have to compute the fix point of p, and therefore
of pSP . This means that any PDG can be obtained as inverse image of a PDG, in particular, if a portion of
the program P is missing then it is the image of the PDG where one more statement is executed, otherwise
it is the fix point and therefore it is the image of itself. Therefore, also all the elements in Mirr(FlowP) can
be inverse image of pSP , i.e.,

Mirr(FlowP) r RB
p (id) = ∅ ⇒ URB

pS
P ,id

(id) = M(∅) = λX ⊆ FlowP. FlowP

This function corresponds to αF
f , where F is defined as ∀l ∈ NodesP. F(l) = NodesP, i.e., it is the function

adding any kind of noise to the set of flow edges. We can conclude that the maximal possible noise about
flow edges is characterised by this F, and the corresponding state abstraction is αF

s .

The meaning of this theorem and also of its proof is that, in this case, the only possibility for adding noise
is to enlarge the set of flows in the PDG computation of a program. Thus moving from the concrete set of
dependency-based flow edges, to the set of all the possible flow edges.

Corollary 4.12. Let O and obfuscation technique adding fake dependencies to a PDG, and let S be the
function mapping programs to PDG. Then

PotO,S =
{
A
∣∣ A v αF

f , where ∀l ∈ NodesP. F(l) = NodesP
}

It is worth noting that, once we have an approximated PDG PF
P of a program P, namely the PDG of

P computed by considering the abstraction of flow edges F approximating Use, a way to implement the
added noise consists in transforming the program in a way such that: for each x ∈ F(l ′) with x defined in l
(〈l , l ′〉 ∈ Flow(PF

P)) we transform StmP(l ′) by adding fake dependencies which use the variable x . For instance
by transforming an expression e in e+ x − x , or adding an opaque predicate on x . In this way, we generate a
new program O(P) such that JPK = JO(P)K, which implies PO(P) = PP, and such that its abstract PDG PUse

O(P)

is precisely the final abstract PDG PF
P, namely PUse

O(P) = PF
P >PDG PP. To conclude, the space of functions F

provides the potency of slicing obfuscation since function F allows us to tune the amount of added noise.

4.4. Obfuscating Static Disassembly

In this section, we consider static disassembly and a typical code obfuscation technique used to induce a
loss of precision in the disassembly process. By using the proposed framework we are able to provide both a

24 R. Giacobazzi and I. Mastroeni and M. Dalla Preda

linear sweep recursive traversal

global startAddr, endAddr; global startAddr, endAddr;
proc DisasmLinear(addr) proc DisasmRec(addr)

begin begin
while (startAddr ≤ addr ≤ endAddr) while (startAddr ≤ addr ≤ endAddr)
do do
I := decode instruction at address addr; if (addr has been visited already) return;
addr += length I; I:= decode instruction at address addr;
od mark addr as visited;

end if (I is a branch or function call)
for each possible target t of I do

proc main() DisasmRec(t);
begin od
ep := program entry point; return;
size := text section size; else addr += length(I);
startAddr := ep; od
endAddr := ep + size; end
DisasmLinear(ep);

end

Fig. 8. Static disassembly

characterisation of the class of static disassembly algorithms for which the considered obfuscation is potent,
and formal evidence of how the obfuscation should work to thwart static disassembly.

Disassembly refers to the process of recovering assembly code instructions from a machine code file.
Indeed, the process of reverse engineering an executable program typically begins with disassembly, which
translates machine code to assembly code. Hence, obfuscation techniques that aim at thwarting disassembly
can be used to obstruct reverse engineering [LD03]. An executable file typically consists of a number of
different sections and of a header describing these sections. These different sections, such as the text section,
the read-only data section, etc., contain various sorts of information about the program. In particular, the
header contains information about the program entry point and the total size or extent of its instructions.
We consider here static disassembly algorithms that proceed by examining the file to disassemble without
executing it. Given an executable file static disassembly algorithms begin by extracting the set of locations
that are supposed to contain encoding of instructions, and then they proceed by decoding the hexadecimal
values stored at these locations, thus recovering the corresponding assembly instructions. Indeed, the preci-
sion of static disassembly algorithms can be measured in terms of their precision in identifying the locations
in the text section.

Two typical static disassembly algorithms are linear sweep and recursive traversal and they are
reported in Figure 8. The linear sweep algorithm proceeds by decoding all the hexadecimal values that
can be found in the text section of the executable file, thus assuming that all the values in the text section
are encoding of instructions. Indeed, it is well known that the main weakness of this algorithm is that it
is prone to disassembly errors resulting from the misinterpretation of data that is embedded in the text
section. The recursive traversal algorithm is in general more precise since it identifies the locations
to be disassembled by statically following the control flow of the executable. In particular, the recursive
traversal algorithm starts by decoding the hexadecimal value at the entry point of the text section and
then it recursively decodes the hexadecimal value stored in locations that are possible successors of the
decoded instruction. For these reasons, in order to obstruct static disassembly, researchers have developed
obfuscation techniques that insert junk in the text section, where static disassembly algorithms, such as
linear sweep and recursive traversal, assume to find instructions [LD03].

In the following, we show that the precision of a static disassembly algorithm can be expressed as a
completeness problem with respect to the way that the disassembly algorithm approximates the set of
locations that contain the encoding of program instructions. Moreover, we formally prove that in order to
lose precision of the disassembly, namely completeness, we need to insert junk in the locations of the text
section that do not store the encoding of instructions. We conclude by proving that the algorithm of linear
sweep is the B-incomplete compressor of static disassembly. This means that linear sweep represents
the maximal imprecision that we can have in static disassembly when we insert junk in the text section.

In order to formally prove this we need to introduce some notation: Loc ⊆ N denotes the set of memory
locations, Val denotes the set of possible hexadecimal values stored in a memory location, mem : Loc → Val

Maximal incompleteness as obfuscation potency 25

denotes the memory map that specifies the hexadecimal value contained in a given location, I denotes the
set of possible assembly instructions.

We assume that the decoding function keeps track of the locations where instructions and corresponding
hexadecimal values are stored. Indeed, we define the decoding function as decode : (Loc → Val)→ (Loc× I).
Observe that if mem(x) = ⊥ then decode(x ,⊥) = ∅, meaning that if the memory location x does not contain
an hexadecimal value then its decoding produces no assembly instructions. Given an executable file F we
denote with TextF ⊆ Loc the set of locations of the text section of F and with InstrF ⊆ TextF the set
of all and only the locations of the text section that contain the hexadecimal encoding of instructions of F .
Thus, the precise disassembly of an executable F is defined as:

Disassembly(F)
def
= StaticDisF (InstrF)

where function StaticDisF : ℘(TextF)→ ℘(Loc × I) is defined as follows:

StaticDisF (X) = { decode(x ,mem(x)) | x ∈ X }
It is clear that, the main challenge of a static disassembly algorithm is to extract from an executable file
F the set InstrF of locations where instructions are really encoded. In general, a static disassembly al-
gorithm will extract a sound approximation of InstrF , namely a superset of InstrF . This means that
we can associate with each static disassembly algorithm a closure operator that models how the consid-
ered disassembly approximates the set of locations that are assumed to contain the encoding of instruc-
tions. Let η ∈ uco(℘(TextF)) be the approximation of InstrF associated to a static disassembly algorithm.
Then, this algorithm computes a precise disassembly of an executable file F when StaticDisF (InstrF) =
StaticDisF (η(InstrF)), namely when 〈id, η〉 is B-complete for the computation of function StaticDisF .
Observe that we have B-completeness when η abstracts the set InstrF by adding locations x ∈ TextF r
InstrF such that mem(x) = ⊥, since in this case decode(x ,⊥) = ∅ and this does not affect the result of
disassembly. Of course we have precision when η = id.

Proposition 4.13. Given a static disassembly algorithm A and an executable file F , let ηA ∈ uco(℘(TextF))
be the closure operator that models how disassembly A approximates the locations that should contain the
encoding of instructions of F , and let id ∈ uco(℘(Loc×I)). Then, algorithm A computes a precise disassembly
of F if and only if the domains 〈id, ηA〉 are B-complete for the computation of function StaticDisF .

Proof. Trivial by definition.

The following result shows that the loss of precision in the static disassembly algorithms is due to junk inserted
in locations of the text section, where the algorithms are supposed to find the encoding of instructions.

Proposition 4.14. Given a static disassembly algorithm A and an executable file F , let ηA ∈ uco(℘(TextF))
be the closure operator that models how disassembly A approximates the locations that should contain the
encoding of instructions of F , and let id ∈ uco(℘(Loc×I)). Then, algorithm A computes a precise disassembly
of F if and only if ∀x ∈ ηA(InstrF) r InstrF : mem(x) = ⊥.
Proof. From Proposition 4.13 we have that algorithm A computes a precise disassembly of F if and only
if StaticDisF (InstrF) = StaticDisF (ηA(InstrF)). Recall that decode(x ,⊥) = ∅ and that in general
InstrF ⊆ ηA(InstrF). Thus, StaticDisF (InstrF) = StaticDisF (ηA(InstrF)) holds if and only if InstrF =
{ x ∈ TextF | mem(x) 6= ⊥ }, namely if ∀x ∈ ηA(InstrF) r InstrF : mem(x) = ⊥.
This precisely means that, in order to induce imprecision in the result of a static disassembly algorithm, it
is sufficient to add noise (junk) exactly to those memory locations that are supposed to contain an instruc-
tion encoding, but which do not really contain such encodings. These location are those in ηA(InstrF) r
InstrF , added by the approximation induced by the considered static disassembly algorithm. Indeed,
StaticDisF (InstrF) 6= StaticDisF (ηA(InstrF)) when ∃x ∈ ηA(InstrF)rInstrF such that mem(x) 6= ⊥,
namely decode(x ,mem(x)) 6= ∅.

Observe that, the closure operator associated with linear sweep algorithm is ηLS ∈ uco(℘(TextF))
such that ηLS (X) = TextF for every X ∈ ℘(TextF). This precisely models the fact that the linear sweep
algorithm approximates InstrF with the entire text section. It is possible to prove that the B-incomplete
compressor of StaticDisF with respect to (id, id) is precisely ηLS , namely the algorithm of linear sweep.
This means that, as expected, the linear sweep algorithm induces the coarsest approximation of InstrF
thus inducing the maximal loss of precision in presence of junk added in the text section.

26 R. Giacobazzi and I. Mastroeni and M. Dalla Preda

Proposition 4.15. URB
StaticDisF ,id(id) = ηLS ∈ ℘(TextF).

Proof. Observe that function StaticDisF has inverse StaticDis−1F : ℘(Loc × I) → ℘(TextF) defined as:
StaticDis−1F (Y) = { x | (x , I) ∈ Y }. We have to show that URB

StaticDisF ,id(id) = ηLS . By definition we
have that:

URB
StaticDisF ,id(id) = M(Mirr(id uM(

⋃

y∈id
StaticDis−1F (↓ y))) rM(

⋃

y∈id
StaticDis−1F (↓ y)))

It is clear that id is the most concrete closure and therefore:

M(Mirr(id uM(
⋃

y∈id
StaticDis−1F (↓ y))) rM(

⋃

y∈id
StaticDis−1F (↓ y))) =

M(Mirr(id) r M(
⋃

y∈id
StaticDis−1F (↓ y)))

by definition of meet-irreducible elements we have that:

M(Mirr(id)rM(
⋃

y∈id
StaticDis−1F (↓ y))) = M({ TextF r {x} | x ∈ TextF }rM(

⋃

y∈id
StaticDis−1F (↓ y)))

Function StaticDis−1F is monotone and therefore:

M({ TextF r {x} | x ∈ TextF }rM(
⋃

y∈id
StaticDis−1F (↓ y))) =

M({ TextF r {x} | x ∈ TextF } rM(
⋃

y∈id
StaticDis−1F (y)))

Since we consider every possible element of ℘(Loc × I) we have that for every meet-irreducible element X of
℘(TextF) there exist an element y ∈ ℘(Loc × I) such that StaticDis−1F (y) = X , thus:

M({ TextF r {x} | x ∈ TextF }rM(
⋃

y∈id
StaticDis−1F (y))) = M(∅)

By definition of Moore closure we have that M(∅) = λX .TextF and by definition this closure is precisely
ηLS , and this concludes the proof.

Corollary 4.16. Let O be an obfuscating technique that adds junk in the locations of the text section that
do not encode instructions, let S be the StaticDisF function then:

PotO,S = { A | id @ A v ηLS }
Indeed, the above result proves that all the static disassembly algorithms whose characterising closure

ηA ∈ uco(℘(TextF)) is such that id @ ηA v ηLS produces an imprecise disassembly when junk is inserted
in the locations of the text section that do not encode instructions. In other words the obfuscation that
inserts junk in the text section is potent with respect to all the static disassembly algorithms that induce an
approxiamtion of InstrF between id(InstrF) excluded and ηLS (InstrF) included. Observe, for example,
that the closure operator ηRT ∈ uco(℘(TextF)) associated to the recursive traversal static disassembly
algorithm is such that id v ηRT v ηLS , meaning that the obfuscation that inserts junk in the text section
is potent also with respect to the recursive traversal algorithm, which is however more precise than
linear sweep.

5. Discussion: Towards incompleteness driven obfuscation design

We introduced the notion of incomplete compressor for an abstract domain and proved that, under non-
restrictive hypotheses, it induces maximal incomplete abstract interpretations. The incomplete compression

Maximal incompleteness as obfuscation potency 27

provides an adequate model for formally characterising the potency of an obfuscating program transfor-
mation. In particular, the incomplete compression removes precisely those elements of the abstract domain
which are necessary to achieve a precise (complete) abstract interpretation of the program. These elements
drive the construction of the obfuscating transformation. The idea is that the obfuscation should make the
original abstract interpretation of the transformed program as imprecise as if we perform the abstract inter-
pretation of the source code on the compressed abstract domain. This is what we observed in the obfuscation
of program slicing and static disassembly, as shown in Section 4, where the domain compression corresponds
respectively to augment dependencies and add junk instructions in specific locations. These features can
be injected by simple program transformations which obfuscate the code making program slicing and code
disassembly ineffective.

This idea can be partially automated in combination with the definition of obfuscating transformers as
specialised interpreters, as introduced in [JGM12]. The obfuscating transformation is here the result of the
specialisation of an interpreter modified in order to induce incompleteness. Correctness is ensured here by the
first Futamura projection [JGS93], while obfuscation is given by distorting the interpreter. An interpreter is
a self-interpreter if it written precisely in the interpreted language. This choice is connected with the process
of specialization. Indeed, specialization (also known as partial evaluation) means to partially evaluate a
program on some known inputs, namely the specialised program [JGS93] is precisely the same but with some
instantiated computations. Hence, an interpreter specialised on a program is precisely the interpreter where
all the computations concerning the input program are instantiated. Suppose that the program to obfuscate
is written in the language L, then if we want the obfuscated program (i.e., the specialised interpreter) to
be written in the same language L, then the interpreter interp has to be written precisely in L, namely
it has to be a self-interpreter7. The obfuscation of P can be obtained by modifying the self-interpreter
interp in order to force abstract interpretation to deal with operations that induce incompleteness in the
attacker. This yields, by specialization, a modified program P′ := JspecK(interp+, P) which is precisely
the obfuscation of P. The incomplete compressor suggests here a way to design interp+: The information
removed by the compressor is precisely the noise that interp+ has to introduce in the interpretation of
P. Although intuitively clear, a calculational design (in the style of [Cou99]) of the distorted interpreter
interp+ from the incomplete compressor of the attacker is still a major challenge in fully automating the
design of obfuscators.

References

[BGI+12] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S.P. Vadhan, and K. Yang. On the (im)possibility
of obfuscating programs. J. ACM, 59(2):6, 2012.

[BJ72] T.S. Blyth and M.F. Janowitz. Residuation theory. Pergamon Press, 1972.
[BN15] F. Brunton and H. Nissenbaum. Obfuscation – A User’s Guide for Privacy and Protest. MIT Press, 2015.
[CC77] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of programs by

construction or approximation of fix-points. In Conference Record of the 4th ACM Symposium on Principles of
Programming Languages (POPL ’77), pages 238–252. ACM Press, 1977.

[CC79b] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Conference Record of the 6th
ACM Symposium on Principles of Programming Languages (POPL ’79), pages 269–282. ACM Press, 1979.

[CC92a] P. Cousot and R. Cousot. Abstract interpretation frameworks. J. Logic and Comput., 2(4):511–547, 1992.
[CC92b] P. Cousot and R. Cousot. Comparing the Galois connection and widening/narrowing approaches to abstract

interpretation (Invited Paper). In M. Bruynooghe and M. Wirsing, editors, Proc. of the 4th Internat. Symp. on
Programming Language Implementation and Logic Programming (PLILP ’92), volume 631 of Lecture Notes in
Computer Science, pages 269–295. Springer-Verlag, 1992.

[CFG+95] A. Cortesi, G. Filé, R. Giacobazzi, C. Palamidessi, and F. Ranzato. Complementation in abstract interpretation.
In A. Mycroft, editor, Proceedings of the 2nd International Static Analysis Symposium (SAS ’95), volume 983 of
Lecture Notes in Computer Science, pages 100–117. Springer-Verlag, 1995.

[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. Efficiently computing
static single assignment form and the control dependence graph. ACM Trans. Program. Lang. Syst., 13(4):451–490,
1991.

[CN09] C. Collberg and J. Nagra. Surreptitious Software: Obfuscation, Watermarking, and Tamperproofing for Software
Protection. Addison-Wesley Professional, 2009.

[Cou99] P. Cousot. The calculational design of a generic abstract interpreter. In M. Broy and R. Steinbrüggen, editors,

7 It is worth noting, anyway, that this is not mandatory in general, if we admit as part of the obfuscation process the possibility
of changing also the programming language.

28 R. Giacobazzi and I. Mastroeni and M. Dalla Preda

Calculational System Design, volume 173, pages 421–505. NATO Science Series, Series F: Computer and Systems
Sciences. IOS Press, Amsterdam, 1999.

[CTL98] C. Collberg, C. D. Thomborson, and D. Low. Manufactoring cheap, resilient, and stealthy opaque constructs.
In Proc. of Conf. Record of the 25st ACM Symp. on Principles of Programming Languages (POPL ’98), pages
184–196. ACM Press, 1998.

[DG05] M. Dalla Preda and R. Giacobazzi. Semantic-based code obfuscation by abstract interpretation. In Proc. of the
32nd International Colloquium on Automata, Languages and Programming (ICALP ’05), volume 3580 of Lecture
Notes in Computer Science, pages 1325–1336. Springer-Verlag, 2005.

[DG09] Mila Dalla Preda and Roberto Giacobazzi. Semantics-based code obfuscation by abstract interpretation. Journal
of Computer Security, 17(6):855–908, 2009.

[DTM07] S. Drape, C. Thomborson, and A. Majumdar. Specifying imperative data obfuscations. In J. A. Garay, A. K.
Lenstra, M. Mambo, and R. Peralta, editors, ISC - Information Security, volume 4779 of Lecture Notes in Computer
Science, pages 299 – 314. Springer Verlag, 2007.

[FR96] G. Filé and F. Ranzato. Complementation of abstract domains made easy. In M. Maher, editor, Proceedings of the
1996 Joint International Conference and Symposium on Logic Programming (JICSLP ’96), pages 348–362. The
MIT Press, 1996.

[GGH+13] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate indistinguishability obfuscation
and functional encryption for all circuits. In 54th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 40–49. IEEE Computer Society, 2013.

[Gia08] R. Giacobazzi. Hiding information in completeness holes - new perspectives in code obfuscation and watermarking.
In Proc. of The 6th IEEE International Conferences on Software Engineering and Formal Methods (SEFM’08),
pages 7–20. IEEE Press., 2008.

[GL91] K. B. Gallagher and J. R. Lyle. Using program slicing in software maintenance. IEEE Trans. on Software
Engineering, 17(8):751–761, 1991.

[GLR15] Roberto Giacobazzi, Francesco Logozzo, and Francesco Ranzato. Analyzing program analyses. In Sriram K.
Rajamani and David Walker, editors, Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015, pages 261–273. ACM,
2015.

[GM12] R. Giacobazzi and I. Mastroeni. Making abstract interpretation incomplete: Modeling the potency of obfuscation. In
Static Analysis - 19th International Symposium, SAS 2012, Deauville, France, September 11-13, 2012. Proceedings,
pages 129–145, 2012.

[GQ01] R. Giacobazzi and E. Quintarelli. Incompleteness, counterexamples and refinements in abstract model-checking.
In P. Cousot, editor, Proc. of The 8th Internat. Static Analysis Symp. (SAS’01), volume 2126 of Lecture Notes in
Computer Science, pages 356–373. Springer-Verlag, 2001.

[GR97] R. Giacobazzi and F. Ranzato. Refining and compressing abstract domains. In P. Degano, R. Gorrieri, and
A. Marchetti-Spaccamela, editors, Proc. of the 24th Internat. Colloq. on Automata, Languages and Programming
(ICALP ’97), volume 1256 of Lecture Notes in Computer Science, pages 771–781. Springer-Verlag, 1997.

[GR98] R. Giacobazzi and F. Ranzato. Uniform closures: order-theoretically reconstructing logic program semantics and
abstract domain refinements. Inform. and Comput., 145(2):153–190, 1998.

[GRS00] R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretation complete. Journal of the ACM,
47(2):361–416, March 2000.

[HRB90] S. Horwitz, T. W. Reps, and D. Binkley. Interprocedural slicing using dependence graphs. ACM Trans. Program.
Lang. Syst., 12(1):26–60, 1990.

[Jan67] M. F. Janowitz. Residuated closure operators. Portug. Math., 26(2):221–252, 1967.
[JGM12] N. D. Jones, R. Giacobazzi, and I. Mastroeni. Obfuscation by partial evaluation of distorted interpreters. In

O. Kiselyov and S. Thompson, editors, Proc. of the ACM SIGPLAN Symp. on Partial Evaluation and Semantics-
Based Program Manipulation (PEPM’12), pages 63 – 72. ACM Press, 2012.

[JGS93] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial evaluation and automatic program generation.
Prentice-Hall, Inc., 1993.

[LD03] C. Linn and S. Debray. Obfuscation of executable code to improve resistance to static disassembly. In CCS ’03:
Proceedings of the 10th ACM conference on Computer and communications security, pages 290–299. ACM, 2003.

[LL09] V. Laviron and F. Logozzo. Refining abstract interpretation-based static analyses with hints. In Proc. of APLAS’09,
volume 5904 of Lecture Notes in Computer Science, pages 343–358. Springer-Verlag, 2009.

[MDT07] A. Majumdar, S. J. Drape, and C. D. Thomborson. Slicing obfuscations: design, correctness, and evaluation. In
DRM ’07: Proceedings of the 2007 ACM workshop on Digital Rights Management, pages 70–81. ACM, 2007.

[MG15] I. Mastroeni and R. Giacobazzi. Weakening residuation in adjoining closures. Order, To appear., 2015. RR 95/2015,
http://hdl.handle.net/11562/925745.

[MZ08] I. Mastroeni and D. Zanardini. Data dependencies and program slicing: From syntax to abstract semantics. In Proc.
of the ACM SIGPLAN Symp. on Partial Evaluation and Semantics-Based Program Manipulation (PEPM’08),
pages 125 – 134. ACM Press, 2008.

[Rep91] T. Reps. Algebraic properties of program integration. Sci. Comput. Program., 17:139–215, 1991.
[RT96] T. Reps and T. Turnidge. Program specialization via program slicing. In O. Danvy, R. Glueck, and P. Thiemann,

editors, Proceedings of the Dagstuhl seminar on Partial evaluation, pages 409–429. Springer-Verlag, 1996.
[RY89] T. Reps and W. Yang. The semantics of program slicing and program integration. In J. Diaz and F. Orejas, editors,

Proc. of the Colloq. on Current Issues in Programming Languages, volume 352 of Lecture Notes in Computer
Science, pages 360–374. Springer-Verlag, 1989.

Maximal incompleteness as obfuscation potency 29

[Wei81] M. Weiser. Program slicing. In ICSE ’81: Proceedings of the 5th international conference on Software engineering,
pages 439–449. IEEE Press, 1981.

