
A

Abstract Program Slicing:
an Abstract Interpretation-based approach to
Program Slicing

ISABELLA MASTROENI, Università di Verona, Italy
and DAMIANO ZANARDINI, Technical University of Madrid (UPM), Spain

In the present paper we formally define the notion of abstract program slicing, a general form of program
slicing where properties of data are considered instead of their exact value. This approach is applied to
a language with numeric and reference values, and relies on the notion of abstract dependencies between
program statements.

The different forms of (backward) abstract slicing are added to an existing formal framework where
traditional, non-abstract forms of slicing could be compared. The extended framework allows us to appreciate
that abstract slicing is a generalization of traditional slicing, since each form of traditional slicing (dealing
with syntactic dependencies) is generalized by a semantic (non-abstract) form of slicing, which is actually
equivalent to an abstract form where the identity abstraction is performed on data.

Sound algorithms for computing abstract dependencies and a systematic characterization of program
slices are provided, which rely on the notion of agreement between program states.

Categories and Subject Descriptors: D.2.4 [Software/Program Verification]: Formal methods; F.3.1
[Specifying and Verifying and Reasoning about Programs]: Logics of programs; Mechanical verifica-
tion; F.3.2 [Semantics of Programming Languages]: Program analysis; F.4.1 [Mathematical Logic]:
Computational logic; I.2.2 [Automatic Programming]: Program verification

CCS Concepts: rSecurity and privacy→ Logic and verification; rTheory of computation→ Logic
and verification; Program verification; Program analysis; Automated reasoning; Programming logic;
Hoare logic; Pre- and post-conditions; rSoftware and its engineering→ Formal software verification;

General Terms: Theory, Analysis, Verification

Additional Key Words and Phrases: Program Slicing, Semantics, Static Analysis, Abstract Interpretation

ACM Reference Format:
Isabella Mastroeni and Damiano Zanardini and Samir Genaim. XXXX. Abstract Program Slicing: an Ab-
stract Interpretation-based approach to Program Slicing. ACM Trans. Comput. Logic V, N, Article A
(January YYYY), 56 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
It is well-known that, as the size of programs increases, it becomes impractical to maintain
them as monolithic structures. Indeed, splitting programs into smaller pieces allows to con-
struct, understand and maintain large programs much more easily. Program slicing [Weiser
1984; Tip 1995; Binkley and Gallagher 1996; De Lucia 2001] is a program-manipulation
technique that extracts, from programs, those statements which are relevant to a particular
computation. In the most traditional definition, a program slice is an executable program

Authors’ addresses: Isabella Mastroeni, Dipartimento di Informatica, Facoltà di Scienze, Università di
Verona, Strada Le Grazie 15, 37134 Verona, Italy; Damiano Zanardini, Departamento de Inteligencia Arti-
ficial, Escuela Técnica Superior de Ingenieros Informáticos, Campus de Montegancedo, Boadilla del Monte,
28660 Madrid, Spain.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.
c© YYYY ACM. 1529-3785/YYYY/01-ARTA $15.00

DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 I. Mastroeni and D. Zanardini

1 a :=1;
2 b:=b+1;
3 c :=c+2;
4 e :=e+1;
5 d:=2∗ c+b+a−a ;

1 a :=1;
2 b:=b+1;
3 c :=c+2;
4

5 d:=2∗ c+b+a−a ;

1

2 b:=b+1;
3 c :=c+2;
4

5 d:=2∗ c+b+a−a ;

1

2 b:=b+1;
3

4

5 d:=2∗ c+b+a−a ;

Program P Program Q Program R Program S

Fig. 1. Q , R and S are, respectively, a slice, a semantic slice and an abstract slice of P .

whose behavior must be identical to a specific subset of the original program’s behavior.
The specification of this subset is called the slicing criterion, and can be expressed as the
value of some set of variables at some set of statements and/or program points [Weiser
1984]. Slicing1 can be and is used in several areas like debugging [Weiser 1984], software
maintenance [Gallagher and Lyle 1991], comprehension [Canfora et al. 1998; Field et al.
1995], or re-engineering [Cimitile et al. 1996].
Since the seminal paper introducing slicing [Weiser 1984], there have been many works

proposing several notions of slicing, and different algorithms to compute slices (see [Tip
1995; De Lucia 2001] for good surveys about existing slicing techniques). Program slicing
is a transformation technique that reduces the size of programs to analyze. Nevertheless,
the reduction obtained by means of standard slicing techniques may be not sufficient for
simplifying program analyses since it may keep more statements than those strictly neces-
sary for the desired analysis. Suppose we are analyzing a program, and suppose we want a
variable x to have a particular property ρ at a given program point n. If we realize that x
does not have that property at n, then we may want to understand which statements affect
that property of x , in order to find out more easily where the computation went wrong.
In this case, we are not interested in the exact value of x , so that we may not need all
the statements that a standard slicing algorithm would return. Instead, we would need a
technique that returns the minimal amount of statements that actually affect that specific
property of x .

1.1. Abstract program slicing
This paper introduces and discusses a "semantic" general notion of slicing, called abstract
program slicing, looking for those statements affecting a property (modeled in the context
of abstract interpretation [Cousot and Cousot 1977]) of a set of variables of interest, the
so called abstract criterion. The idea behind this new notion of slicing is investigating
more semantically precise notions of dependency between variables. In other words, when
a syntactic dependency is detected, such as the dependency, in an assignment, of defined
variables from used variables, we look further for semantic dependencies, i.e., dependencies
between values of variables.

Consider the program P in Fig. 1, and suppose that we are interested in the variable d at
the end of the execution. Standard slicing algorithms extract slices by computing syntactic
dependencies; in this sense, d depends on all c, b and a, so that a sound slice would have
to take all the statements involving all these variables. In the figure, Q is a slice of P with
respect to that criterion. However, if we are interested in a more precise, semantic notion of
slicing, then we could observe that the value of d only depends on the values of variables c
and b, so that a more precise slice would be represented by R. Finally, if we are interested
in the parity of d at that point, then we observe that parity of d does not depend on the
value of c, and S is an abstract slice of P with respect to the specified criterion. Even in this
simple case, the abstract slice gives more precise information about the statements affecting
the property of interest.

1We use slicing (slice) and program slicing (program slice) as interchangeable terms.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Abstract Program Slicing: an Abstract Interpretation-based approach to Program Slicing A:3

1.2. Outline and contributions
In this paper, we aim at introducing a generalized notion of slicing, allowing us to weaken
the notion of "dependency" (from syntax, to semantics, to abstract semantics) with re-
spect to what is considered relevant for computing the slice. Since our generalization is
a semantic one, we start from the unifying framework by Binkley et al. [Binkley et al.
2006a; 2006b], recalled and discussed in Section 3 and the Appendix, where different forms
of slicing are defined and compared w.r.t. their characteristics (static/dynamic, iteration-
count/non-iteration-count, etc.), into a comprehensive formal framework. The structure of
this framework is based on the formal definition of the criterion, inducing a semantic equiv-
alence relation E which uniquely characterizes the set of possible slices of a program P as
the set of all the sub-programs2 equivalent to P with respect to E . This structure makes
the framework suitable for the introduction and the formal definition of an abstract form
of slicing in Section 4, since abstraction corresponds simply to consider a weaker criterion,
which implies weakening the equivalence relation E defining slicing.
Once we have the equivalence relation defining a desired notion of slicing w.r.t. a given

criterion, we show in Section 5 how this corresponds to fixing the notion of dependency we
are interested in (namely, the notion of dependency determining what has to be considered
relevant in the construction of slicing), and we show how the extension to semantic depen-
dencies may be used to extend the program dependency graph-based approach to computing
slices [Horwitz et al. 1989]. Finally, we define in Section 6 a notion of abstract dependencies
implying abstract criteria. In Section 6.1, we show that this new notion of dependency is
not suitable for computing slices by using Program Dependency Graphs, and in Section
6.2 propose the findNdeps algorithm for computing (abstract) dependencies, and the Edep
algorithm for finding an abstract domain for which some specific abstract dependency of an
expression on some variables does not hold.
Next, Section 7 gives a systematic approach to compute backward slices. Such an approach

relies on two systems of logical rules in order to prove (1) Hoare-style tuples capturing the
effect of executing a statement s on a pair of states for which some similarity (agreement) is
required by the slicing criterion (indeed, this similarity corresponds to the semantic equiva-
lent relation); and (2) when some properties of the state do not change (are preserved) after
s is executed. The combination of the results provided by these rule systems allows to decide
whether it is safe to remove a statement from a program without changing the observation
corresponding to the criterion. Importantly, the rule systems and algorithms provided in
Section 7 rely on the knowledge and manipulation of a “library” of abstract properties. For
example, in order to infer that 2∗x is always even, the abstract domain representing the
parity of number must be known and available as a “component” of the logical systems.
If no abstract property is known except the identity (which is the most precise property,
and is not really abstract), then the approach boils down to standard slicing. Importantly,
it becomes clear in this case that slices on the same variables (properties of them in the
abstract case; exact values in the concrete case) are generally bigger in the concrete setting
(when identity is the only available property) than in the corresponding abstract slicing.
Needless to say, this does not mean that every algorithm for abstract slicing will perform
better than any algorithm for non-abstract slicing; rather, it provides a practical insight of
how optimal (purely semantic-based) abstract slices may not include statements which are
included in concrete slices.
Part of this work has been previously published in conference proceedings [Mastroeni and

Zanardini 2008; Zanardini 2008; Mastroeni and Nikolić 2010]. The present paper joins these
works into a coherent framework, and contains a number of novel contributions:

2The framework proposed in [Binkley et al. 2006a; 2006b] is parametric on the syntactic relation, but here
we only consider the relation of being a subprogram.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 I. Mastroeni and D. Zanardini

• In Section 4, we formally prove that abstract slicing can be put in the formal framework
of [Binkley et al. 2006a] and generalizes concrete forms of slicing.
• In the same Section, we formally define the notion of dependency induced by a particular
criterion, i.e., by the equivalence relation among programs corresponding to the chosen
criterion.
• In Section 5, we define and prove how we can approximate this (concrete semantic) de-
pendency in order to use it for pruning PDGs and computing slicing with the well known
PDG-based algorithm for slicing [Reps and Yang 1989].
• In Section 6.1, we discuss why the idea of pruning PDGs is not applicable to the ab-
stract notion of dependency, thus showing the need of providing different approaches for
computing abstract slices.
•The discussion on the findNdeps and Edep algorithm in Section 6.2.1 and 6.2.2 has been
significantly improved, and several examples have been provided.
•The treatment of non-numerical values when computing slices was already considered in
[Zanardini 2008]. However, the language under study in the present paper is different in
that it is closer to standard object-oriented languages. More concretely, that work used
complex identifiers x .f .g as if they were normal variables, thus obtaining that sharing
between variables was easier to deal with. However, this came at the cost of increasing
the number of “variables” to be tracked by the analysis. Section 7 discusses the logical
machinery to compute backwards slices in this context. Moreover, examples have been
provided to illustrate how properties of the heap can be taken into account.
•The g-system introduced in Section 7.1 is a quite refined version of the a-system [Zanardini
2008]; rules for variable assignment and field update have been changed according to the
new language (which implies a number of technical issues); there is a new rule g-id; the
overall discussion has been improved.
•The rule system for proving the preservation of properties (the pp-system) is explicitly
introduced in Section 7.1.7.
•The description of how statements can be erased has been greatly improved; an algorithm
has been explicitly introduced in Section 7.3, which labels each program point with agree-
ments according to the g-system. A thorough discussion and proofs are provided, so that
it is guaranteed that the conditions for erasing a statement (relying on the g-system, the
pp-system, and the labelSequence procedure for labeling program points with agreements)
are sound.
• In Section 7.4.2, recent work on field-sensitive sharing analysis [Zanardini 2015] is included
in the computation of abstract slices, which results in improving the precision when data
structure in the heap overlap.

2. PRELIMINARIES
2.1. The programming language
The language is a simple imperative language with basic object-oriented features, whose
syntax will be easy to understand for anyone who is familiar with imperative programming
and object orientation. The language syntax includes the usual arithmetic expressions Exp
and access to object fields via “dot” selectors. A statement can be skip, a variable assignment
x:=e, a field update x. f:=e, a conditional or a while loop. In addition, there exist special
statements (1) read which reads the value of some variable from the input, simulating the
use of parameters; this kind of statement can only appear at the beginning of the program;
and (2) write , which can only appear at the end of the program and outputs the current
value of some variables3. For simplicity, guards in conditionals and loops are supposed not
to have side effects. We denote by P the set of all programs.

3As a matter of fact, this kind of statement is only included for back-compatibility and readability.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Abstract Program Slicing: an Abstract Interpretation-based approach to Program Slicing A:5

X is the set of program variables and V denotes the set of values, which can be either
integer or reference values, or the null constant (V = Z ∪ R ∪ {null}); every variable is
supposed to be well-typed (as integer or reference) at every program point. L denotes the
set of line numbers (program points). Let l ∈ L, and Stm(l) be the statement at program
line l . For a given program P , we denote by LP ⊆ L the set of all and only the line numbers
corresponding to statements of the program P , i.e., LP = { l ∈ L | Stm(l) ∈ P }. This
definition is necessary since when we look for slicing we erase statements without changing
the numeration of line numbers; for instance, in Figure 1, we have that Stm(4) /∈ Q , so that
LQ = {1, 2, 3, 5}.
A program state σ ∈ Σ is a pair 〈nk , µ〉 where n is the executed program point, k is the

number of times the statement at n has been reached so far, µ is the memory. A memory
is a pair (ε, h) where the store ε : X → V maps variables to values, and the heap h is a
sequence of locations where objects can be stored; a reference value corresponds to one of
such locations. An object o maps field identifiers to values, in the usual way; o.f is the value
corresponding to the field f of the object o, and can be either a number, the location in
which another object is stored, or null. For the sake of simplicity, classes are supposed to be
declared somewhere, and field accesses are supposed to be consistent with class declarations.
Unless ambiguity may arise, a memory (or even an entire program state) can be considered

directly as a store, so that µ(x) (resp., σ(x)) will be the value of x in the store contained
in µ (resp., in σ). Moreover, a store ε can be represented as {x1←v1, .., xm←vm}, meaning
that ε(xi) = vi for every i , and, again, µ = {x1 ← v1, .., xm ← vm} (resp., σ = {x1 ←
v1, .., xm←vm}) can be used instead of ε = {x1←v1, .., xm←vm} whenever the store is the
only relevant part of the memory (resp., the state).
A state trajectory τ ∈ T = Σ∗ is a sequence of program states through which a program

goes during the execution. State trajectories are actually traces equipped with the k com-
ponent. The state trajectory obtained by executing program P from the input memory µ
is denoted τµP . Moreover, τ [n] will be the set of states in τ where the program point is n.
Any initial state has n = 1, i.e., the set of initial states is Σι =

{
〈11, µ〉 | µ ∈M

}
.

In the following, J·K : P × ℘(Σι) → ℘(T) denotes the program semantics where JPK (S)
returns the set of state trajectories obtained by executing the program P starting from any
initial state in S ⊆ Σι, i.e., JPK (S) =

{
τµP

∣∣ 〈11, µ〉 ∈ S
}
. We abuse notation by denoting

in the same way also the semantics of expressions, namely, J·K : Exp × Σ → V, which is
such that JeK (σ) (e ∈ Exp) returns the evaluation of e in σ. Finally, if S ⊆ Σ, in sake
of simplicity, we still abuse notation by denoting in the same way also the additive lift of
semantics, i.e., JeK (S) = { JeK (σ) | σ ∈ S }.

2.2. Basic Abstract Interpretation
This section introduces the lattice of abstract interpretations [Cousot and Cousot 1977]. Let
〈C ,≤,∨,∧,>,⊥〉 denote a complete lattice C , with ordering≤, lub ∨, glb ∧, top and bottom
element > and ⊥, respectively. A Galois connection (G.c.) is a pair of monotone functions
α : C → A and γ : A → C such that α(x) ≤A y ⇔ x ≤C γ(y). In standard terminology,
C and A are, respectively, the concrete and the abstract domain. Abstract domains can be
formulated as upper closure operators (ρ) [Cousot and Cousot 1977]. Given an ordered set
C with ordering ≤C , a uco on C , ρ : C → C , is a monotone, idempotent (ρ(ρ(x)) = ρ(x))
and extensive (∀x ∈ C . x ≤C ρ(x)) map. Each uco ρ is uniquely determined by the set of its
fix-points, which is its image; i.e., ρ(C) = {x ∈ C | ρ(x) = x}. When C = ℘(D) for some set
D , and v ∈ D then we usually write ρ(v) instead of ρ({v}) (and in general for any function,
f (v) instead of f ({v})). If C is a complete lattice, then 〈uco(C),v,t,u, λx .>, λx .x 〉 is a
complete lattice, where uco(C) is the domain of all the upper closure operators on the
lattice C ; for every two ucos ρ1, ρ2 ∈ uco(C), ρ1 v ρ2 if and only if ∀y ∈ C . ρ1(y) ≤
ρ2(y) iff ρ2(C) ⊆ ρ1(C); and, for every {ρi}i∈I ⊆ uco(C), (ui∈I ρi)(x) = ∧i∈I ρi(x) and

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 I. Mastroeni and D. Zanardini

(ti∈I ρi)(x) = x ⇔ ∀i ∈ I . ρi(x) = x . In the following we will denote by ρid the most
concrete uco on a domain, i.e., λx .x , and by ρ> the most abstract one λx .>. A1 is more
precise than A2 (i.e., A2 is an abstraction of A1) iff A1 v A2 in uco(C). The reduced product
of a family {ρi}i∈I is ui∈I ρi and is one of the best-known operations for composing domains.

Example 2.1 (Numerical abstract domains). Let the concrete domain C be ℘(Z): the
parity abstract domain ρpar in Figure 2 (on the left) represents the parity of numbers,
and is determined by fix-points {[bot] , [even] , [odd] , [top]} where [even] and [odd] de-
note even and odd numbers, respectively; [bot] is the empty set, and [top] = Z. For
example, ρpar({2, 4, 10}) = [even] (all numbers are even), ρpar({3, 7}) = [odd] (both
numbers are odd), and ρpar({4, 5}) = [top] (there are both even and odd numbers).
The sign abstract domain ρsign (in the center of Figure 2) is characterized by fix-points
{[bot] , [zero] , [pos] , [neg] , [top]} and tracks the sign of integers (zero, positive, negative,
etc.). For example, ρsign({0}) = [zero], ρsign({−3,−4,−5}) = [neg], ρsign({1, 2, 4}) = [pos],
ρsign({1,−1}) = [top]. Finally, the parity-sign domain ρparSign (on the right), which is the
reduced product u of ρpar and ρsign, captures both properties (the parity and the sign),
and has fix-points [bot], [zero], [poseven], [posodd], [negeven], [negodd], [even], [odd],
[pos], [neg], and [top].

[top]

[even] [odd]

[bot]

[top]

[pos] [neg][zero]

[bot]

[top]

[pos] [even] [odd] [neg]

[poseven]
[posodd] [negeven]

[negodd]

[zero]

[bot]

Fig. 2. The ρpar, ρsign and ρparSign domains.

Formally speaking, the value of a reference variable is either a location ` or null. However,
the domains introduced in the next example classify variables not only with respect to `
itself, but also on the data structure in the heap which is reachable from `. This point of view
is similar to previous work on static analysis of properties of the heap like sharing [Secci
and Spoto 2005] or cyclicity [Rossignoli and Spoto 2006; Genaim and Zanardini 2013].

Example 2.2 (Reference abstract domains). Let C be ℘(R∪{null}), i.e., the possible
values of reference variables. The nullity domain ρnull classifies values on nullity, and
has fix-points {[bot] , [null] , [non−null] , [top]} where the concretizations of [null] and
[non−null] are, respectively, {null} and R.

On the other hand, it is possible to define a cyclicity domain ρcyc which classifies variables
on whether they point to cyclic or acyclic data structures [Genaim and Zanardini 2013]. A
cycle in the heap is a path in which the same location is reached more than once; a double-
linked list (one which can be traversed in both directions) is a good example of a cyclic data
structure. The fix-points of this domain are {[bot] , [cyc] , [acyc] , [top]}, where all acyclic
values (including null) are abstracted to [acyc], and all cyclic values (i.e., locations from
which a cycle is reachable) are abstracted to [cyc]. Both domains and their reduced product

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Abstract Program Slicing: an Abstract Interpretation-based approach to Program Slicing A:7

are depicted in Figure 3; note that there are no values which are both null and cyclic, so
that their intersection collapses to [bot].
Finally, the identity domain ρid, abstracts two concrete values to the same abstract value

only if they are equal. Two references are equal if (1) their are both null; or (2) they are both
non-null and the objects stored in the corresponding locations are equal, where equality on
objects means that all their numeric fields must be the same number and all reference fields
must be equal (w.r.t. this same notion of equality on references).

[top]

[null] [non−null]

[bot]

[top]

[cyc] [acyc]

[bot]

[top]

(
[non−null]

[cyc]

) (
[null]
[acyc]

) (
[non−null]

[acyc]

)

[bot]

Fig. 3. The ρnull and the ρcyc domains, and their reduced product.

Let us consider now D = C n (C lattice and n ∈ N), namely x ∈ D is a n-tuple of
elements of C , and consider ρ ∈ uco(D). In this case, we can distinguish between two kinds
of abstractions: non-relational and relational abstractions [Cousot 2001; Cousot and Cousot
1979]. The non-relational or attribute-independent one [Cousot and Cousot 1979, Example
6.2.0.2] consists in ignoring the possible relationships between the values of the abstracted
inputs. For instance, if ρ is applied to the values of variables x and y , then ρ can be
approximated through projection by a pair of abstractions on the single variables, analyzing
the single variables in isolation. In sake of simplicity, without losing generality, consider
n = 2, i.e., D = C 2 = C×C . Formally, ρ ∈ uco(C×C) is non-relational if there exist δ1, δ2 ∈
uco(C) such that ρ(x , y) = 〈δ1(x), δ2(y)〉, i.e, ρ ∈ uco(C) × uco(C) ⊂ uco(C × C). For
instance, let ρpar be the abstract domain depicted in Figure 2 expressing the parity of integer
values; the ρpar non-relational property of 〈x , y〉 provides the parity of x and y independently
one from each other, meaning that all the possible combinations of parity of x and y are
possible as results (〈[even] , [even]〉, 〈[even] , [odd]〉, 〈[odd] , [even]〉, 〈[odd] , [odd]〉 and all
combinations where at least one variable is [top] or [bot]). Relational abstractions may
preserve some of the relationship between the analyzed values [Cousot 2001]. For instance,
we could define an abstraction preserving the fact that x is even ([even]) if and only if
y is odd ([odd]). It is clear that, in this case, we are more precise since the only possible
analysis results are 〈[even] , [odd]〉, 〈[odd] , [even]〉, 〈[top] , [top]〉 and 〈[bot] , [bot]〉.
If ρ ∈ uco(C), f ∈ C −→C , and f] ∈ ρ(C)−→ρ(C), then f] is a sound approximation

of f if ρ ◦ f v f] ◦ρ. f ρ def= ρ ◦ f ◦ρ is known as the best correct approximation (bca) of f
in ρ, which is always sound by construction. Soundness naturally implies fix-point sound-
ness, that is, ρ(lfp≤C

⊥C
fC) ≤ρ lfp≤C

⊥C
f ρ. If ρ ◦ f = ρ ◦ f ◦ ρ then we say that f ρ is a com-

plete approximation of f [Cousot and Cousot 1979; Giacobazzi et al. 2000]. In this case,
ρ(lfp≤C

⊥C
f) = lfp≤C

⊥C
f ρ.

2.3. Equivalence relations, abstractions and partitions
Closure operators and equivalence relations are related concepts [Cousot and Cousot 1979].
Recently, this connection has been further studied in the field of abstract model checking
and language based-security [Ranzato and Tapparo 2002; Hunt and Mastroeni 2005]. In

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 I. Mastroeni and D. Zanardini

Fig. 4. A partitioning closure.

particular, there exists an isomorphism between equivalence relations and a subclass of
upper closure operators. Consider a set S : for each equivalence relation R ⊆ S × S we can
define an upper closure operator, CloR ∈ uco(℘(S)) such that ∀x ∈ S . CloR({x}) = [x]R and
∀X ⊆ S . CloR(X) =

⋃
x∈X [x]R. Conversely, for each upper closure operator η ∈ uco(℘(S)),

we are able to define an equivalence relation Relη ⊆ S ×S such that ∀x , y ∈ S . x Relη y ⇔
η({x}) = η({y}). It is immediate to prove that Relη is an equivalence relation, and this
comes from η being merely a function, not necessarily a closure operator. CloR is identified
as the most concrete closure η such that R = Relη [Hunt and Mastroeni 2005]. It is possible
to associate with each upper closure operator the most concrete closure inducing the same
partition on the concrete domain S :

Π(η) def= CloRelη (1)

Note that, for all η ∈ uco(℘(S)), Π(η) is the (unique) most concrete closure that induces
the same equivalence relation as η (Relη = RelΠ(η)). The fix-points of Π are called the
partitioning closures. Being ℘(S) a complete Boolean lattice, an upper closure operator
η ∈ uco(℘(S)) is partitioning, i.e., η = Π(η), iff it is complemented, namely if ∀X ∈
η.X

def= S rX ∈ η [Hunt and Mastroeni 2005].

Example 2.3. Consider the set S = {1, 2, 3, 4} and one of its possible partitions π =
{{1}, {2, 3}, {4}}. The closure η with fix-points {∅, {1}, {4}, {1, 2, 3},S} induces exactly
π as a state partition, but the most concrete closure that induces π is Cloπ = Π(η) =b

({∅, {1}, {2, 3}, {4}},S), which is the closure on the right of Figure 4.
Given a partitioning upper closure operator ρ, an atom is an element a of ρ such that there

does not exists another element b with [bot] @ b @ a. For example, the atoms of ρparSign
are [poseven], [posodd], [zero], [negeven], and [negodd]. In partitioning closures, atoms
are all the possible abstractions of singletons: in fact, ρparSign({n}) will never give [pos]
or [odd] since there is always a more precise abstract value describing n. In the following,
Atomρ (a) holds iff a is an atom of ρ.

2.4. Abstract semantics and static analysis
An abstract program semantics is the abstract counterpart of the concrete semantics w.r.t.
an abstract program observation: it is meant to compute, for each program point, an abstract
state which soundly represents invariant properties of variables at that point. In general, it
is computed by an abstract interpreter [Cousot and Cousot 1979] collecting the set of all
the possible values that each variable may have in each program point and abstracting this
set in the chosen abstract domain.
Given a concrete program state σ and an abstract domain ρ ∈ uco(℘(V)), an abstract

state σρ ∈ Σρ is obtained by applying the abstraction ρ to the values of variables stored in it.
Namely, σρ = 〈nk , µρ〉, where µρ = 〈ερ〉 and ερ is such that ερ(x) = ρ(ε(x)). For simplicity,

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Abstract Program Slicing: an Abstract Interpretation-based approach to Program Slicing A:9

we can write σρ(x) = ρ(σ(x)), treating the whole state as a store when applied to variables.
In the case of a reference variable x , the abstraction σρ(x) gives information about the
data structure pointed to by x (e.g., if ρ = ρcyc, the cyclicity of the data structure can be
represented). This explains why the heap is not represented explicitly in the abstract state:
instead, relevant information about the heap is contained in the abstraction of variables
(see the previous discussion before Example 2.2).
In the following, ordering ≤ on abstract states is variable-wise comparison between ab-

stract values:
σρ1 ≤ σρ2 ⇔ ∀x .σρ1(x) ⊆ σρ2(x)

The greater an abstract state is, the wider is the set of concrete states it represents; if
σρ1 ≤ σρ2, then σρ1 is called a refinement of σρ2. Moreover, a covering of σρ is a set
of refinements {σρ1..σ

ρ
n} such that ∨iσρi = σρ. The set of abstract state trajectories is

T� = Σρ∗, i.e., an abstract trajectory is the computation of a program on the set of abstract
states. The trace in T� of a program P , starting from the abstract memory µρ is denoted
by τµ

ρ

P .
The abstract program semantics J·Kρ : P × Σρ

ι → T� is such that
JPKρ(S) = {τµ

ρ

P | 〈11, µρ〉 ∈ S} is the set of the sequences of abstract states computed start-
ing from the abstract initial states in S ∈ ℘(Σρ

ι). We also abuse notation by denoting
J·Kρ also the abstract evaluation of expressions. Namely, J·Kρ : E×Σρ → ρ(V) is such that
∀x . JeKρ(σρ(x)) = ρ(JeK (σρ(x))) = ρ(JeK (ρ(σ(x)))). This definition is correct, since by con-
struction, we have that any abstract state σρ corresponds to a set of concrete states, i.e.,
σρ = { σ ∈ Σ | σρ = σρ } = { σ ∈ Σ | ∀x ∈ X. σρ(x) = σρ(x) }, namely, it is the set of all
the concrete states having as abstraction in ρ precisely σρ, and we abuse notation by de-
noting with J·Kρ also its additive lift. In other words, JeKρ is the best correct approximation
of JeK by means of an abstract value in ρ. In general, in order to compute the abstract
semantics of a program on an abstract domain ρ, we have to equip the domain ρ with the
abstract versions of all the operators used for defining expressions. In our language, we
should define, for example, the meaning of +, −, ∗ and / on abstract values, i.e., on sets of
concrete values. This is standard in abstract interpretation, and these operations are defined
for many known numerical abstract domains. For instance, the sound approximation of the
sum operation on ρpar is the following:

[even] + [even] = [even] [top] + _ = [top]
[even] + [odd] = [odd] _ + [top] = [top]
[odd] + [even] = [odd] [bot] + _ = [bot]
[odd] + [odd] = [even] _ + [bot] = [bot]

We can reason similarly for all the other operators.
In the following, the notation JeKρ (S) where S is a set of concrete states is used to

denote the abstract evaluation of e in an abstract state which is obtained by abstracting
S ; as usual, JeKρ (σ) stands for JeKρ ({σ}). The use of J·Kρ in Section 6.2.1 and later in the
paper is twofold: (1) to infer invariant properties, as in Example 2.4; and (2) to evaluate
expressions at the abstract level.

Example 2.4. Consider the following code fragment:

1 i := 10 ;
2 j := 0 ;
3 whi le (i≥0) {
4 i := i −1;
5 j := j +1;

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 I. Mastroeni and D. Zanardini

6 }

and an abstraction ρ = ρsign, i.e., the property of interest is the sign of both i and j . By
computing the abstract semantics of this simple program, we can observe that inside the
loop we lose the sign of i since i starts being positive, but then the i − 1 operation makes
impossible to know statically the sign of i (the result may be positive, zero or negative
starting from i positive or zero), while we have that j always remains positive. Moreover,
if the loop terminates we can surely say that, at the end, i < 0, namely it is negative
(due to the negation of the while guard). Hence, we are able to infer that i is negative
and j is positive after line 6. This means that the final abstract state σρ is such that
σρ(i) = [neg] and σρ(j) = [pos] (in the following, the extensional notation for σρ will be
{ i← [neg] , j← [pos]}, similar to the notation for concrete states).

3. PROGRAM SLICING
Program slicing [Weiser 1984] is a program-manipulation technique which extracts from
programs those statements which are relevant to a particular portion of a computation. In
order to answer the question about which are the relevant statements, an observer needs a
window through which only a part of the computation can be seen [Binkley and Gallagher
1996]. Usually, what identifies the portion of interest in the computation is the value of some
set of variables at a certain program point, so that a program slice comes to be the subset
(syntactically, in terms of statements) of the original program which contributes directly or
indirectly to the values assumed by some set of variables at the program point of interest.
The slicing criterion is what specifies the part of the computation which is relevant to the
analysis; in this case, a criterion is a pair consisting of a set X of variables and a program
point (or line number) n. The following definition [Binkley and Gallagher 1996] is a possible
formalization of the original idea of program slicing [Weiser 1984], in the case of a single
variable:

Definition 3.1. [Binkley and Gallagher 1996] For a statement s (at program point n)
and a variable x , the slice P ′ of the program P with respect to the slicing criterion 〈s, {x}〉
is any executable program with the following properties:

(1) P ′ can be obtained by deleting zero or more statements from P ;
(2) If P halts on the input I , then, each time s is reached in P , it is also reached in P ′,

and the value of x at s is the same in P and in P ′. If P fails to terminate, then s may
be reached more times in P ′ than in P , but P and P ′ have the same value for x each
time s is executed by P .

It is worth noting that Reps and Yang [Reps and Yang 1989], in their slicing theorem,
provide implicitly a similar definition of program slicing, but it only considers terminating
computations. The following example provides the intuition of how slicing works.

Example 3.2. Consider the word-count program [Majumdar et al. 2007] given in Figure
5. It takes in a block of text and outputs the number of lines (nl), words (nw) and characters
(nc). Suppose the slicing criterion only cares for the value of nl at the end of the program;
then a possible slice is on the left in Figure 6. On the other hand, if the criterion is only
interested in nw, then a correct slice is on the right.

Starting from the original definition [Weiser 1984], the notion of slicing has gone through
several generalizations and versions, but one feature is constantly present: the fact that
slicing is based on a notion of semantic equivalence that has to hold between a program and
its slices or on a corresponding notion of dependency, determining what we keep in the slice
while preserving the equivalence relation. What we can observe about definitions of slicing
such as the one given in Definition 3.1 is that they are enough precise for finding algorithms

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Abstract Program Slicing: an Abstract Interpretation-based approach to Program Slicing A:11

1 i n t c , n l := 0 , nw := 0 , nc := 0 ;
2 i n t i n := f a l s e ;
3 whi le ((c=ge t cha r ()) !=EOF) {
4 nc := nc+1;
5 i f (c=’ ’ | | c=’\n’ | | c=’\t’) {
6 i n := f a l s e ; }
7 e l s e i f (i n = f a l s e) {
8 i n := t rue ;
9 nw := nw+1; }

10 i f (c = ’\n’) {
11 n l := n l +1; }
12 }

Fig. 5. Word-count program.
1 i n t c , n l := 0 ;
2

3 whi le ((c=ge t cha r ()) !=EOF) {
4

5

6

7

8

9

10 i f (c = ’\n’) {
11 n l := n l +1; }
12 }

1 i n t c , nw := 0 ;
2 i n t i n := f a l s e ;
3 whi le ((c=ge t cha r ()) !=EOF) {
4

5 i f (c=’ ’ | | c=’\n’ | | c=’\t’) {
6 i n := f a l s e ; }
7 e l s e i f (i n = f a l s e) {
8 i n := t rue ;
9 nw := nw+1; }

10

11

12 }
Fig. 6. Slices of the word-count program.

for soundly computing slicing, such as [Reps and Yang 1989], but not enough formal to
become suitable to generalizations allowing us to compare different forms of slicing and/or
to define new weaker forms of slicing.
In the following, we use the formal framework proposed in [Binkley et al. 2006a] where

several notions and forms of slicing are modeled and compared. This is not the only attempt
to provide a formal framework for slicing (see Section 8), but we believe that, due to its
semantic-based approach, it is suitable to include an abstraction level to slicing, which can
be easily compared with all the other forms of slicing included in the original framework.
Hence, in the following section we do not rewrite a formal framework; rather, we re-formalize
the notion of slicing criterion in order to easily include abstractions as a new parameter.
A brief introduction of the formal framework together with some examples showing the
differences between the different forms of slicing introduced in the following is given in the
Appendix.

3.1. Defining Program Slicing: the formal framework
In this section, our aim is to define the forms of slicing that can be lifted to the abstract
level. Namely, we consider an existing framework [Binkley et al. 2006a; 2006b] which allows
defining abstract slicing simply by defining an abstract criterion which, independently from
the kind of slicing (static, dynamic, conditional, standard, etc.), observes properties instead
of concrete (exact) values. To this end, we need to slightly revise the construction in order
to provide a completely unified notation for slicing criteria. The present paper will only deal
with backward slicing, where the interest is on the part of the program which affects the
observation associated with the slicing criterion and not on the part of the program which
is affected by such an observation (called instead forward slicing [Tip 1995]).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 I. Mastroeni and D. Zanardini

Defining slicing criteria. The slicing criterion characterizes what we have to observe of the
program in order to decide whether a program is a slice or not of another program. In
particular, we have to fix which computations have to be compared, i.e., the inputs and the
observations on which the slice and the program have to agree.
In the seminal Weiser approach, given a set of variables of interest X and program state-

ment s, here referred by the program point n where s is placed, a slicing criterion was
modeled as C = (X ,n). In the following, we will gradually enrich and generalize this model
in order to include several different notions and forms of slicing. Weiser’s approach is known
as static slicing since the equivalence between the original program and the slice has, im-
plicitly, to hold for every possible input. On the other hand, Korel and Laski proposed
a new technique called dynamic slicing [Korel and Laski 1988] which only considers one
particular computation, and therefore one particular input, so that the dynamic slice only
preserves the (subset of the) meaning of the original program for that input. Hence, in order
to characterize a slicing criterion including also dynamic slicing we have to add a parameter
describing the set of initial memories I ⊆ M: The criterion is now C = (I,X ,n), where
I = M for static slicing, while I = {µ}, with µ ∈M, for dynamic slicing. Finally, Canfora et
al. proposed conditioned slicing [Canfora et al. 1998], which requires that a conditioned slice
preserves the meaning of the original program for a set of inputs satisfying one particular
condition ϕ. Let I = { µ ∈M | µ satisfies ϕ } be the set of input memories satisfying ϕ
[Binkley et al. 2006a]. Hence, the slicing criterion still can be modeled as C = (I,X ,n).
Each type of slicing comes in four forms which differ on what the program and the slices

must agree on, namely on the observable semantics that has to agree. In the following, we
provide an informal definition of these forms in order to provide the intuition of what will
be formally defined afterwards:

. Standard: It considers one point in a program with respect to a set of variables. In
other words, the standard form of slicing only tracks one program point. Semantically,
this form of slicing consists in comparing the program and the slices in terms of the
(denotational) I/O semantics from the program inputs selected by the criterion. Namely,
for each selected input, the results of the criterion variables in the point of observation
must be the same, independently from the executed statements.
. Korel and Laski (KL): It is a stronger form where the program and the slice must follow
identical paths [Korel and Laski 1988]. Semantically, we could say that the program and
the slice must have the same (operational) trace semantics w.r.t. the statements kept in
the slice, starting from the program inputs selected by the criterion. In other words, as
before, the final value must be the same, but in this case these values must be obtained
by executing precisely the same statements, i.e., the sequence of statements involved
in the execution of the slice is the same as the original one, apart from the fact that
removed statements are missing (see an example at the beginning of the Appendix).
. Iteration count (IC): When considering the trace semantics, the same program point
inside a loop may be visited more than once, in the following we call k -th iteration of a
program point n the k -th time the program point n is visited. The iteration count form
of slicing requires that a program and its slice agree only at a particular k -th iteration
of a program point of interest. In this way, when a point of interest is inside a loop, we
have the possibility to require that the variables must agree only at some iterations of
the loop and not always.
. Korel and Laski iteration count (KLi): It is the combination of the last two forms.

In order to deal with these different forms of slicing, the slicing criterion must be enriched
with additional information. In particular, the KL form of slicing does not change where to
observe variables, but it does change the observed semantics up to that point. Hence, we
simply have to add a boolean parameter ψ: true means that we are considering a KL form and
we require that the slice must agree with the program on the execution of statements that

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Abstract Program Slicing: an Abstract Interpretation-based approach to Program Slicing A:13

are in the slice (and obviously also in the original program); on the other hand, false indicates
a standard, non-KL form of slicing. Hence, a criterion C comes to be (I,X ,n, ψ).
The IC form, instead, affects the observation: in order to embed this features in the

criterion, the third parameter has to be changed. Let {k1, .., kj} ⊆ N be the iterations of
the program point n ∈ L we are interested in; then, instead of n, in the third parameter of
the criterion we should have 〈n, {k1, .., kj}〉. Therefore, C takes the form (I,X ,O, ψ), where
O ∈ L×℘(N). Note that 〈n,N〉 represents the fact that we are interested in all occurrences
of n, as it happens in the standard form.
There are also some simultaneous (SIM) forms of slicing that consider more than one

program point of interest. In order to deal with SIM forms of slicing, we simply extend the
definition of a slicing criterion by considering O as a set instead of a singleton, namely,
O ∈ ℘(L× ℘(N)).
In the Appendix there are some simple examples showing the main differences between

the several forms of slicing introduced so far.

4. ABSTRACT PROGRAM SLICING
This section defines a weaker notion of slicing based on Abstract Interpretation. In particu-
lar, we generalize the existing formal framework discussed in Section 3.1 in order to include
abstract versions of slicing.
Program slicing is used for reducing the size of programs to analyze. Nevertheless, this

reduction may be insufficient in order to really improve an analysis. Suppose that some
variables at some point of execution do not have a desired property (for example, that they
are different from 0, or from null); in order to understand where the error occurred, it
would be useful to find those statements which affect such a property of these variables.
Standard slicing may return too many statements, making it hard for the programmer to
realize which one caused the error.

Example 4.1. Consider the following program P , that inserts a new element elem at
position pos in a single-linked list. For simplicity, let pos never exceed the length of list .

34 y := nu l l ;
35 x := l i s t ;
36 whi le (pos >0) {
37 y := x ;
38 x := x . nex t ; // by hypo th e s i s , t h i s a lways su c c e ed s
39 pos := pos−1;
40 }
41 z := new Node (elem) ;
42 z . nex t := x ;
43 i f (y = nu l l) {
44 l i s t := z ;
45 } e l s e {
46 y . nex t = z ;
47 }

Suppose that list is cyclic after line 47, i.e., a traversal of the list visits the same node
twice. A close inspection of the code reveals that no cycle is created between lines 34 and
47: list is cyclic after line 47 if and only if it was cyclic before line 34.
In the standard approach, it is possible to set the value of list after line 47 as the slicing

criterion. In this case, since list can be modified at lines 41–47, at least this piece of code
must be included in the slice.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 I. Mastroeni and D. Zanardini

On the other hand, let the cyclicity of list after line 47 be the property of interest,
represented by ρcyc (Example 2.2). Since this property of list does not change, the entire
code can be removed from the slice.

4.1. Defining Abstract Program Slicing
We introduce abstract program slicing, which compares a program and its abstract slices
by considering properties instead of exact values of program variables. Such properties are
represented as abstract domains, based on the theory of Abstract Interpretation (Section
2.2).
We first introduce the notion of abstract slicing criterion, where the property of interest is

also specified. For the sake of simplicity, the definition only refers to non-SIM forms (i.e., O
is a singleton instead of a set of occurrences: O ∈ L× ℘(N)). In order to make abstract the
criterion, we have to formalize in it the properties we want to observe on program variables.
In particular, we could think of observing different properties for different variables. We
define a criterion abstraction A defined as a tuple of abstract domains, each one relative
to a specific subset of program variables: let X be a set of variables of interest in P and
{Xi}i∈[1,k] ⊆ ℘(X) a partition of X , the notation A = 〈X1 : ρ1, ..,Xk : ρk 〉 means that
each uco ρi is applied to the set of variable Xi (left implicit when it is clear from the
context), meaning that ρi is precisely the property to observe on Xi . In the following,
we denote by A|Xi

the property observed on Xi , formally A|Xi
= ρi . This is the most

general representation, accounting also for relational domains. When ucos will be applied
to singletons, the notation will be simplified (x : ρ instead of {x} : ρ).

Example 4.2. Let x , y , z and w be the variables in X . Let A be 〈x : ρpar, {y , z} : ρ+
int,w :

ρsign〉, meaning that the interest is on the parity of x , the sign of w , and the (relational)
property of intervals [Cousot and Cousot 1979] of the value y + z . When abstracting a
criterion w.r.t. A, the required observation at a program state σ is

ρpar(σ(x)) ρ+
int(σ(y) + σ(z)) ρsign(σ(w))

In order to be as general as possible, we consider relational properties of variables (see
Section 2), so that properties are associated with tuples instead of single variables. In this
case, a property is said to involve some set (tuple) of variables. Given a memory µ, ρ(µ) is
the result of applying ρ to the values in µ of the variables involved by the abstract domain,
and A(µ) is the corresponding notion for tuples of ucos.

Definition 4.3 (Abstract criterion). Let I ⊆M be a set of input memories, X ⊆
X be a set of variables of interest; O ∈ L× ℘(N) be a set of occurrences of interest; ψ be a
truth value indicating if the slicing is in KL form. Moreover, let X be the set of variables of
interest and A def= 〈X1 : ρ1, . . . ,Xk : ρk 〉, with {Xi}i∈[1,k] a partition of X . Then, the abstract
slicing criterion is CA = (I,X ,O, ψ,A),
Note that, when dealing with non-abstract notions of slicing, we have that each domains

is the identity on each single variable, namely A = 〈x1 : ρid, . . . , xk : ρid〉, where ρid
def= λx .x .

It is also worth pointing out that, exactly as it happens for non-abstract forms, I = M
corresponds to static slicing, and |I| = 1 corresponds to dynamic slicing; in the intermediate
cases, we have conditioned slicing.

4.2. The extended formal framework
In this section, we extend a formal framework in which all forms of abstract slicing can
be formally represented. It is an extension of the mathematical structure introduced by
Binkley et al. [Binkley et al. 2006a]. Following their framework, we represent a form of
abstract slicing by a pair (v, EA), where v is the traditional syntactic ordering, and EA is
a function mapping abstract slicing criteria to semantic equivalence relations on programs.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Abstract Program Slicing: an Abstract Interpretation-based approach to Program Slicing A:15

Given two programs P and Q , and an abstract slicing criterion CA, we say that Q is a
(v, EA)-(abstract)-slice of P with respect to CA iff Q v P and 〈P ,Q〉 ∈ EA(CA) (i.e., P
and Q are equivalent w.r.t. EA). Some preliminary notions are needed to define EA in the
context of abstract slicing.
An abstract memory w.r.t. a set of variables of interest X (partitioned in {Xi}i∈[1,k]) is

obtained from a memory by restricting its domain to X , and assigning to each set Xi of
variables an abstract value determined by the corresponding abstract property of interest
ρi .

Definition 4.4. Let µ∈M be a memory, X be the set of a tuple of sets of variables of
interest, and A = 〈X1 : ρ1, . . . ,Xk : ρk 〉 be the corresponding tuple of properties of interest
such that {Xi}i∈[1,k] is a partition of X . The abstract restriction of a memory µ w.r.t. the
state abstraction A is defined as µ �αA X

def= A ◦ µ(X) def= 〈ρ1(µ(X1)), . . . , ρk (µ(Xk))〉.

Example 4.5. Let X = {x1, x2, x3, x4} be a set of variables, and suppose that the prop-
erties of interest are the (relational) sign of the product x1x2 and the parity of x3 (both
defined in Section 2). We slightly abuse notation by denoting as ρsign also its extension
to pairs (v , t) where the sign of their product matters: e.g., ρsign(3,−5) = ([neg]). In our
formal framework, A is defined as 〈{x1, x2} : ρsign, x3 : ρpar〉. Let µ(x1) = 1, µ(x2) = 2,
µ(x3) = 3, and µ(x4) = 4; then, µ �αA X comes to be A ◦ µ(X) = 〈[pos] , [odd]〉.

The abstract projection operator modifies a state trajectory by removing all those states
which do not contain occurrences or points of interest. If there is a state that contains an
occurrence of interest, then its memory state is restricted via �α to the variables of interest,
and only a property is considered for each tuple. In the following, the abstract projection
Projα is formally defined.

Definition 4.6 (Abstract Projection). Let CA = (I,X ,O, ψ,A), and L ⊆ L such
that L 6= ∅ if ψ = true, L = ∅ if ψ = false. For any n ∈ L, k ∈ N, µ ∈ M, we define a
function Proj0α as:

Proj0α
(X ,O,L,A)(nk , µ) def=

 〈n
k , µ �αA X〉 if ∃〈n,K 〉 ∈ O. k ∈ K

〈nk ,⊥〉 if @(n,K) ∈ O. k ∈ K and n ∈ L
ε otherwise

The abstract projection Projα is the extension of Proj0α to sequences:

Projα(X ,O,L,A)(〈(n
k1
1 , µ1) . . . (nkl

l , µl)〉) =
Proj0α

(X ,O,L,A)(n
k1
1 , µ1) ◦ . . . ◦ Proj0α

(X ,O,L,A)(n
kl
l , µl)

Proj0α takes a state from a state trajectory, and returns either one pair or an empty sequence
ε. Abstract projection allows us to define all the semantic equivalence relations we need for
representing the abstract forms of slicing.

Example 4.7. Consider the program P in Figure 7. Consider I = M (meaning that
we are considering static slicing), X = { i , s}, O = 〈8,N〉 (meaning that we check the
value of variables of interest at each iteration of program point 8). Moreover, we consider
A = 〈 i : ρsign, s : ρpar〉. Then in Figure 8 we have the corresponding abstract projection
(the concrete trace is given in the Appendix in Example 24). In this figure, we depict states
as tuples of boxes: the first box contains the number of the executed program point (with
the iteration counter as apex), while the other boxes indicate the values of each variable.
A cross on a box means that the projection does not consider that variable or state. For
instance, in this example we only care about states 6i and 8i ; moreover, in states 6i we are
not interested in the values of variables, while in states 8i we are interested in the sign of

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 I. Mastroeni and D. Zanardini
1 read (n) ;
2 i := 1 ;
3 s := 0 ;
4 p := 1 ;
5 whi le (i <= n) {
6 s := s+i ;
7 p := p∗ i ;
8 i := i +1; }
9 w r i t e (i , n , s , p) ;

1 read (n) ;
2 i := 1 ;
3 s := 0 ;
4

5 whi le (i <= n) {
6 s := s+i ;
7

8 i := i +1; }
9 w r i t e (i , n , s) ;

Program P Program Q

Fig. 7. Program P and its slice.

Mastroeni Isabella ©

Example of Static slicing

11 n

2

21 n

2

i

1

31 n

2

i

1

s

0

41 n

2

i

1

s

0

p

1

51 n

2

i

1

s

0

p

1

61 n

2

i

1

s

1

p

1

71 n

2

i

1

s

1

p

1

81 n

2

i

2

s

1

p

1

52 n

2

i

2

s

1

p

1

62 n

2

i

2

s

3

p

1

72 n

2

i

2

s

3

p

2

82 n

2

i

3

s

3

p

2

53 n

2

i

3

s

3

p

2

91 n

2

i

3

s

3

p

2

11 n

2

21 n

2

i

1

31 n

2

i

1

s

0

41 n i s p 51 n

2

i

1

s

0

61 n

2

i

1

s

1

71 n i s p

81 n

2

i

2

s

1

52 n

2

i

2

s

1

62 n

2

i

2

s

3

72 n i s p 82 n

2

i

3

s

3

53 n

2

i

3

s

3

91 n

2

i

3

s

3

11 n 21 n i 31 n i s 41 n i s p 51 n i s 61 n i s 71 n i s p

81 n i

2

s

1

52 n i s 62 n i s 72 n i s p 82 n i

3

s

3

53 n i s 91 n i s

11 n 21 n i 31 n i s 41 n i s p 51 n i s 61 n i s 71 n i s p

81 n i

POS

s

ODD

52 n i s 62 n i s 72 n i s p 82 n i s 53 n i s 91 n i s

POS ODD

Fig. 8. Abstract trajectory projection for program P in Example 4.7
1 read (n) ;
2 read (s) ;
3 i := 1 ;
4 whi le (i<=n) {
5 s := s+2∗ i ;
6 i := i +1; }
7 w r i t e (i , n , s) ;

1 read (n) ;
2 read (s) ;
3

4

5

6

7 w r i t e (n , s) ;

Fig. 9. Programs P and Q

i and in the parity of s (if we would be interested in the value of these variables we would
have the value instead of their property, as it happens in the examples in the Appendix).

4.3. Abstract Unified Equivalence
The only missing step for completing the formal definition of abstract slicing in the formal
framework is to characterize the functions mapping abstract slicing criteria to abstract
semantic equivalence relations.

Definition 4.8 (Abstract Unifying Equivalence). Let P and Q be executable
programs, and CA = (I,X ,O, ψ,A) be an abstract criterion. Then P is abstract-equivalent
to Q if and only if, for every µ ∈ I, it holds that Projα(X ,O,L,A)(τ

µ
P) = Projα(X ,O,L,A)(τ

µ
Q),

where L = LP∩LQ if ψ = true. The function EA maps each criterion CA to a corresponding
abstract semantic equivalence relation.

Therefore, a generic form of slicing can be represented as (v, EA). This can be used
to formally define both traditional and abstract forms of slicing in the presented abstract
formal framework, so that the latter comes to be a generalization of the original formal
framework. The following examples show how it is possible to use these definitions in order
to check whether a program is an abstract slice of another one.

Example 4.9. Consider programs P and Q in Figure 9. Let CA =
(M, {s}, {〈7,N〉}, false, 〈s : ρpar〉), meaning that we are interested in the parity of s
(A = 〈s : ρpar〉) at the end of execution (O = {〈7,N〉}) for all possible inputs (I = M),
in non-KL form. Since Q v P , in order to show that Q is an abstract static slice of P
with respect to CA, we have to show that 〈P ,Q〉 ∈ EA(CA) holds. Let µ = {n←a, s← b}

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Abstract Program Slicing: an Abstract Interpretation-based approach to Program Slicing A:17
1 read (n) ;
2 s := 0 ;
3 i := 1 ;
4 whi le (i<=n) {
5 s := s+i ;
6 i := i +1; }
7 w r i t e (i , n , s) ;

1 read (n) ;
2 s := 0 ;
3

4

5

6

7 w r i t e (n , s) ;

Fig. 10. Programs R and S

for some a, b ∈ N be an initial memory. Then, the trajectory of P from µ contains the
following computation steps:

5a n i61 n51 n i 42 n i 6a n i 4a+1 n s i 71 n s i

a b' a b' a+1 a b' a+1a b+2

s

1 a b+2 2

is s ss

a b+2 2 a b' a a+1

b’=b+a(a+1)

11 n

a

21 n

a

s

b

71 n

a

s

b

5a n i61 n51 n i 42 n i 6a n i 4a+1 n s i 71 n s i

a b a b a+1 a b a+1a 1

s

1 a 1 2

is s ss

a 1 2 a b a a+1

b=a(a+1)/2

11 n

a

21 n

a

s

0

71 n

a

s

0

Applying Projα (with L = ∅ since ψ = false) to τµP returns only the abstract value of the
variable s at point 7 (due to CA):

Projα(X ,O,∅,A)(τ
µ
P) = 〈71, {n←a, s←b+a(a+1), i←a+1} �αA {〈s〉})〉

= 〈71, ρpar(b+a(a+1))〉 = 〈71, ρpar(b)〉

Since we have 71 = 〈7, 1〉 ∈ O, Proj0α
(X ,O,∅,A)(71, {n← a, s← b+a(a+1), i ← a+1}) returns

〈71, µ �αA X〉 = 〈71, {n ← a, s ← b+a(a+1), i ← a+1} �αA {〈s〉}〉. The abstract memory
restricts the domain of µ to variables of interest, so we consider only the part of µ regarding
s, i.e., b+a(a+1). Hence, we have 〈71, ρpar(〈b+a(a+1)〉)〉. Since the parity of b+a(a+1)
only depends on the parity of b, being either a or a +1 even, the final result is 〈71, ρpar(b)〉.
Consider now the execution of Q from µ, which corresponds to the following state trajectory:

5a n i61 n51 n i 42 n i 6a n i 4a+1 n s i 71 n s i

a b' a b' a+1 a b' a+1a b+2

s

1 a b+2 2

is s ss

a b+2 2 a b' a a+1

b’=b+a(a+1)

11 n

a

21 n

a

s

b

71 n

a

s

b

5a n i61 n51 n i 42 n i 6a n i 4a+1 n s i 71 n s i

a b a b a+1 a b a+1a 1

s

1 a 1 2

is s ss

a 1 2 a b a a+1

b=a(a+1)/2

11 n

a

21 n

a

s

0

71 n

a

s

0

Applying Projα to τµQ gives:

Projα(X ,O,∅,A)(τ
µ
Q) = 〈71, {n←a, s←b} �αA {〈s〉}〉 = 〈71, ρpar(b)〉

Therefore, Projα(X ,O,∅,A)(τ
µ
P) is equal to Projα(X ,O,∅,A)(τ

µ
Q). As µ is an arbitrary input, this

equation holds for each µ ∈ M, so that 〈P ,Q〉 ∈ EA(CA), and this implies that Q is an
abstract static slice of P w.r.t. CA.

Example 4.10. Consider the programs R and S in Figure 10, and let CA be
(I, {s}, {〈7,N〉}, false, 〈s : ρpar〉), where I = { µ | µ(n) ∈ 4Z }; i.e., we are interested in
the parity of s at the end of the execution for all inputs where n is a multiple of 4. Since
SvR, in order to show that S is an abstract conditioned slice of R w.r.t. CA, we have to
show that 〈R,S 〉 ∈ EA(CA) holds, namely that they have the same abstract projection. Let
µ ∈ I be an initial memory, and suppose µ(n) = a = 4m. The trajectory τµR of R from µ
contains the following steps:

5a n i61 n51 n i 42 n i 6a n i 4a+1 n s i 71 n s i

a b' a b' a+1 a b' a+1a b+2

s

1 a b+2 2

is s ss

a b+2 2 a b' a a+1

b’=b+a(a+1)

11 n

a

21 n

a

s

b

71 n

a

s

b

5a n i61 n51 n i 42 n i 6a n i 4a+1 n s i 71 n s i

a b a b a+1 a b a+1a 1

s

1 a 1 2

is s ss

a 1 2 a b a a+1

b=a(a+1)/2

11 n

a

21 n

a

s

0

71 n

a

s

0
ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 I. Mastroeni and D. Zanardini

While executing S from µ gives the state trajectory τµS

5a n i61 n51 n i 42 n i 6a n i 4a+1 n s i 71 n s i

a b' a b' a+1 a b' a+1a b+2

s

1 a b+2 2

is s ss

a b+2 2 a b' a a+1

b’=b+a(a+1)

11 n

a

21 n

a

s

b

71 n

a

s

b

5a n i61 n51 n i 42 n i 6a n i 4a+1 n s i 71 n s i

a b a b a+1 a b a+1a 1

s

1 a 1 2

is s ss

a 1 2 a b a a+1

b=a(a+1)/2

11 n

a

21 n

a

s

0

71 n

a

s

0

Applying Projα to both state trajectories we have:

Projα(X ,O,∅,A)(τ
µ
R) = 〈71, {n←a, s←a(a+1)/2, i←a+1} �αA 〈{s}〉〉 = 〈71, ρpar(a(a+1)/2)〉

= 〈71, ρpar(2m(4m+1))〉 = 〈71, 2Z〉
= 〈71, ρpar(0)〉 = 〈71, {n←a, s←0} �αA 〈{s}〉〉 = Projα(X ,O,∅,A)(τ

µ
S)

Therefore, we have Projα(X ,O,∅,A)(τ
µ
R) = Projα(X ,O,∅,A)(τ

µ
S). Since µ is an arbitrary input

from I, this equation holds for each µ ∈ I, so that 〈R,S 〉 ∈ EA(CA), and this implies that
S is an abstract conditioned slice of R with respect to CA. It is worth noting that S is not
a static abstract slice of R since, for all the input values a /∈ 4Z for n, the parity of the final
value of s is not necessarily even.

4.4. Comparing forms of Abstract Slicing
This section provides a formal theory allowing us to compare abstract forms of slicing be-
tween themselves, and with non-abstract ones. First of all, we show under which conditions
an abstract semantic equivalence relation subsumes another one; analogously, we show when
the form of (abstract) slicing, corresponding to the former equivalence relation, subsumes
the form of (abstract) slicing corresponding to the latter one. Such results are necessary
in order to obtain a precise characterization of the extension of the weaker than relation
(whose original definition is recalled in the Appendix) to the abstract forms of slicing.
The following lemma shows under which conditions on the slicing criteria there is a

relation of subsumption between two semantic equivalence relations. In the following, we
denote v the relation "more concrete than" in the lattice of abstract interpretations between
tuples of abstractions. Formally, let us consider A1 = 〈X 1

1 : ρ1
1, . . . ,X

1
k1 : ρ1

k1〉 defined on
the variables X 1 and A2 = 〈X 2

1 : ρ2
1, . . . ,X

2
k2 : ρ2

k2〉 defined on the variables X 2, such that
X 1 ⊆ X 2, k1 ≤ k2 and ∀i ≤ k1 we have X 1

i = X 2
i , namely the variables in common

are partitioned in the same way. Then A2vA1 iff ∀Xi ∈ X 1. ρ2
i v ρ1

i . Note that, for all
the variables in X 2 r X 1, the abstraction A1 does not require any particular observation,
hence on these variables surely A2 is more precise. The following relation is such that, when
both A1 and A2 are the identity on all the variables of interest, then the resulting criterion
relation is the same proposed in [Binkley et al. 2006b] (see the Appendix for details) for
characterizing the original formal framework.

Lemma 4.11. Let two abstract slicing criteria C 1
A = (I1,X 1,O1, ψ1,A1) and C 2

A =
(I2,X 2,O2, ψ2,A2) be given. If (1) I1 ⊆ I2; (2) O1 ⊆ O2; (3) X 1 ⊆ X 2; (4) ψ1 ⇒ ψ2;
and (5) A2vA1 (denoted C 1

A →A C 2
A), then (v, E(C 1

A)) subsumes (v, E(C 2
A)), i.e., for

every P and Q such that Q v P , 〈P ,Q〉 ∈ E(C 2
A) implies 〈P ,Q〉 ∈ E(C 1

A).

Proof. First of all, note that, if A1 = A2 = ρid, namely if we are considering concrete
criteria, then →A collapses to the concrete relation defined in [Binkley et al. 2006a] (which
is the → defined in Equation 2 in the Appendix). Hence, in this case, the results holds by
[Binkley et al. 2006a].
Suppose 〈P ,Q〉 ∈ E(C 2

A) with Q v P , namely Q slice of P w.r.t. E(C 2
A). This means

that, for each µ0 ∈ I2 Projα(X 2,O2,L2,A2)(τ
µ0
P) = Projα(X 2,O2,L2,A2)(τ

µ0
Q), where L2 is defined

as in Definition 4.8. This means that, for each state 〈nk , µ〉 in the trajectory τµ0
P , whose

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Abstract Program Slicing: an Abstract Interpretation-based approach to Program Slicing A:19

projection Proj0α
(X 2,O2,L2,A2)(nk , µ)P4 is not empty, there exists a state 〈nk , µ′〉 in τµ0

Q with
the same projection. Let us consider now, µ ∈ I1 ⊆ I2. We prove that on these states
Proj0α

(X 1,O1,L1,A1)(nk , µ) = Proj0α
(X 2,O2,L2,A2)(nk , µ) (and in this case there is a correspond-

ing state in the trajectory of Q), or it is empty (and in this case also the state in Q has
empty projection). Recall that

Proj0α
(X 1,O1,L1,A1)(nk , µ) def=

 〈n
k , µ �αA1 X 1〉 if ∃〈n,K 〉 ∈ O1. k ∈ K

〈nk ,⊥〉 if @(n,K) ∈ O1. k ∈ K and n ∈ L1

ε otherwise

where also L1 is defined as in Definition 4.8. Note that, since we are considering both the
criteria on the same pair of programs, we have also that ψ1 ⇒ ψ2 corresponds to saying
that L1 ⊆ L2. At this point

• If Proj0α
(X 1,O1,L1,A1)(nk , µ)P = 〈nk , µ �αA1 X 1〉 then ∃〈n,K 〉 ∈ O1. k ∈ K , but

O1 ⊆ O2, hence 〈n,K 〉 ∈ O2. k ∈ K . This mean that Proj0α
(X 2,O2,L2,A2)(nk , µ)P =

〈nk , µ �αA2 X 2〉, which by hypothesis is equal to Proj0α
(X 2,O2,L2,A2)(nk , µ′)Q , for a

memory µ′. By definition and hypothesis, µ �αA2 X 2 = A2 ◦ µ(X) = A2 ◦ µ′(X).
Namely, 〈ρ2

1(µ(X1)), . . . , ρ2
k2(µ(Xk2))〉 = 〈ρ2

1(µ′(X1)), . . . , ρ2
k2(µ′(Xk2))〉. Therefore, in

particular, ∀i ∈ [1, k1] ⊆ [1, k2] we have ρ2
i (µ(Xi)) = ρ2

i (µ′(Xi)), but by hypothe-
sis ρ2

i v ρ1
i , hence we also have ρ1

i (µ(Xi)) = ρ1
i (µ′(Xi)) (by properties of ucos). But

then 〈ρ1
1(µ(X1)), . . . , ρ1

k1(µ(Xk1))〉 = 〈ρ1
1(µ′(X1)), . . . , ρ1

k1(µ′(Xk1))〉, namely A1◦µ(X) =
A1 ◦ µ′(X). Hence

Proj0α
(X 1,O1,L1,A1)(nk , µ)P = 〈nk , µ �αA1 X 1〉

= 〈nk ,A1 ◦ µ(X)〉 = 〈nk ,A1 ◦ µ′(X)〉
= 〈nk , µ′ �αA1 X 1〉 = Proj0α

(X 1,O1,L1,A1)(nk , µ′)Q

• If Proj0α
(X 1,O1,L1,A1)(nk , µ)P = 〈nk ,⊥〉 then @(n,K) ∈ O1. k ∈ K and n ∈ L1. If

@(n,K) ∈ O2. k ∈ K then n ∈ L1 ⊆ L2, then also Proj0α
(X 2,O2,L2,A2)(nk , µ)P =

〈nk ,⊥〉 but then by hypothesis we have that there exists a memory µ′ such that
Proj0α

(X 2,O2,L2,A2)(nk , µ′)Q = 〈nk ,⊥〉. But then we also have Proj0α
(X 1,O1,L1,A1)(nk , µ)Q =

〈nk ,⊥〉.
If ∃(n,K) ∈ O2.k ∈ K , then Proj0α

(X 2,O2,L2,A2)(nk , µ)P = 〈nk , µ �αA2 X 2〉, but then there
exists µ′ such that also in Q we have Proj0α

(X 2,O2,L2,A2)(nk , µ′)Q = 〈nk , µ′ �αA2 X 2〉. But
then, the same memory, in C 1

A keep the program point but loses the state observation
because @(n,K) ∈ O1. k ∈ K and n ∈ L1, hence Proj0α

(X 1,O1,L1,A1)(nk , µ′)Q = 〈nk ,⊥〉.
• Finally, if Proj0α

(X 1,O1,L1,A1)(nk , µ)P = ε, then @(n,K) ∈ O1.k ∈ K and n /∈ L1. But this
means that, even if there exists µ′ such that we have the state 〈nk , µ′〉 in the trajectory
of Q , also in this case we have Proj0α

(X 1,O1,L1,A1)(nk , µ′)Q = ε.

This lemma shows how it is possible to find the relationship (in the sense of subsumption)
between two semantic equivalence relations determined by two abstract slicing criteria.
In the following, abstract notions of slicing will be denoted by adding an A; e.g., AS
denotes static abstract slicing, whereas AD denotes dynamic abstract slicing. By using this

4The notation Proj0α
(X2,O2,L2,A2)(nk , µ)P means that we are projecting a state of the computation of P .

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 I. Mastroeni and D. Zanardini

lemma we can show that, given a slicing criterion CA, all the abstract equivalence relations
introduced in Sec. 4.3 subsume the corresponding non-abstract equivalence relations S(CA),
D(CA) and C(CA). Furthermore, by using this lemma we can show that AD(CA) subsumes
AC(CA), which in turns subsumes AS(CA).

Theorem 4.12. [Binkley et al. 2006b] Let R1 and R2 be semantic equivalence re-
lations such that R2 subsumes R1. Then, for every P and Q , we have 〈P ,Q〉 ∈ (v
,R1) ⇒ 〈P ,Q〉 ∈ (v,R2).

(v,D)

(v,S)

(v,DKLi)

(v,SKLi)

(v,DKL)

(v,SKL)

(v,Di)

(v,Si)

(v, C) (v, CKLi)

(v, CKL)

(v, Ci)

(v,AS)

(v,AC)

(v,AD)

Fig. 11. Extended hierarchy.

Fig. 11 shows the non-SIM hierarchy obtained by enriching the hierarchy in Fig. 25 with
standard forms of abstract static slicing, abstract dynamic slicing, and abstract conditioned
slicing. In general, we can enrich this hierarchy with any abstract form of slicing simply
by using the comparison notions defined above. Non-abstract forms are particular cases of
abstract forms of slicing, as they can be instantiated by choosing the identity property, ρid,
for each variable of interest. Hence, non-abstract forms are the "strongest" forms, since, for
each property ρ, we have ρid v ρ. Moreover, if parameters M ,X ,O, ψ are fixed, and A
is made less precise or more abstract (i.e., the information represented by the property is
reduced), then the abstract slicing form becomes weaker, as suggested by dotted lines in
Figure 11.

5. PROGRAM SLICING AND DEPENDENCIES
The previous sections introduced a formal framework containing different notions of program
slicing. In particular, we observed that a kind of slicing is a pair consisting of a syntactic
preorder and a semantic equivalence relation [Binkley et al. 2006a]. After discussing how the
notion of “to be a slice of” can be formally defined, the focus will shift to how to compute
a slice given a program and a slicing criterion. Again, among all the possible definitions of
slicing, we are interested in slices obtained by erasing statements from the original program,
i.e., the slice is related to the original program by the syntactic ordering relation v. Given
a slicing criterion, the idea is to keep all the statements affecting the semantic equivalence
relation defined by the criterion. In other words, we should have to translate the formal
definition into a characterization of which statements has to be kept in a slice, or vice versa
which statements can be erased, in order to preserve the semantic equivalence defining
the chosen notion of slicing. Intuitively, we have to keep all the statements affecting the
semantics defined by the chosen slicing criterion.
The standard approach for characterizing slices and the corresponding relation being slice

of is based on the notion of Program Dependency Graph [Horwitz et al. 1989; Reps and
Yang 1989], as described by Binkley and Gallagher [Binkley and Gallagher 1996]. Program

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Abstract Program Slicing: an Abstract Interpretation-based approach to Program Slicing A:21

Dependency Graphs (PDGs) can be built out of programs, and describe how data propa-
gate at runtime. In program slicing, we could be interested in computing dependencies on
statements: s ′′ depends on s ′ if some variables which are used inside s ′′ are defined inside s ′,
and definitions in s ′ reach s ′′ through at least one possible execution path. Also, s depends
implicitly on an if-statement or a loop if its execution depends on the boolean guard.

Example 5.1. Consider the program in Figure 12 and the derived PDG (edges which
can be obtained by transitivity are omitted). s8 depends on both s5 and s7 (and, by tran-

y := v+1

s1

s6

s7s3

s4

s5 s8

s2

w := 3s2 s6 z := 3
s3

s5
s4

v := z+w

v := 4
w := z+4
z := 1 s7

s1 (x ≤ y)?

s8

Fig. 12. PDG example.

sitivity, s1) since v is not known statically when entering s8. On the other hand, there is
no dependency of s8 on either (i) s6, since z is not used in s8; or (ii) s2, since w is always
redefined before s8. The dependency of s7 on s1 is implicit since 4 does not depend on x
nor y , but s7 is executed conditionally on s1.
Formally, a Program Dependence Graph [Gallagher and Lyle 1991] GP for a program P is a
directed graph with nodes denoting program components and edges denoting dependencies
between components. The nodes of GP represent the assignment statements and control
predicates in P . In addition, nodes include a distinguished node called Entry, denoting
where the execution starts. An edge represents either a control dependency or a flow (data)
dependency. Control dependency edges u −→c v are such that (1) u is the entry node and
v represents a component of P that is not nested within any control predicate; or (2) u
represents a control predicate and v represents a component of P immediately nested within
the control predicate represented by u. Flow dependency edges u −→f v are such that (1)
u is a node that defines the variable x (usually an assignment), (2) v is a node that uses x ,
and (3) control can reach v from u via an execution path along which there is no intervening
re-definition of x .
Unfortunately, there is clearly a gap between the definition of slicing given in Definition 3.1

and the standard implementation based on program dependency graphs (PDG) [Horwitz
et al. 1989; Reps 1991]. This happens because slicing and dependencies are usually defined
at different levels of approximation. In particular, we can note that the slicing definition
in the formal framework defines slicing by requiring the same behavior, with respect to a
criterion, between the program and the slice, i.e., we are specifying what is relevant as a
semantic requirement. On the other hand, dependency-based approaches consider a notion
of dependency between statements which corresponds to the syntactic presence of a variable
in the definition of another variable. In other words, slices are usually defined at the semantic
level, while dependencies are defined at the syntactic level. The idea presented in this paper
consists, first of all, in identifying a notion of semantic dependency corresponding to the
slicing definition given above, in order to characterize the implicit parametricity of the notion
of slicing on a corresponding notion of dependency. This way, we can precisely identify
the semantic definition of slicing corresponding to a given dependency-based algorithm,
characterizing so far the loss of precision of a given algorithm w.r.t. the semantic definition.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 I. Mastroeni and D. Zanardini

Slicing criterion ⟺ Program dependency
 notion

 ⇓
 Expression dependency

 notion
 ⇓

Slicing construction ⟺ Syntactic dependency
 notion

Precision

Fig. 13. Schema of dependency-based slicing notions.

In Figure 13 we show these relations. In particular, starting from the criterion, we can define
an equivalent notion of dependency which allows us to identify which variables should be
kept in a slice, affecting the whole program semantics (program dependency notion).

Definition 5.2 ((Semantic) Program dependency). Let C = (I,X ,O, ψ) be a
slicing criterion, and P be a program. The program depends on x , denoted x CP iff

∃µ1, µ2 ∈ I. ∀y 6= x . µ1(y) = µ2(y) ∧ Proj(X ,O,L)(τ
µ1
P) 6= Proj(X ,O,L)(τ

µ2
P)

This means that the variable x affects the observable semantics of P .
Unfortunately, this characterization is not effective due to undecidability of the program

semantics. In particular, the amount of traces to compare could be infinite, and also the
traces themselves could be infinite. Hence, we consider a stronger notion of dependency
that looks for local semantic dependencies, identifying all the variables affecting at least one
expression used in the program (expression dependency notion), and this is precisely the
semantic generalization of the syntactic dependency notion used, for instance, in PDG-based
algorithm for slicing. In other words we characterize when a variable affects the semantics
of an expression in P .
Our idea is to make semantic the standard notion of syntactic dependency, by substituting

the notion of uses with the notion of depends on [Giacobazzi et al. 2012]. In order to obtain
this characterization, we have to find which variables might affect the evaluation of the
expression e in the assignment z:=e or in a control statement guarded by e, i.e., which
variables belong to the set rel (e) of the variables relevant to the evaluation of e. As
already pointed out, standard syntactic dependency calculi compute rel (e) as vars (e).

Definition 5.3 ((Semantic) Expression dependency). Let C = (I,X ,O, ψ) be a
slicing criterion. Let x ∈ X, Y ⊆ X.

x Ce ⇔ ∃σ1, σ2 ∈ Σ. ∀y 6= x . σ1(y) = σ2(y) ∧ JeK (σ1) 6= JeK (σ2)
Y Ce ⇔ ∃y ∈ Y. y Ce

The formulation of x Ce can be rewritten as
∃σ ∈ Σ, v1, v2 ∈ V. JeK (σ [x ← v1]) 6= JeK (σ [x ← v2])

Proposition 5.4. Let C be a slicing criterion. If x CP then there exists e in P such
that x Ce.

Proof. By contradiction. If for each e in P we have x 6 CA
e, then no expression in P

depends on x . Therefore, independently from x , P provides precisely the same results.
By using this notion of dependency, we can characterize the subset rel (e) ⊆ vars (e)

containing exactly those variables which are semantically relevant for the evaluation of e.
This way, we obtain a notion of dependency which allows us to derive more precise slices,
i.e., to remove statements that a merely syntactic analysis would leave.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Abstract Program Slicing: an Abstract Interpretation-based approach to Program Slicing A:23

Example 5.5. Consider the program P :

1 x :=ex ;
2 y :=ey ;
3 w:=ew ;
4 z :=w+y+2(x2)−w;

where ex , ey and ew are expressions. We want to compute the static slice Q of P affecting the
final value of z (i.e., the slicing criterion C = (M, {z}, 〈4,N〉, false) is interested in the final
value of z). If we consider the traditional notion of slicing, then it is clear that we can erase
line 3 without changing the final result for z. However, in the usual syntactic approach, we
would have a dependency between z and w, since w is used where z is defined. Consequently,
the slice obtained by applying this form of dependency would leave the program unchanged.
On the other hand, if the semantic dependency is considered, then the evaluation of w+ y+
2(x2) − w does not depend on the possible variations of w, which implies that we are able
to erase line 3 from the slice.

Next we show how the PDG-based approach to slicing can be modified in order to cope
with semantic slicing. The PDG approach is based on the computation of the set of variables
used in a expression e. In the following, we explore if this set can be rewritten by considering
a semantic form of dependency.
Hence, let us define the new notion of semantic PDG, where all the flow dependencies are

semantic, i.e., we substitute the flow edges defined above with semantic flow dependency
edges u −→sf v which are such that (1) u is a node that defines the variable x (usually an
assignment), (2) v is a node containing an expression e such that x Ce (where C is the
criterion with respect with we are computing the slice), and (3) control can reach v from u
via an execution path along which there is no intervening re-definition of x . A (semantic)
flow path is a sequence of (semantic) flow edges.

Proposition 5.6. Let P be a program and C be a slicing criterion. Let GP the PDG
with flow dependency edges −→f , and GsP be the semantic PDG where the flow dependency
edge are semantic −→sf . If u −→sf v then u −→f v .

Proof. Trivially, since if x Ce, then e must use the variable x .

In principle, a (backward) slice is composed by all the statements (i.e., nodes) such that
there exists a path from the corresponding node to the relevant (according to the slicing
criterion) use of a variable of interest (in the criterion) [Reps and Yang 1989]. In other words,
we follow backward the (semantic) flow edges from the nodes identified by the criterion,
and we keep all the nodes/statements we reach. Hence, the criterion defines the edges that
we can follow in order to compute the slice.
By using the semantic flow dependency edges, we can draw a new semantic PDG contain-

ing less flow edges, i.e., only those corresponding to semantic dependencies. At this point,
the type of slicing (either static, dynamic or conditional) characterized by the criterion
decides which nodes can be kept in the PDG.

Theorem 5.7. Let C = 〈I,X ,O, ψ〉 be a slicing criterion. Let P be a program and GsP
its semantic PDG, i.e., a PDG whose flow edges are −→sf . Let Q the subprogram of P
containing all the statements corresponding to nodes such that there exists a semantic flow
path in GsP from them to a node in NO

def= { n | ∃〈n,K 〉 ∈ O }. Then Q is a slice w.r.t. the
criterion C.

Proof. Note that, in the PDG construction all the flow edges (−→sf) satisfy a notion
of semantic dependencies holding for all inputs by definition, while all the other edges are
syntactic, hence its construction is independent from the input set I, meaning that any slice

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 I. Mastroeni and D. Zanardini

computed by using the semantic PDG holds for any possible input memory inM. Moreover,
since we simply collect the statements potentially affecting the program observation, we
cannot decide which iteration to observe, for this reason each program point is taken in
the slice independently from the iteration to observe, for this reason the obtained slice
will provide the same result for any possible iteration, i.e., the set of interesting points
to observe are NO × {N} = { 〈n,N〉 | n ∈ NO }. Finally, by construction we cannot have
statements executed in the slice which are not executed in the original programs. Hence,
the criterion enforced by the PDG slice construction is C PDG = (M,X ,NO × {N}, true)
(direct consequence of the Slicing theorem in [Reps and Yang 1989]), which for each I ⊆M
and {Kn}n∈NO ⊆ ℘(N) is a slice also w.r.t. the criterion (I,X , {〈n,Kn〉 | n ∈ NO}, ψ), by
[Binkley et al. 2006a] (Equation 2 in the Appendix). Hence, we have that the results is a
slice w.r.t. C [Binkley et al. 2006a].

We have pointed out so far the difference between syntactic and semantic dependencies:
it can be the case that a variable syntactically appears in an expression without affecting its
value. Actually, one could argue that the case is not very likely to happen: the possibility
to find an assignment like x:=y−y in code written by a professional software engineer is
remote to the very least. However, when it comes to abstract dependencies, the picture
is quite different, and we could even say that, in the present work, (concrete) semantic
dependencies have been mainly introduced to prepare the discussion about their abstract
counterpart. Indeed, it is much more likely that some variables are not semantically relevant
to an expression if the value of interest is an abstract one, e.g., the parity or the sign of
a numeric expression, or the nullity of a pointer. This justifies the definition of a semantic
notion of dependency at the abstract level.

6. ABSTRACT DEPENDENCIES
This section discusses the problem of defining and computing abstract dependencies, which
allow capturing the dependency relation between variables with respect to a given abstract
criterion. The previous section formalized this relation in the concrete semantic case; the
following example takes it to the abstract level.

Example 6.1. Consider the expression e = 2x2+y: although both variables are semanti-
cally relevant to the result, only y can affect its parity, since 2x2 will always be even. On the
other hand, note that both variables are relevant to the sign of e, in spite of the positivity
of x2. In fact, given a negative value for y, a change in the value of x can alter the sign of
the entire expression.

The notion of semantic program dependency can be easily extended to abstract criteria
by changing the projection considered. In this case, we write x CAP , meaning that x has
effect on the abstract projection of P determined by CA. Computing abstract dependencies
is still undecidable; hence, again, we need an approximation of the semantic notion.

6.1. Abstract slicing and dependencies
Previously, we defined concrete semantic dependencies by identifying those variables that
affect the final observation of an expression. Analogously, in order to define abstract se-
mantic dependencies, we need to consider the abstract interference between a property of a
variable and a property of an expression.
The definition below follows the same philosophy as narrow abstract non-interference [Gi-

acobazzi and Mastroeni 2004a; Mastroeni 2013], where abstractions for observing input and
output are considered, but these abstractions are observations of the concrete executions.

Definition 6.2 ((Abstract) Semantic expression dependency, Ndep). Con-
sider the ucos ρ ∈ uco(℘(V)) and η ∈ uco(℘(V))n , where n is the number of variables, i.e.,

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Abstract Program Slicing: an Abstract Interpretation-based approach to Program Slicing A:25

η is a tuple such that ηy is the property on the variable y5. Then:

x η, ρ e ⇔ ∃σ1, σ2 ∈ Σ .
(
∀y 6= x . ηy(σ1(y)) = ηy(σ2(y)) ∧ ρ(JeK (σ1)) 6= ρ(JeK (σ2))

)
This notion is a generalization of Definition 5.3 where we abstract the observation of the

result by applying ρ, and the information that we fix about all the variables different from
x by using η. Still, this notion characterizes whether the variation of the value of x affects
the abstract evaluation in ρ of e.
As an important result, we have x η, ρ1

 e ⇔ x η, ρ2
 e whenever ρ1 and ρ2 induce the

same partitions (Section 2.3), either on values or tuples of values. This happens because,
in Definition 6.2, both abstractions are only applied to singletons. In the following, only
partitioning domains will be considered since it is straightforward to note that x η, ρ e

is affected only by Π(ρ), rather than by ρ itself.
When dealing with abstractions and abstract computations, some more issues have to be

taken into account. Consider the program in Example 5.5, and consider the ρpar property
(Section 2.2) for all variables on both input and output. If we compute the set of variables
on which the parity of e = w+y+2(x2)−w depends, then we can observe that e is still
independent from w, but is also independent from any possible variation of x. At a first
sight, the parity of w+y+2(x2)−w is independent from x just because 2(x2) is constantly
even. However, it is not only a matter of constancy: a deeper analysis would note that we
can look simply at the abstract value of x only because the operation involved (the sum) in
the evaluation is complete (Section 2.2), i.e., precise, with respect to the abstract domain
considered (ρpar). In particular, when we deal with abstract domains which are complete
for the considered operations, then it is enough to look at the abstract value of variables
in order to compute dependencies. Indeed, consider the ρsign domain (Section 2.2): even if
the sign of 2(x2) is constantly positive, the final sign of z might be affected by a concrete
variation of x (e.g., consider y = −4 and two executions in which x is, respectively, 1 and
5). Therefore, x has to be considered relevant, although the sign of 2(x2) (the only sub-
expression containing x) is constant. This can be also derived by considering the logic of
independencies from [Amtoft and Banerjee 2007] since, by varying the value of x, we can
change the sign of e.

Unfortunately, the notion of abstract dependencies given in Definition 6.2 is not suitable
for weakening the PDG approach, as we have done in the concrete semantic case. Let us
explain the problem in the following example.

Example 6.3. Consider the program P =C; x:=(y>0?0:1);, where C is some code fragment
and the expression b?e1:e2 evaluates to e1 if b is true, and to e2 otherwise. Suppose the
criterion requires the observation of the parity of x at this program point, i.e., A = 〈x : ρpar〉.
Then, it is straightforward to observe that the expression depends on y, but we would like to
be more specific (being in the context of abstract slicing), and we can observe that it is the
sign of y that affects the parity of the expression, and therefore of x. Therefore, in the code
C we should look for the variables affecting not simply y (as expected in standard slicing
approaches), but more specifically the sign of y, a requirement which is not considered in
the abstract criterion.
This example shows that, if we aim at computing abstract dependencies precisely, we

would need an algorithm able to keep trace (backwards) not only of the different variables
that become of interest (i.e., affecting the desired criterion), but also of the different prop-
erties to observe on such variables. This means that, while for concrete semantic program
dependencies we can provide a definition depending only on the criterion, this is not possi-
ble in an abstract context, because each flow edge should be defined depending on abstract

5For simplicity, we do not consider relational abstract domains in this section.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 I. Mastroeni and D. Zanardini

properties potentially different from those in the abstract criterion, and which should be
characterized dynamically backwards starting from the criterion. Unfortunately, this is not
possible in Definition 6.2, where we always look for the variation of the value rather than an
abstract property of x. Hence, using this notion for substituting the semantic dependency
in PDGs would not give the desired results.
These observations make clear that, if we aim at constructively characterize abstract

slicing by means of the abstract dependency notion provided in Definition 6.2, we need to
build from scratch a systematic approach for characterizing abstract slicing. The first step in
this direction is a computable approximation of the abstract dependencies of Definition 6.2.

6.2. A constructive approach to Abstract Dependencies
By means of the (uco-dependent) definition of operations on abstract values, it is possible to
automatically obtain (an over-approximation of) the set of relevant variables. The starting
point is the brute-force approach which uses the abstract version of concrete operations,
and explicitly goes into the quantifiers involved in Definition 6.2.

Example 6.4. Consider the program in Example 5.5 and let ηy = ρpar. In order to de-
cide whether x η, ρ e holds for some ρ, the brute-force approach considers the abstract
evaluation of e in all contexts where all variables different from x does not change, up to η,
while x may change. In this example, this boils down to consider pairs of memories where
y has the same parity (with no information about sign) whereas x changes freely, and see
whether the final values of e agree on ρ. Suppose ρpar(y) = [even] (meaning that it is even
but the sign is unknown) and ρ = ρsign; then, we should compute the abstract value of e
for each possible value of x. We can easily find σ1 and σ2 such that

ρsign(2 ∗ σ1(x)2 + σ1(y)) = [neg] , ρsign(2 ∗ σ2(x)2 + σ2(y)) = [pos]
even if ρpar(σ1(y)) = ρpar(σ2(y)) (for instance σ1(y) = σ2(y) = −4 while σ1(x) = 1 and
σ2(x) = 5). It is clear that the sign of e may depend on the value of x since to “fix” the
abstract property of the other variables is not enough to “fix” the final value of e with
respect to ρ. On the other hand, the parity of e does not depend on x: if we fix the property
ρpar of y, for instance to [even] (but it holds also for the other abstract values), then

2 ∗ [negodd]2 + [even] = [even] , 2 ∗ [poseven]2 + [even] = [even] . . .

That is to say, if we fix all the (abstract values of the) variables but x, then the parity of
the result does not change, so that the variation of x does not affect the parity of e.

In the following, we introduce an algorithm to improve the computational complexity
of the brute-force approach, especially on bigger ucos, and when (1) several variables are
involved in expressions, and (2) a significant part of them is irrelevant.

6.2.1. Checking Ndep. We discuss how to constructively compute dependencies. Unfortu-
nately, in static analysis, the concrete semantics cannot be used directly as it appears in
Definition 6.2, so that we need to design an over-approximation. The following definition in-
troduces a stronger notion of dependency based on a sound abstract semantics J·Kρ (Section
2.4), which approximates Edep.

Definition 6.5 (Atom-dep). An expression e atom-depends on x (written x η, ρ at e)
with respect to ρ ∈ uco(℘(V)) and η ∈ uco(℘(V))n (n is the number of variables) if and
only if there exist σ1, σ2 ∈ Σ such that

∀y 6= x .ηy(σ1(y)) = ηy(σ2(y)) ∧ ¬Atomρ

(
JeKρ ({σ1, σ2})

)
Since domains are partitioning, the non-atomicity requirement ¬Atomρ (·) amounts to say
that all abstract evaluations of e with respect to ρ, starting from different values for x ,

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Abstract Program Slicing: an Abstract Interpretation-based approach to Program Slicing A:27

may not be abstracted to the same abstract value (this is the crucial issue in Ndep), i.e.,
σ1 and σ2 may lead to different abstract values for e. Next result shows that Atom-dep is
an approximation of Ndep, since Ndep implies Atom-dep, meaning that Atom-dep may add
false dependencies.

Proposition 6.6. Consider the abstractions ρ ∈ uco(℘(V)) and η ∈ uco(℘(V))n , where
n is the number of variables, i.e., η is a tuple of properties. For every e and x , x η, ρ e
implies x η, ρ at e.

Proof. Suppose x η, ρ e, i.e., there exist two states σ1 and σ2 such that (1)
∀y 6= x . ηy (σ1) =y ηy (σ2); and (2) ρ(JeK (σ1)) 6= ρ(JeK (σ2)). Then we have to prove
x η, ρ at e, i.e., there exist σ1, σ2 ∈ Σ such that (3) ∀y 6= x .ηy (σ1) =y ηy (σ2); and (4)
¬Atomρ

(
JeKρ ({σ1, σ2})

)
. Since conditions (1) and (3) are the same, we have to prove that

(2) implies (4).
Consider σ1, σ2 ∈ Σ satisfying (1) and such that ρ(JeK (σ1)) 6= ρ(JeK (σ2)); then,

ρ(JeK (σ1)), ρ(JeK (σ2)) ∈ ρ(JeK ({σ1, σ2})) ⊆ ρ(JeK (ρ({σ1, σ2}))) = JeKρ ({σ1, σ2}). At this
point, since JeKρ ({σ1, σ2}) is greater than two different values of ρ, then, by definition, it
cannot be an atom of ρ.

A simple example where Atom-dep introduces false dependencies is the expression e =
x∗x + x∗x + 1 where ρ = ρparSign (η is irrelevant in this case). It is clear that the result
of the expression is always positive and odd, so that ρ(JeK (σ)) = [poseven] for every
σ. Therefore, according to Definition 6.2, there is no abstract dependency of e on x with
respect to ρ. On the other hand, it is possible to take two concrete states σ1 and σ2 where
x has different values and, in addition, such values are also different as regards the sign
and/or the parity. For example, suppose σ1(x) = 1 and σ2(x) = −4: the abstract state
σρ which is the result of abstracting the set S = {σ1, σ2} is such that σρ(x) = [top]
since 1 and −4 have different parity and different sign. Computing the abstract semantics
JeKρ (σρ) boils down to evaluate e at the abstract level with [top] as the value for x. Since
[top] ∗ [top] + [top] ∗ [top] + [posodd] = [top] + [top] + [posodd] = [top]6, then there is
dependence of e on x according to Definition 6.5 since [top] is obviously not an atom.
Starting from this new approximated notion, the idea is to provide an algorithm which

over-approximates the set of variables relevant for a given expression e. For simplicity, the
abstraction observed on the output is supposed to be the same as the one on each input
variable (i.e., each component of the tuple η is exactly the ρ observed on the output, so that
η will be denoted as ρ or even left implicit in the following). The idea is to start from an
empty set of non-relevant variables X , and incrementally increase this set adding all those
variables that surely are not relevant. Finally, the complement of such set is returned, which
is an over-approximation of relevant variables.
In order to check the dependency relation, we aim at checking whether a change in the

values of a variable makes a difference in the evaluation of the expression. Dependencies are
computed according to Atom-dep, in order to approximate Ndep. In a brute-force approach,
Atom-dep would be verified by checking for each σρ associating atomic values to variables
we have that Atomρ

(
JeKρ (σρ)

)
is always the same atom.

Example 6.7. Let e be an expression involving variables x , y and z , and ρ = ρparSign. In
principle, in order to compute the set of ρ-dependencies on e, we must compute JeKρ on every

6[posodd] is the abstraction of the constant 1, which is positive and odd.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 I. Mastroeni and D. Zanardini

possible atomic value7 of x , y and z , i.e., JeKρ must be computed 53 = 125 times. y is not
relevant to e if, for any abstract values vx ,vz ∈ Atoms (ρ), there exists an atomic abstract
value u ∈ Atoms (ρ) such that ∀v ∈ Atoms (ρ) . u = JeKρ ({x←vx , y←v, z←vz}). This
amounts to say that changing the value of y does not affect e, since we require the same
atom to be computed for each possible abstract value of y and z . If the result is not atomic,
it means that there may8 exist two different abstract results for different values of y and z .
However, it is possible to be smarter:
•Excluding states: consider dependencies of e in Example 6.7, computed at program point
n. Suppose J·Kρ (used as a tool to infer invariant properties, as discussed in Section 2.4) is
able to infer, at point n, that the abstract state σρn such that σρn(y) = [posodd] correctly
approximates the value of variables at n. Then, we only need to consider states of the
form {x←vx , y← [posodd] , z←vz} as inputs for JeKρ (now considered as the abstract
computation of expressions, according to Definition 6.5) at n.
•Computing on non-atomic states: let E = {[poseven] , [zero] , [negeven]} and O =
{[posodd] , [negodd]}. In this case,

∀v′ ∈ E ,v′′ ∈ O . JeKρ ({x←vx , y←v′, z←v′′}) ≤ u
is implied by the more general result

JeKρ ({x←vx , y← [even] , z← [odd]}) ≤ u

since E and O are partitions, respectively, of [even] and [odd], and JeKρ is monotone:
σρ1 ≤ σ

ρ
2 implies ⇒ JeKρ (σρ1) ≤ JeKρ (σρ2). This means that results obtained on σρ can be

used on σρ1 ≤ σρ.
In the following, we compute dependencies with respect to σρn , which is the abstract state

computed at n as an invariant at that program point. In the worst case, no information
about the different variables is available, and σρn associates [top] to all variables. Now, we
aim at proving that e is independent from a set of variable X ; in order to prove this, we
need to prove that evaluating e always yields the same atom in ρ, independently from the
value of variables in X , possibly without trying all possible values. Our idea is to prove this
atomicity, if it holds, by iteratively refining (Section 2.4) the starting abstract state σρn . The
following example gives the intuition.

Example 6.8. Let e ≡ x∗x + 1 and ρ = ρsign. Let also JeKρ follow the usual rules on ∗ and
+: [pos] ∗ [pos] = [pos], [neg] ∗ [neg] = [pos], [top] ∗ [top] = [top], [pos] + [pos] = [pos],
[top] + [pos] = [top], etc. Suppose to start from a memory such that {x ← [top]}; we
observe that JeKρ ({x← [top]}) ∈ Atoms (ρsign) cannot be proved by using these rules, since
[top]∗[top]+[pos] = [top], which is not atomic, so that there may be a dependency. On the
other hand, consider the possible refinements w.r.t. x in ρsign, namely, {{x← [pos]}, {x←
[zero]}, {x← [neg]}}. These abstract values are a covering (Section 2.4) of {x← [top]} since
all possible values of x are accounted for by the refinements “x is positive”, “x is zero”, “x is
negative”. Moreover, it turns out that

JeKρ ({x← [pos]}) = JeKρ ({x← [zero]}) = JeKρ ({x← [neg]}) = [pos]
Thus, the positivity of x can be proved by using a kind of case-based reasoning which requires
computing e three times (plus the initial one on {x← [top]}) instead of just once.

7Remember that atoms in ρ are [zero], [poseven], [posodd], [negeven], and [negodd]; since this is a
partition of concrete values, we describe all concrete inputs by computing JeKρ on atoms.
8Since Atom-dep is just an over-approximation of semantic dependencies, it can be the case that such
different results actually do not exist; on the other hand, atomicity does prove that no such results exist.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Abstract Program Slicing: an Abstract Interpretation-based approach to Program Slicing A:29

Given an initial abstract state σρ, we define the set of all abstract states that “refine”
abstract values on variables outside X to atomic values, while leaving X untouched.

[σρ|X] =
{
σρi
∣∣ ∀y /∈ X . σρi (y) ∈ Atoms (ρ) ∧ ∀x ∈ X . σρi (x) = σρ(x)

}
To prove e independent from x , we need to prove Atomρ

(
JeKρ (σρx)

)
for any σρx ∈ [σρn |{x}].

This amounts to say that any variation in x (up to the invariant σρn(x)) does not lead to
an observable variation in e, whenever all the other variables are fully specified as atoms.
The following definition is based on the notion of covering introduced in Section 2.4, and
identifies how an abstract state σρ can be incrementally “refined”, i.e., how it can be replaced
by a set of states which is a covering, and where values of variables outside some set X
take values which are either the same of the corresponding values in σρ, or their direct
sub-values.

X -covering(σρ) =
{
{σρ1 , . . . , σ

ρ
k}
∣∣∣∣ {σρ1 , . . . , σρk} is a covering and
∀i . ∀x ∈ X .σρi (x) = σρ(x) ∧ ∀y /∈ X . σρi (y) ≤ι σρ(x)

}
where σρ1(x) ≤ι σρ2(x) iff σρ1(x) = σρ2(x) or σρ1(x) is a direct sub-value of σρ2(x) in ρ (for
example, in ρparSign, [poseven] is a direct sub-value of [pos] but [bot] is not because there
is another abstract value between them). It is easy to see that, by repeatedly computing
X -coverings starting from σρ, one ends up generating all abstract states in [σρ|X]. This is
what the algorithm presented in the following does incrementally.

Example 6.9. Consider ρparSign and the abstract state σρ = {x← [pos] , y← [odd] , z←
[top]}: the following set of states is a {z}-covering of σρ.{

{x← [poseven] , y← [odd] , z← [top]},
{x← [posodd] , y← [odd] , z← [top]}

}
Another {z}-covering is the following, which refines both x and y :

{x← [poseven] , y← [posodd] , z← [top] , }
{x← [poseven] , y← [negodd] , z← [top] , }
{x← [posodd] , y← [posodd] , z← [top] , }
{x← [posodd] , y← [negodd] , z← [top]}


Moreover, given an expression e and a set of variables X , we define

Au
e (σρ) iff

JeKρ (σρ) = u ∧Atomρ (u) or
∃{σρ1, ..σ

ρ
k} covering of σρ such that ∀i . Au

e (σρi)

A′e (σρ,X) iff (1) Au
e (σρ) for some atom u or

(2) ∃{σρi }i∈[1,k] ∈ X -covering(σρ). ∀i . A′e (σρi ,X)

The predicate Au
e (σρ) holds if the expression e can be proved to have an atomic value u,

either by direct computation of the abstract semantics, or by case-based reasoning like in
Example 6.8, relying on the notion of covering. On the other hand, A′e (σρ,X) holds if it can
be proven that there is no dependency of e on variables in X . This can be proven (1) directly,
if e has an atomic value in σρ (which implies that there is no dependency on variables in X
or any other variables; or (2) recursively, by replacing σρ with an X -covering, and trying to
prove the result for every refinement. Condition (2) relies on case-based reasoning (which
is similar to the one outlined in Example 6.8, but not to be confused with it), and allows
to indirectly prove non-dependency.

Example 6.10. Consider the expression e =2∗x+y, the ρparSign domain and the initial
abstract state σρn = {x← [pos] , y← [top]} (i.e., it is already known that x is positive). The
predicate A′e (σρn , {x}) does not hold directly by condition (1) since the value of e in σρn is

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 I. Mastroeni and D. Zanardini

obviously not atomic, and there does not exist any covering which allows to prove Au
e (σρn)

for some u. Then, {x}-coverings have to be searched for, which allow to prove condition (2).
One such {x}-covering is (the other {x}-coverings are not treated explicitly)

{x← [pos] , y← [even]}, {x← [pos] , y← [odd]}

Condition (2) would be proved if both A′e ({x← [pos] , y← [even]}, {x}) and
A′e ({x← [pos] , y← [odd]}, {x}) hold. However, none of them hold: for example, the abstract
evaluation of [poseven] ∗ [pos] + [even] gives the non-atomic value [even]. Therefore, it
is necessary to perform another recursive step: an {x}-covering of {x← [pos] , y← [even]}
would be, for example,

{x← [pos] , y← [poseven]}, {x← [pos] , y← [negeven]}, {x← [pos] , y← [zero]}

Unfortunately, it is still not possible to prove A′e (σρi , {x}) for all three abstract states
in the {x}-covering, and they cannot be further refined because values for y are already
atomic. Therefore, non-dependency of e on x cannot be proved. For the sake of simplicity,
this example does not consider explicitly all {x}-coverings, but the result we give is true:
A′e (σρ, {x}) does not hold.

Example 6.11. Consider the same expression e =2∗x+y, the ρparSign domain and the
initial abstract state σρn = {x ← [pos] , y ← [pos]}. In this case, it is possible to prove
A′e (σρn , {x}) because there is an {x}-covering

{x← [pos] , y← [poseven]}, {x← [pos] , y← [posodd]}

which satisfies condition (2). Therefore, if it is known that both x and y are positive, then
it is possible to prove the independency of e from x.

Proposition 6.12 (Soundness). Let ρ ∈ uco(℘(V)), and let ρ denote the tuple of ρ,
on each variable. If A′e (σρn ,X) can be proved, then there is no x ∈ X such that x ρ, ρ at e.

Proof. By induction. Consider the definition of A′e :

— If Au
e (σρn) holds for some atomic abstract value u, then e depends on no variables.

—Otherwise, let {σρ1 , .., σ
ρ
k} be an X -covering of σρn ; by inductive hypothesis, for every i ,

e can be proved not to depend on X if values are limited by σρi . Since these states are
also a (regular) covering of σρn , and variables in X are never restricted in any of them
(i.e., all values allowed by the initial σρn are considered for every i), this means that e
does not depend on X .

The findNdeps algorithm depicted in Figure 14 starts by trying to prove
A′e (σρn ,vars(e)), where vars (e) are all the variables syntactically occurring in the ex-
pression. If it succeeds, then e depends on no variables. Otherwise, the variable set X is
decreased non-deterministically (one element at a time, randomly) until some judgment
A′e (σρn ,X) is proved.
The soundness of the algorithm follows easily from Proposition 6.12. On the other hand,

the algorithm is also complete with respect to Atom-dep (which obviously does not mean
that it exactly computes semantic abstract dependencies, due to the fact that Atom-dep
is already an over-approximation of Ndep). In fact, exploring incrementally the space of
X -coverings of σρn is a way to consider all states in [σρn |X] without the need to generate all
of them explicitly. Indeed, if non-dependency from X can be already proved for an abstract
state belonging to an X -covering, then there is no need to consider all its refinements
belonging to [σρ|X].

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Abstract Program Slicing: an Abstract Interpretation-based approach to Program Slicing A:31

1 f unct ion findNdeps(e ,ρ ,σρn) {
2 nonDep := ∅ ; // can be modified by prove()
3 prove(e ,σρn ,vars (e)) ;
4 re tu rn vars (e) r nonDep ; // relevant variables
5 }
6 procedure prove(e ,σρ ,X) {
7 i f (A′e (σρ,X) 6= ⊥) then nonDep := nonDep ∪ X ;
8 e l s e foreach (x ∈ X) { prove(e ,σρ ,X r {x}) ; }
9 }

Fig. 14. The findNdeps algorithm

Importantly, the assertions A′e (σρn ,X) and A′e (σρn ,Y) guarantee X ∪Y ρ, ρ at e not to
hold, even if A′e (σρn ,X ∪Y) cannot be directly proved. The final result of findNdeps is
vars (e) r Z , where Z is the union of all sets Zi such that A′e (σρn ,Zi) can be proved. By
Propositions 6.6 and 6.12, this set is an over-approximation of relevant variables.
The findNdeps algorithm may deal, in principle, with infinite abstract domains, in par-

ticular those with infinite descending chains, since non-dependency results can be possibly
proved without exploring the entire state-space; in fact, as pointed our above, if Au

e (σρn)
can be proved, then it is not needed to descend into the (possibly infinite) set of sub-states
of σρn . This is not possible in the brute-force approach. It is also straightforward to add com-
putational bounds in order to stop refining states if some amount of computational effort
has been reached.

6.2.2. Dependency erasure. The problem of computing abstract dependencies can be ob-
served from another point of view: given e and a set X of variables, we may be interested in
the most concrete ρ such that X ρ, ρ e does not hold. This would be the most concrete
observation guaranteeing the non-interference of the variables in X on the evaluation of
e [Giacobazzi and Mastroeni 2004a; Mastroeni 2013]. This task can be accomplished by
repeatedly simplifying an initial domain ρ0 in order to eliminate abstract values which are
responsible for dependencies. As discussed before, in order not to have dependencies on X ,
we should have A′e (σρn ,X), i.e., Au

e (σρX) should hold for any σρX ∈ [σρn |X]. If this does not
hold for some abstract state σρX , then ρ is modified to make JeKρ (σρX) atomic.
We design a simple algorithm Edep (e, ρ0,X) (Figure 15) which takes an input an ex-

pression, an initial uco and a set of variables. The algorithm uses a queue in order to store
abstract states; initially, the queue only contains σρn . When a state σρ is extracted from the
queue, Edep checks (line 6) if there exists u atomic such that Au

e (σρ). If it is not, then
— If it is not possible to further refine σρ (guard at line 7), then the abstract domain must

be simplified (see below), and the algorithm re-starts from σρn with the new domain.
—Otherwise, σρ is refined according to the definition of X -covering (lines 13–15), and the

process is repeated on all such refinements.
Each iteration of the loop corresponds to a value of the variable ρ. If the algorithm never
reaches line 10 during a whole execution of a loop iteration (i.e., if, for every state σρ, the
condition Au

e (σρ) can be proved at line 6 before σρ becomes “non-refinable” at line 7), then
ρ is not simplified, which means that A′e (σρn ,X) could be proved, thus demonstrating the
non-dependency of e on X with respect to ρ. In fact, the goal of lines 6–15 is exactly to
decide if A′e (σρn ,X), either directly (line 6) or considering X -coverings.
The simplifying operator atomize (ρ,v) is a domain transformer, and works by removing

abstract values in order to obtain Atomρ (v). Formally,
ρ′ = atomize (ρ,v) def= {u ∈ ρ | vuu=⊥ ∨ v≤u}

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 I. Mastroeni and D. Zanardini

1 ρ := ρ0 ; // the initial domain
2 repeat {
3 inputQueue := [σρn] ; // one-element queue
4 whi le (notEmpty(inputQueue)) {
5 σρ := extract(inputQueue) ;
6 i f (@u. Au

e (σρ)) then {
7 i f (a l l v a r s i n vars (e)rX a r e atomic i n σρ) then {
8 // at this point, v is not atomic
9 v := JeKρ (σρ) ;

10 ρ := atomize (ρ,v) ;
11 // the queue is set again to a one-element queue
12 inputQueue := [σρn] ;
13 } e l s e { // {σρ1 ..σ

ρ
k } is an X -covering of σρ

14 foreach (i) {
15 insertInQueue(inputQueue ,σρi) }}}}
16 } u n t i l (ρ has not been modified in the whole loop iteration) ;
17 re tu rn ρ ; // the domain s.t. X ρ, ρ e does not hold

Fig. 15. The Edep algorithm.

Example 6.13. Consider ρparSign: in order to make [even] be atomic, it is necessary
to remove abstract values which are not disjoint, greater than or equal to [even]. In
this case, all values but [odd] have to be removed from the abstract domain, so that
atomize (ρparSign, [even]) = ρpar.

The final ρ is an approximation of the most precise ρ′ s.t. X ρ′, ρ′ e is false:

Theorem 6.14. ρ
def= Edep (e, ρ0,X) makes e not Atom-dep on X , that is, for every

σρ which is atomic on vars (e) r X , JeKρ (σρ) is atomic. Moreover, by Proposition 6.6, e
is not dependent on X with respect to Definition 6.2.

Proof. The algorithm halts if, in processing σρn , ρ is not changed. Processing σρn involves
computing JeKρ on sub-states when required, in order to prove the atomicity property on
every concrete state represented by σρn (to this end, we exploit monotonicity of JeKρ on
states). This is precisely obtained if every state is removed from the queue before any
modification to ρ occurs.

Example 6.15. Consider the expression e = 2∗x+y, the ρparSign domain and the set of
variables {x}. It is clear that e does depend on x with respect to ρparSign. Suppose that
the algorithm starts from σρn = {x← [top] , y← [top]}. Since JeKρ (σρn) = [top] and the
condition at line 7 is false, an {x}-covering of σρn is to be considered (line 15):

{x← [top] , y← [even]}, {x← [top] , y← [odd]}

For each abstract state in the {x}-covering the same test is performed, but the value of
the expression is still non-atomic. The computation goes on without computing atomic
values for e, until the guard at line 7 becomes true (for example, when considering {x←
[top] , y ← [poseven]}). Since the abstract value computed in this state is [even], the
procedure atomize (ρparSign, [even]) is called at line 10, and the new candidate abstract
domain ρpar is computed (Example 6.13). Next, the queue is reset to its initial value, and
another iteration of the loop begins. By following the same reasoning, it is easy to see that
the dependency no longer holds in the new domain ρpar, so that the second iteration of the
loop does not simplify the domain anymore, and ρpar is finally returned.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Abstract Program Slicing: an Abstract Interpretation-based approach to Program Slicing A:33

On the practical side, the loss of precision in abstract computations may lead to remove more
abstract values than strictly necessary from the semantic point of view. It is important to
note that Edep works as long as Ae can be computed on the initial domain (in this case, no
problems arise in subsequent computations, since the “complexity” of ρ can only decrease).
This can possibly happen even if ρ0 is infinite (see the end of Section 6.2.1). Moreover, unlike
findNdeps, there is no reasonable trivial counterpart, since any brute-force approach would
be definitely impractical.

7. THE QUEST FOR ABSTRACT SLICES
This section introduces an algorithm for computing conditioned abstract slices, based on
abstract dependencies and the notion of agreement between states.
As explained in Section 7.4, this way to compute slices relies on a priori knowledge of

the properties which will be of interest for the analysis. In most cases, the majority of
the abstract domains to be taken into account are quite simple (e.g., nullity). On the other
hand, Section 6.2 presents a general way to compute abstract dependencies on more complex
domains. Indeed, those algorithms can be used here, and their complexity is acceptable if
small domains are dealt with.
The slices obtained by following this methodology will have the standard form of backward

slicing; predicates or conditions β on states are supported, in the style of conditioned slicing
[Canfora et al. 1998]. In the rules, the judgment σ |= β means that the state σ satisfies β. It
must be pointed out that a predicate β at a certain program point may include user-provided
information but also knowledge about program variable which is obtained by performing
static analysis on the program (see the discussion in Section 2.4 and the use of σρn in Section
6.2). For example, after a x:=new C() statement, judgments like “x is not null”, “x is not
cyclic”, “x is not sharing with y” or “x is not reaching y” could be provided, depending on
the kind of static analyses available (nullity, sharing, cyclicity, etc.).
A way to decide which statements have to be included in an abstract slice consists of two

main steps:

— for each statement s, a specific static-analysis algorithm provides information about
the relevant data after that statement (below, the agreement), according to the slicing
criterion and the program code;

— if the execution of s does not affect its corresponding agreement (i.e., some condition on
states which must hold after s), then s can be removed from the slice.

Example 7.1. Consider the following code fragment, and suppose that the slicing crite-
rion is the nullity of x at the end:

21 . . .
22 y . f := exp ;
23 x := y ;

The field update on y (line 22) can be removed from the slice because

— the question about the nullity of x after line 23 is equivalent to the question about the
nullity of y after line 22; and

— the field update at line 22 does not affect the nullity of y.

The rest of this section formalizes how these two main steps are carried out.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 I. Mastroeni and D. Zanardini

7.1. The logic for propagating agreements
This section describes how agreements are defined and propagated via a system of logical
rules: the g-system9. Hoare-style triples [Hoare 1969] are used for this purpose, in the spirit
of the weakest precondition calculus [Dijkstra 1975].

Definition 7.2. An agreement G is a set of conditions [x̄ ::ρ] where each uco ρ involves a
sequence of variables x̄ (most usually, just one variable), and all conditions involve mutually
disjoint sets of variables. Two states σ1 and σ2 are said to agree on G, written G(σ1, σ2),
iff, for every [x̄ ::ρ] in G, ρ(σ1(x̄)) = ρ(σ2(x̄)), where notation is abused by taking σi(x̄) as
the sequence of values of variables x̄ in σi , and ρ(σi(x̄)) as the application of ρ (which could
be a relational domain) to the elements of such a sequence.
Agreements are easily found to form a lattice, and a partial order v can be defined: G′ ≤ G′′

iff, for every σ1, σ2 such that G′(σ1, σ2), then G′′(σ1, σ2). Moreover, an intersection operator
is induced by the partial order: G′ uG′′ is the greatest agreement which is less than or equal
to both.

In the following, G(x) will be the uco corresponding to the condition [x ::ρ] in G, or ρ> if
no condition on x belongs to G. For the sake of simplicity, the discussion will be limited to
domains each involving one single variable. In this case, ordering amounts to the following:
G1 v G2 if ∀x .G1(x) v G2(x), where G1(x) v G2(x) is the comparison on the precision of
abstract domains, meaning that G1(x) is more precise than G2(x).

Example 7.3. Let σ1 = {n←2, i←3, x← null} and σ2 = {n←0, i←4, x← null} be two
states. Then, they agree on G = {[〈n〉::ρpar], [〈x〉::ρnull]} since

— n has the same parity in both states;
— x is null (therefore, it has “the same nullity”) in both states; and
— there is no condition on i .

On the other hand, these states do not agree on G′ = {[〈 i〉::ρpar], [〈x〉::ρnull]} because i is
odd in σ1 whereas it is even in σ2.

In a triple {G} s {G′}, the pre-condition G is the weakest agreement on two states before
a statement s such that the agreement specified by the post-condition G′ holds after the
statement. Predicates on states can be used, so that triples are, actually, 4-tuples which
only take into account a subset of the states. Formally, the 4-tuple (or augmented triple)
{G}β s {G′} (where the true predicate is often omitted) holds if, for every σ1 and σ2,

σ1 |= β ∧ σ2 |= β ∧ G(σ1, σ2) ⇒ G′(JsK (σ1), JsK (σ2))

The rules of the g-system are shown in Figure 16. The transformed predicate s(β) is one
which is guaranteed to hold after a statement s, given that β holds before, in the style of
strongest post-condition calculus [Dijkstra and Scholten 1990; Bijlsma and Nederpelt 1998].
For example, if β = x ≥ 0, then the condition s(β) = x ≥ 1 ∧ y 6= null certainly holds
after s ≡ x:=x+1; y:=new C(). The way predicates are transformed is outside the scope of
this paper; however, the cited works introduced calculi for computing such strongest post-
conditions. In the absence of such tools, true is always a consistent choice (precision, but
not soundness, may be affected since the set of states to be considered grows larger, and to
prove useful results could become harder).
The g-system is tightly related to narrow non-interference [Giacobazzi and Mastroeni

2004a; 2004b]. These works define a similar system of rules, the n-rules, for assertions

9A version of this system was introduced in previous work [Zanardini 2008] as the a-system. However, there
are many differences between both systems, mainly due to the changes in the language under study (for
example, variables are taken into account here instead of a more involved notion of pointer expression).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Abstract Program Slicing: an Abstract Interpretation-based approach to Program Slicing A:35

[η] s (η′), where η and η′ are basically the (tuples of) abstract domains corresponding to,
resp., G and G′. The systems differ in that:

— the use of pointers requires the rules for assignment to account for sharing, while n-rules
only work on integers;

— in the present approach, domains are supposed to be partitioning, so that there is no
need to include explicitly the Π operator (Section 2.3);

— the g-system does not distinguish between public and private since this notion is not
relevant in slicing;

— the rule for conditional is not included in the n-system; indeed, this is quite a tricky
rule, and, in general, expressing a conditional with loops and using the rule n6 for loops
results in inferring less precise assertions;

— in the n-system, predicates β on program states are not supported.

In the following, each rule of the g-system is discussed. Importantly, this rule system
relies on the computation of property preservation. We rely on a rule system which soundly
computes whether executing a statement affects properties of some variables: the judgment

ppβ (G, s)
can only be obtained by using those rules if it is possible to prove that executing s in a
state σ satisfying the condition β results in a final state σ′ that is equal to the initial σ
with respect to the agreement G, i.e., G(σ, σ′). In other word, the statement is equivalent
to skip with respect to the properties of interest. Note that, here, the agreement is not
used to compare two states at the same program point; rather, it takes as input the states
before and after executing a statement. The rule system for proving property preservation
is explained after introducing the g-system (Section 7.1.7).

7.1.1. Rule g-pp. This rule makes the relation between property preservation and the g-
system more clear. The triple {G} s {G} amounts to say that two executions agree after
s, provided they agree before on the same G. On the other hand, the preservation of G on
s means that any state before s agrees on G with the corresponding state after s. Property
preservation is a stronger requirement than the mere propagation {G} s {G} of agreements,
so that this rule is sound. In fact, if G(σ1, σ2) and both G(σ1, JsK (σ1)) and G(σ2, JsK (σ2))
hold, then G(JsK (state1), JsK (σ2)) follows, which is, equivalent, by definition, to {G} s {G}.

Example 7.4. Let the parity of x be the property of interest. In this case, x := x+1
does not preserve the parity of x , but two initial states agreeing on [x ::ρpar] lead to final
states which still agree on it. Therefore, {[x ::ρpar]} x := x+1 {[x ::ρpar]} holds. On the other
hand, x := x+2 also satisfies a stronger requirement: that ρpar(x) does not change. Therefore,
besides having {[x ::ρpar]} x := x+2 {[x ::ρpar]}, the judgment pp ([x ::ρpar], x := x+2) is also
true.

7.1.2. Rules g-skip, g-concat, g-id, g-sub. The g-skip rule describes no-op. The assertion
holds for every G and β since JskipK (σ) = σ.

g-concat is also easy: soundness holds by transitivity (note also the use of s(β) to
propagate conditions of states).
Rule g-id can be used when nothing else can be proved: it always holds because execution

is deterministic, so that two executions starting from two states which are equal10 on all
variables will end in a pair of states agreeing on any abstraction. Note that, as pointed
out in Section 2.1, read statements are supposed only to appear at the beginning of a
program; therefore, a compound statement never contains any read, and the propagation
of agreements can be done safely until reaching the first (actually, the last occurrence in

10The notion of equality on references and objects is recalled in Example 2.2.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 I. Mastroeni and D. Zanardini

ppβ (G, s)
{G}β s {G}

g-pp
{G}β skip {G}

g-skip

{G}β s {G′} {G′}s(β)
s ′ {G′′}

{G}β s ;s ′ {G′′}
g-concat ∀x . GID(x)=ρid s 6= read(·)

{GID}β s {G′}
g-id

{G2}β2 s {G′2} G1 v G2 G′2 v G′1 β1 ⇒ β2

{G1}β1 s {G′1}
g-sub

∀y . ¬
(
y G,G′(x) at e

)β
∀y 6= x . G(y) = G′(y)

{G}β x :=e {G′}
g-assign

(∗) ∀y ∈ dal (x) . ∀σ1 |= β, σ2 |= β.
G(σ1, σ2)⇒
G′(σ1[y .f ← JeK (σ1)], σ2[y .f ← JeK (σ2)])

(∗∗) ∀y ∈ sh (x) . ∀ḡ ,∀σ1 |= β, σ2 |= β.
G(σ1, σ2)⇒
G′(σ1[y .ḡ ← JeK (σ1)], σ2[y .ḡ ← JeK (σ2)])

(∗∗∗) ∀y /∈ dal (x) . G(y) v G′(y)
{G}β x .f :=e {G′}

g-fassign

{G}β st � sf {G′}
{G}β if (b) st else sf {G′}

g-if1

{Gt}β∧b st {G′} {Gf }β∧¬b sf {G′}
{Gb u Gt u Gf }β if (b) st else sf {G′}

g-if2

s(β)⇒ β {G u Gb}β∧b s {G u Gb}
{G u Gb}β while (b) s {G u Gb}

g-while

Fig. 16. The g-system

the code) read statement (in presence of read statements, there is no need to propagate
agreements until the very first line of the code).
Finally, in g-sub, remember that v is the partial order on agreements.

7.1.3. Rule g-assign. This rule means that, given a statement x :=e, any agreement G which
satisfies the two conditions of the above part of the rule is a sound pre-condition for the post-
condition G′. The conditions are (1) that, given two states which agree on G, the computed
results for the expression e in both states are abstracted by G′(x) to the same abstract value;
and (2) that G is as precise as G′ on all variables but x . The first condition is represented
in terms of Definition 6.5, and the superscript β indicates that only states satisfying β have
to be considered. Such a condition can be easily shown to imply the formula

F = ∀σ1 |= β, σ2 |= β. (G(σ1, σ2)⇒ (G′(x))(JeK (σ1)) = (G′(x))(JeK (σ2)))

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Abstract Program Slicing: an Abstract Interpretation-based approach to Program Slicing A:37

Note that, by Proposition 6.6, the absence of abstract dependencies w.r.t. Definition 6.5
(Atom-dep) implies the absence of abstract dependencies w.r.t. Definition 6.2 (Ndep) which,
in turn, implies F . This clarifies the relation between abstract dependencies and the com-
putation of a slice. Obviously, the second condition guarantees that, for all variables which
are not updated by the assignment, the agreement required by G still holds when G′ is
considered.

7.1.4. Rule g-fassign. This rule accounts for the modification of the data structure pointed
to by a variable by means of a field update. In the following, that a variable is affected means
that the data structure pointed to by it is updated. Given a field update on a variable x , some
other variables (i.e., the data structures pointed to by them) could be affected. There exists
a well-known static analysis which tries to detect which variables point to a data structure
which is updated by a field update on x : this analysis is known as sharing analysis [Secci
and Spoto 2005; Zanardini 2015], and usually comes as possible-sharing analysis, where the
set of variables which could be affected by a field update is over-approximated. Moreover,
aliasing analysis [Hind 2001] can be used in order to compute the set of variables pointing
exactly (and directly) to the same location as x ; in this case, definite-aliasing analysis makes
sense, which under-approximates the set of variables which certainly alias with x . According
to the result of these analyses, reference variables can be partitioned in three categories:
(1) variables which certainly alias with x , so that they can be guaranteed to be updated in
their field f ; (2) variables not in (1) which could share with x , so that they could be affected
by the update in many ways; and (3) variables which certainly do not share with x , so that
they are unaffected by the update. Let sh (x) be the set of variables possibly sharing with
x before the update, and dal (x) be the set of variables definitely aliasing with x . In the
absence of a definite-aliasing analysis, then dal (x) can be safely taken as {x}.

Example 7.5. Consider the following code fragment:

10 i f (. . .) then { y . f := x ; } e l s e { y . f := z ; }
11 w := x ;
12 x . g := e ;

Suppose that, initially, no variable is sharing with any other variable (i.e., there is no
overlapping between data structures referred by different variables), and that the truth
value of the boolean guard cannot be determined statically, so that both branches of the
conditional statement have to be considered as possible executions. In this case, the sharing
and aliasing information before line 12 is as follows:

sh (x) = {x, y,w} dal (x) = {x,w}

Note that every variable is aliasing with itself (none of them is null), w is certainly aliasing
with x because of line 11, and y is possibly sharing with x (the actual sharing depends on
the value of the guard).

The g-fassign rule comes with three pre-conditions. Pre-condition (∗) only applies to
variables in category (1): those definitely aliasing with x . Pre-condition (∗∗) applies to
category (2), while pre-condition (∗∗∗) applies to categories (2) and (3).

— (∗) requires that updating the field f of the location pointed to by x (and all variables
definitely aliasing with it) leads to an agreement on G′, provided that the initial states
agree on G.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38 I. Mastroeni and D. Zanardini

— (∗∗) is similar, but states that the agreements must hold for every sequence of field
selectors ḡ11, possibly the empty sequence. This is needed since, given that some y may
share with x , it cannot be known which fields of y will be updated, and how. In practice,
only the sequences of field selectors which are compatible with the class hierarchy of the
program under study have to be considered, as shown in Example 7.6.

— (∗∗∗) applies to variables that could be unaffected by the update, i.e., variables in cate-
gories (2) and (3) (note that the conditions y ∈ sh (x) in (∗∗) and y /∈ dal (x) in (∗∗∗)
are not mutually exclusive, so that variables in category (2) satisfy both). The relation
between G and G′ is clear in this case, as agreement on G must entail agreement on G′.

Example 7.6 (Infeasible sequences of field selectors). In a Java-like language, a sequence
like 〈.g.f〉 is not compatible with the following class hierarchy since the class of g is D whereas
f is declared in C:

c l a s s C { D f ; D g ; } c l a s s D { D h ; }

Example 7.7. Consider the statement s ≡ x. f := y. Let β = true and the agreement G′
after s be {[x::ρnull], [z::ρnull]}. Let also sh (x) before s be {x}. In this case, an agreement
G which satisfies the judgment

{G}true x. f:=y {G′}

can be the same {[x::ρnull], [z::ρnull]} because

— z is unaffected by the update (it belongs to category (3)), so that G(z) must be at least
as precise as G′(z);

— category (2) contains no variables; and
— category (1) only includes x itself, and the nullity of x is clearly unaffected by the update.

One may think that the universal quantification on field sequences in pre-condition (∗∗)
results in an unacceptable loss of precision. Indeed, to require that all possible updates to
possibly-sharing variables preserve the desired agreements seems to be too strict. However,
there are a number of things to be considered:

—A closer look to the rule shows that there is no easier way to account for sharing if
traditional sharing analysis is used.

—Example 7.7 shows that it is still possible to get meaningful results on domains working
on pointer variables.

—The state of the art in static analysis of object-oriented languages indicates that abstract
domains on pointers are likely to be quite simple (ρnull being one of them).

—There is recent work [Zanardini 2015] introducing a more precise, field-sensitive sharing
analysis which computes how variables share: this analysis is able to detect which fields
are or are not involved in paths in the heap converging from two variables to a shared
location. In order to keep the discussion as simple as possible, the definition of g-fassign
given in Figure 16 uses traditional sharing analysis. However, the impact of field-sensitive
sharing analysis is discussed in Section 7.4, where a refined version of g-fassign is given.

The domain of cyclicity introduced in Section 2.2 represents information about data
structures in the heap, not only program variables. In this sense, field updates have to be
regarded as potentially affecting the propagation of agreements.

11In the following, the notation 〈.f1.f2......fn 〉 (starting with a dot is intentional) will be used to represents
sequences of field selectors.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Abstract Program Slicing: an Abstract Interpretation-based approach to Program Slicing A:39

y x

f g

(cycle)
σ1

x. f:=y

y x

f

g

σ′1

y x

f g

(cycles)
σ2

x. f:=y

y x

f

g

σ′2

Fig. 17. How two executions agreeing on {[x ::ρcyc], [y::ρcyc]} do not agree on {[x ::ρcyc]} after x. f:=y

Example 7.8. Let s be, again, the statement x. f:=y, and G′ be {[x ::ρcyc]}; i.e., the inter-
est is on the cyclicity of the data structure pointed to by x after executing s. Suppose also
that x and y are certainly not sharing before s, and that an object whose type is compatible
with x has two reference fields f and g . Then, the agreement G = {[x ::ρcyc], [y ::ρcyc]} is not
a correct precondition for the Hoare tuple to hold, since there can be two states σ1 and σ2
(Figure 17) such that

— the data structure corresponding to y is acyclic, and equal in both states (therefore,
there is an agreement on the cyclicity of y);

— the data structure corresponding to x is cyclic in both σ1 and σ2, but (a) in σ1 there is
only a cycle originating from the location bound to x .f ; and (b) in σ2 there is a cycle
originating from x .f and another one originating from x .g .

In this case, G(σ1, σ2) holds but the resulting final states σ′1 and σ′2 do not agree on G′ since
x is acyclic in σ′1 (the only cycle has been broken) while it is still cyclic in σ′2. This behavior
is captured by g-fassign because condition (∗) applied to x itself (which, by hypothesis, is
the only variable in dal (x)) does not hold, so that the augmented triple cannot be proven.
On the other hand, {[x ::ρid], [y ::ρcyc]} would be a correct precondition.

7.1.5. Rules g-if1 and g-if2. In a conditional if (b) st else sf there are two possibilities.
Rule g-if1 states that an input agreement which induces the output one whichever path is
taken is a sound precondition. Here, the assertion {G}β st � sf {G′} means that

∀σ1, σ2. G(σ1, σ2) ∧ σ1 |= β ∧ σ2 |= β ⇒
G′(JstK (σ1), JstK (σ2), Jsf K (σ1), Jsf K (σ2))

where the judgment G′(·, ·, ·, ·) means that all four states agree on G′. This rule requires G′
to hold on the output state independently from the value of b. Soundness is easy (note that
the above assertion implies {G}β st {G′} and {G}β sf {G′}).
Note that such a G can always be found (in the worst case, it assigns the identity upper

closure operator ρid to each variable, so that two states agree only if they are exactly equal).
However, sometimes it can be more convenient to exploit information about b. In such cases,

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:40 I. Mastroeni and D. Zanardini

g-if2 can be applied, which means that the initial agreement Gt u Gf is strong enough to
verify the final one, provided the same branch is taken in both executions, as Gb requires.
In fact, Gb is built from b, and separates states according to its value:

Gb(σ1, σ2) ⇔ JbK (σ1) = JbK (σ2)

The rule means that, whenever two states agree on the branch to be executed, and the
triples on both branches hold, the whole triple holds as well.

Lemma 7.9 (soundness of g-if2). If σ1 and σ2 both satisfy β and agree on GbuGtuGf ,
then the corresponding output states σ′1 and σ′2 agree on G′ under the hypotheses of the rule.

Proof. By hypothesis, the same branch is taken in both cases. Conditions β∧b and β∧
¬b are consistent since st (respectively, sf) can only be executed when b is true (respectively,
false). The agreement on G holds in both paths, so that the entire assertion is correct.

Note that the rule to be chosen for the conditional depends on the precision of the
outcome: g-if2 can be a good choice if (1) it can be applied; and (2) the result is “better”
than the one obtained by g-if1. The second condition amounts to say that, given the same
final agreement G′, the initial agreement obtained by using g-if2 is weaker (i.e., it is more
likely that two states agree on it) than the one obtained by using g-if1.

Example 7.10. Consider the code fragment
i f (x>0) { x :=x+1; } e l s e { x :=x−1; }

and let G = {[x ::ρsign]} be the agreement after the statement, i.e., the relevant property is
the sign of x. The rule g-if2 is able to compute the same G as the input agreement because

— the triple {G}β∧b st {G} holds since the condition β ∧ b guarantees that x is positive,
and two states which agree on the sign before the increment will still agree after it (if x
is positive in both states, then it will remain positive in both);

— similarly, the triple {G}β∧¬b sf {G} also holds (if x is 0 in both states, then it will be
negative in both; and if it is negative in both, it will remain negative in both);

— Gb is less precise than G (i.e., G v Gb since the latter only separates numbers into positive
and non-positive), so that the input agreement Gb u G u G is equal to G.

On the other hand, g-if1 is not able to compute the same input agreement because the
precondition {G}β st � sf {G} of the rule does not hold. In fact, consider two states σ1 =
{x← 1} and σ2 = {x← 2}: they agree on the sign of x, but (JstK (σ2))(x) and (Jsf K (σ1))(x)
have different sign (the first is zero while the second is positive).

7.1.6. Rule g-while. The meaning of the rule for loops can be understood by discussing
its soundness: if β is preserved after any iteration of the body, and the agreement which is
preserved by the body guarantees the same number of iterations in both executions (i.e., it
is more precise than Gb), then such an agreement is preserved through the entire loop.

Lemma 7.11 (soundness of g-while). Let σ0
1 and σ0

2 satisfy β, and agree on G u Gb.
Then, given σ′i = Jwhile (b) sw K (σ0

i), the result (G u Gb)(σ′1, σ′2) holds.

Proof. Let σn+1
i = Jsw K (σn

i) for every n ≥ 0, i.e., σn+1
i refers to the situation after the

(n+1)-th iteration. There are two cases, depending on the value of the boolean condition:

— JbK (σn
1) = JbK (σn

2) = false: in this case, the body is not executed, and the result holds
trivially;

— JbK (σn
1) = JbK (σn

2) = true: in this case, σn
i |= β ∧ b. By the hypothesis of the rule, σn+1

1
and σn+1

2 agree on G u Gb , and β still holds since sw (β)⇒ β.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Abstract Program Slicing: an Abstract Interpretation-based approach to Program Slicing A:41

ppβ′ (G′, s) β ⇒ β′ G′ v G
ppβ (G, s) pp-weak ppβ (G, skip) pp-skip

ppβ (G, e) ∀σ. σ |= β ⇒ G(x)(σ(x)) = G(x)(JeK (σ))
ppβ (G, x := e) pp-assign

(∗) ∀y ∈ dal (x) . ∀σ |= β. G(σ, σ[y .f ← JeK (σ)])
(∗∗) ∀y ∈ sh (x) . ∀ḡ ,∀σ |= β. G(σ, σ[y .ḡ ← JeK (σ)])

ppβ (G, x .f :=e) pp-fassign

ppβ (G, s1) pps1(β) (G, s2)
ppβ (G, s1 ;s2) pp-concat

ppβ∧b (G1, s1) ppβ∧¬b (G2, s2)
ppβ (G1 t G2, if (b) s1 else s2) pp-if ppβ∧b (G, s)

ppβ (G,while (b) s) pp-while

Fig. 18. The pp-system

Note that Gb guarantees the same number of iterations in both executions; consequently,
for a terminating loop (non-termination is not considered), σk

1 and σk
2 will fall in the first

case (false guard) after the same number k of iterations. These states are exactly σ′1 and
σ′2, and agree on G u Gb after the loop.

Theorem 7.12 (g-soundness). Let s be a statement, G′ be required after s, β be a
predicate and p be the program point before s. Let also G be an agreement computed before
s by means of the g-system. Let τ1 and τ2 be two trajectories, and the states σ1 ∈ τ1[p] and
σ2 ∈ τ2[p] satisfy G(σ1, σ2) and β. Then, the condition G′(σ′1, σ′2) holds, where σ′i = JsK (σi).

Proof. Easy from Lemmas 7.9 and 7.11, and the discussion explaining each rule (espe-
cially, g-fassign).

7.1.7. The pp-system. Property preservation can be proved by means of a rule system, the
pp-system (Figure 18). Most rules are straightforward or very similar to g-system rules,
and characterize when executing a certain statement preserves the properties represented
by an agreement G (i.e., for every variable x , the property/uco G(x) is preserved).
For example, rule pp-assign allows proving that a certain agreement is preserved when

the initial value of x cannot be distinguished from the value of the expression (i.e., the
new value of x), when it comes to the property G(x). In rule pp-fassign, a mechanism
similar to g-fassign is used: definite aliasing and possible sharing can be used to identify
which variables are affected by the field update. As for g-fassign, an optimization based
on field-sensitive sharing analysis (Section 7.4.2) can be introduced, which makes it easier
to prove property preservation on field updates.
Indeed, a number of optimizations can be applied to the pp-system (for example, one

could think that property preservation on s1 ;s2 does not require the preservation of the
same properties on both statements separately). However, this rule system is not the central
part of this paper, and Figure 18 is just a sensible way to infer property preservation.

7.2. Agreements and slicing criteria
This approach to compute abstract slices follows the standard conditioned, non-iteration-
count form of backward slicing. Therefore, a slicing criterion C takes the form
(I,X , {n}×N, false,A) where n is the last program point, and A is a sequence of ucos

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:42 I. Mastroeni and D. Zanardini

assigning a property to each variable in X . The initial agreement can be easily computed
from the criterion and is such that G = {[x ::Ax] | x ∈ X}, where Ax is the element of
A corresponding to x . This shows that there is a close relation between this specific kind
of slicing criteria and agreements, and in the following, these concepts will be used some-
how interchangeably in informal parts. It will be shown that this makes sense, i.e., criteria
and agreements define tightly related notions. Next definition defines the correctness of
an abstract slice of this kind, where the slicing criterion is intentionally confused with an
agreement.

Definition 7.13 (Abstract slicing condition). Let P s be the slice of P with re-
spect to an agreement (criterion) G. In order for P s to be correct, JPK (σ) and JP sK (σ)
must agree on G for every initial σ: G(JPK (σ), JP sK (σ)).

7.3. Erasing statements
The main purpose of the g-system is to propagate a final agreement backwards through the
program code, in order to have a specific agreement attached to each statement12. This is
done as follows: a program can be seen as a sequence s = s0; ...; sk of k +1 statements, where
each si can be either a simple statement (skip, assignment, field update) or a compound
one (conditional or loop), containing one (the loop body) or two (the branches of the
conditional) sequences of statements (either simple or compound, recursively). The way to
derive an agreement for every statement in the program is depicted in the pseudocode of
Figure 19. The procedure labelSequence takes as input

(1) a sequence of statements (in the first call, it is the whole program code13);
(2) a pair of agreements: (2.a) the first one, Gin , refers to the beginning of the sequence,

and, in the first call, is such that the abstraction on each variable is ρid; and (2.b)
the second one, Gout , is the desired final agreement, which corresponds to the slicing
criterion as discussed in Section 7.2; and

(3) a predicate on states which is supposed to hold at the beginning of the sequence.

labelSequence goes backward through the program code inferring, for each si , an agreement
Gi which corresponds to the program point after si . Gk will be the same Gout , whereas, for
each i , Gi−1 will be inferred by using the g-system: more specifically, it is a (ideally, the
best) precondition such that the tuple {Gi−1}βi−1 si {Gi} holds. Note that, since the initial
G0 is the identity on all variables, {G0}β0 s1; ..; si {Gi} trivially holds for every i (execution
is deterministic); however, the Gin argument plays an important role when dealing with
loop statements.
Statements inside compound statements (e.g., assignments contained in the branch of a

conditional) are also labeled with agreements: this is done by calling labelSequence recursively.
Note that, in this case, if st and s f are, respectively, the sequences corresponding to the
“then” and “else” branch of a conditional statement si , then labelSequence is called with
second argument (Gin ,Gi); this is so because the state does not change when control goes
from the end of a branch to the statement immediately after si .

The treatment of loops follows closely the definition of the rule g-while. In the augmented
triple at line 16, Gi−1 appears before and after the statement; this is consistent with the
rule. The condition Gi−1 v Gi u Gb guarantees that the {Gi−1}βi−1 si {Gi} can be proven
by applying the g-sub rule. Moreover, the recursive call on the body s l at line 19 has

12Here, a statement is not only a piece of code, but also a position (program point) in the program, so
that no two statements are equal, even if they are syntactically identical. For the sake of readability, the
program point is left implicit.
13Strictly speaking, the sequence of statements is the program without the initial sequence of read state-
ments: remember that read statements are basically meant to provide the input.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Abstract Program Slicing: an Abstract Interpretation-based approach to Program Slicing A:43

1 procedure l a b e l S equ en c e (‘ s1; ...; sk ’ , (Gin ,Gout) , β) {
2 G0 = Gin ;
3 Gk = Gout ;
4 e v e r y βi i s s(β) where s = ‘s1; ...; si ’ ;
5 // (remember the t r an s f o rmed p r e d i c a t e s(β))
6 f o r i = k downto 1 {
7 i f (si i s a c o n d i t i o n a l) {
8 l e t b be the guard ;
9 l e t s t and s f be i t s b ranche s ;

10 c a l l l a b e l S equ en c e (s t , (G0,Gi) , βi−1 ∧ b) ;
11 c a l l l a b e l S equ en c e (s f , (G0,Gi) , βi−1 ∧ ¬b) ;
12 Gi−1 i s such tha t {Gi−1}βi−1 si {Gi} ; }
13 e l s e i f (si i s a l oop) {
14 Gi−1 i s an agreement such tha t
15 − Gi−1 v Gi u Gb // (s e e r u l e g-while)
16 − {Gi−1}βi−1 si {Gi−1}
17 l e t b be the guard ;
18 l e t s l be the l oop body ;
19 c a l l l a b e l S equ en c e (s l , (Gi−1,Gi−1) , βi−1 ∧ b) ; }
20 e l s e { // non−compound s ta tement
21 Gi−1 i s such tha t {Gi−1}βi−1 si {Gi} ; } }
22 }

Fig. 19. Labeling program code with agreements by using the g-system

(Gi−1,Gi−1) as its second argument. In this recursive call, the value of the formal parameter
Gin will no longer be, in general, the identity on all variables. The code fragment dealing
with loops (lines 14 to 19) relies on an agreement Gi−1 satisfying a number of conditions
(line 15, line 16, and the success of the recursive call at line 19). It is important to note
that such an agreement always exists, so that the execution of the pseudo-algorithm never
stops: the Gi−1 satisfying all conditions is the identity on all variables.
The following proposition specifies when it is correct to slice out a statement from a

program.

Proposition 7.14. Consider a program P . Suppose that the judgment ppβ (Gs , s) can
be proved, where Gs and βs are computed by labelSequence, and β refers to the program point
before s. In this case, let P ′ be the program P where s has been replaced by skip, and σ
be an initial state. Then, the following holds: upon termination (non-termination is not
considered), JPK (σ) agrees with JP ′K (σ) with respect to the agreement Gout corresponding
to the desired slicing criterion.

Proof. Let τ and τ ′ be two trajectories coming from executing, respectively, P and P ′

from the initial state σ. Let σin [j] and σ′in [j] be the states of τ and τ ′, respectively, when
control reaches the program point before s (or skip, in the case of P ′) for the j -th time, and
σout [j] and σ′out [j] be their corresponding states after s (or skip). If s is not contained in
any loop, then j can only be 1, and the proof is trivial. Otherwise, it can be any number
up to some ks (a non-negative number).
If ks = 0, then the loop is never executed on the input σ, and the proof follows trivially.
Otherwise, σin [1] and σ′in [1] are identical because both executions have been going exactly

through the same statements; as a consequence, they certainly agree on Gs . On the other
hand, σout [1] and σ′out [1] are in general not identical, but they still agree on Gs by the

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:44 I. Mastroeni and D. Zanardini

following:

(1) Gs(σin [1], σ′in [1]) (they are identical)
(2) Gs(σ′in [1], σ′out [1]) (semantics of skip)
(3) Gs(σin [1], σout [1]) (property preservation on s)
(4) Gs(σout [1], σ′out [1]) (transitivity applied to (1), (2) and (3))

Due to how the program is labeled with agreements by labelSequence, the agreement
Gs(σout [1], σ′out [1]) after the first iteration implies an agreement of both executions at the
end of the loop body with respect to the agreement Gend labeling that program point. This
also means that both executions will still agree on Gend at the beginning of the next (sec-
ond) iteration, and (again, by construction) they will also agree on Gs when s is reached
for the second time. This mechanism can be repeated until ks is reached, and it is easy to
realize that the agreement on Gs at the last iteration implies the final agreement on Gout
(see Figure 20 for a picture).
The crux of this reasoning is that, by construction, agreements labeling each program

point imply that, when a statement can be removed from the body, P and P ′ will execute
the loop body the same number of times. In general, this does not mean that every loop
will be executed the same number of times (for example, a property-preserving loop could
be even sliced out completely as in Example 7.17).

Example 7.15. Consider the following program:

23 whi le (y>0) { // {[x ::ρpar], [x ::ρsign]}
24 i f (. . .) { x := x+1; }
25 . . .
26 x := x−2; // {[x ::ρpar], [x ::ρsign]}
27 } // {[x ::ρpar]}

Given the final agreement, the loop cannot be entirely sliced out because parity may
change at line 24. The agreement after lines 23 and 26 is the Gi−1 introduced at line 14
of labelSequence; it clearly satisfies the condition at line 15 of the same algorithm, and we
suppose that it also satisfies the augmented triple of line 16. Then, to remove the statement
at line 26 is irrelevant to the slicing criterion since it does not modify the parity of x nor
the sign of y.

This proposition can be used in order to remove all statements for which such a property-
preservation judgment can be proved. In general, the slice is computed by replacing all
statements s such that ppβ′ (Gs , s) holds by skip, or, equivalently, removing all of them
from the original code. It is easy to observe that this corresponds exactly to the notion of
backward abstract slicing given in Section 4.

Example 7.16. Consider the following code, and let the final nullity of x be the property
of interest (corresponding to the agreement {[x ::ρnull]} after line 15):

8 . . .
9 n := n ∗2 ; // {[n::ρzero]}

10 C x := new C() ; // {[n::ρzero]}
11 i f (n=0) { // {} (f i n a l r e s u l t on t h i s branch a lways n u l l)
12 x := nu l l ; // {[x ::ρnull]}
13 } e l s e { // {} (f i n a l r e s u l t on t h i s branch neve r n u l l)
14 x := new C() ; // {[x ::ρnull]}
15 } // {[x ::ρnull]}

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Abstract Program Slicing: an Abstract Interpretation-based approach to Program Slicing A:45

τ τ ′

body of loop si

. .
ρid (first time), Gi−1

. .

s skip

Gs

Gs

Gi−1

Gs ρid, Gs

Fig. 20. Graphical representation of some aspects of Proposition 7.14. τ and τ ′ are the executions of P and
P ′, respectively. Labeled horizontal double arrows indicate the (provable) agreements between both traces
at different program points: (a) at the beginning of the loop body; (b) before s or skip; (c) after s or skip;
and (d) at the end of the body. Moreover, both s and skip preserve Gs .

Each agreement on the right-hand side is the label after the statement at the same line.
Both lines 9 and 10 can be removed from the slice because:
— the final nullity of x only depends on the equality of n to 0 before line 11, which is

captured by the ρzero domain;
— line 10 does not affect n; and
—multiplying a number by 2 preserves the property of being equal to 0.
Note that, although agreements after lines 11 and 13 are both empty (no matters how the
state is, x will be null after line 12 and non-null after line 14), the one after line 10 is not
because of rule g-if2.

Example 7.17. . Consider again the code of Example 4.1. Starting from the final agree-
ment {[list ::ρcyc]}, the code is annotated as follows:

33 // {[list ::ρcyc]}
34 y := nu l l ; // {[list ::ρcyc]}
35 x := l i s t ; // {[list ::ρcyc], [x ::ρcyc]}
36 whi le (pos >0) { // {[list ::ρcyc], [x ::ρcyc]}
37 y := x ; // {[list ::ρcyc], [x ::ρcyc]}
38 x := x . nex t ; // {[list ::ρcyc], [x ::ρcyc]}
39 pos := pos−1;
40 } // {[list ::ρcyc], [x ::ρcyc]}
41 z := new Node (elem) ; // {[list ::ρcyc], [x ::ρcyc]}
42 z . nex t := x ; // {[list ::ρcyc], [z ::ρcyc], [x ::ρcyc]}
43 i f (y = nu l l) { // {[z ::ρcyc], [x ::ρcyc]}
44 l i s t := z ; // {[list ::ρcyc]}
45 } e l s e { // {[list ::ρcyc], [z ::ρcyc], [x ::ρcyc]}
46 y . nex t = z ; // {[list ::ρcyc]}
47 } // {[list ::ρcyc]}

To prove the necessary tuples, it is important to note that next is the only reference field
selector in the class Node, so that any cycle has to traverse it. Moreover, to prove that
the cyclicity of list after line 46 is related to the cyclicity of list , z and x before that line
needs non-trivial reasoning about data structures; concretely, it is necessary to have some

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:46 I. Mastroeni and D. Zanardini

reachability analysis [Genaim and Zanardini 2013]14 capable to detect that there is no path
from z to y (otherwise, a cycle could be created by y.next = z). This information should be
available as β15, and allows to say that y and list (note that list is affected because it is
sharing with y) are cyclic after line 46 if and only if z or x or list were before that line
(actually, a closer inspection of the code reveals that z, x and list are either all cyclic or
all acyclic before line 46). Variable y does not appear in the agreement at line 45 because
next is the only field, so that any cycle possibly reachable from it before line 46 is no longer
reachable after that same line.
The situation is similar at line 42: the cyclicity of list and x is not affected by the field

update since z is provably not sharing with any of them before line 42. On the other hand,
the cyclicity of z depends on x and list because any cycle reachable from z after line 42
must be also reachable from the other two variables.
Moreover, the agreement does not change in the loop body at lines 36–40 because (1)

data structures are not modified; (2) list is not affected in any way; and (3) the value
of x changes, but its cyclicity does not (by executing x:=x.next, there is no way to make
unreachable a cycle which was reachable before, or the other way around). Importantly,
this also means that the cyclicity of list and x is preserved by the loop, so that it can be
safely removed from the slice (the preserved property is the same as the agreement after
line 40).
On the other hand, the conditional statement at lines 43–47 cannot be removed directly

because it is not possible to prove that the cyclicity of list is preserved through it (actually,
it is not). In order to prove that the whole code between lines 34 and 47 preserves the
cyclicity of list , a kind of case-based reasoning could be used: (1) the initially acyclicity
of list implies its final acyclicity; and (2) the initially cyclicity of list implies its final
cyclicity. Both these results can be proved by standard static-analysis techniques [Genaim
and Zanardini 2013].

Needless to say, slices could be sub-optimal (for example, the requirement about executing
loops the same number of times needs not be satisfied by any correct slice). It is not difficult
to see that, if a “concrete” slicing criterion would be considered instead of an abstract one,
then agreements would only be allowed to contain conditions [x ::ρid] for a certain set of
variables. The labelSequence would work exactly the same way, with an important difference:
when trying to compute the precondition of a tuple {_}β s {G}, the possible outcome could,
again, contain only conditions [x ::ρid].

Example 7.18. In Example 7.16, suppose the final agreement be {[x ::ρid]}, corresponding
to a concrete slicing criterion interested in (the exact value of) x . In this case, the agreement
after line 10 could only be {[n::ρid]}, since (1) {} would not be correct, and (2) no other
abstract domain can appear in agreements. This way, line 9 could not be sliced out since it
does not preserve the ρid property of n.

Semantically, abstract slices are in general smaller than concrete slices. This is also the
case of Example 7.18. Clearly, this does not imply that every abstract slicing algorithm
would remove more statements than every concrete slicing algorithm.

14Note that pair-sharing-based cyclicity analysis [Rossignoli and Spoto 2006] is not enough since y and z
are sharing before line 46.
15See Section 2.4 and the beginning of this section for a discussion about β and similar examples of statically-
inferred information about states.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Abstract Program Slicing: an Abstract Interpretation-based approach to Program Slicing A:47

7.4. Practical issues and optimizations
This section discusses how the analysis can realistically deal with the computation of ab-
stract dependencies and the propagation of agreements, and an optimization based on recent
work on sharing.

7.4.1. Agreements and ucos. One of the major challenges of the whole approach is how
agreements are propagated backwards through the code as precisely as possible, i.e., being
able to detect that agreement on some ucos before s implies agreement on (possibly) other
ucos after s.
Ideally, given s, β and G′, the g-system should find the best G such that {G}β s {G′}.

However, it is clearly unrealistic to imagine that the static analyzer will always be able to
find the best ucos without going into severe scalability (even decidability) issues: in general,
there exist infinite possible choices for an input agreement satisfying the augmented triple. In
practice, an implementation of this slicing algorithm will be equipped with a library of ucos
among which the satisfaction of augmented triples can be checked. The wider the library,
the more precise the results. Rule of the pp-system and the g-system can be specialized
with respect to the ucos at hand.

Example 7.19. Consider this code already presented in Example 7.16, where the slicing
criterion is the final nullity of x:

8 . . .
9 n := n ∗2 ;

10 C x := new C() ;
11 i f (n=0) {
12 x := nu l l ;
13 } e l s e {
14 x := new C() ;
15 }

In order to be able to remove lines 9 and 10 from the slice, an analyzer has to “know” that,
after merging the result of both branches, the uco ρzero precisely describes the agreement
before line 11. In other words, the analyzer must know both ρzero and ρnull in order to be
able to manipulate information about them. Moreover, given a library of ucos, rules can
be optimized for some recurrent programming patterns like guards (n=0) or (x=null), or
statements m:=0.

It is clear that to design of an analyzer which is able to deal with all possible ucos is
infeasible. However, the combination of some simple numeric or reference domains like the
one described in this paper would already lead to meaningful results.

7.4.2. Use of Field-Sensitive Sharing. As already mentioned, field-sensitive sharing analysis
[Zanardini 2015] is able to keep track of fields which are involved in converging paths from
two variables to a common location in the heap (the shared location). A propositional
formula is attached to each pair of variables and each program point, and specifies the
fields involved in every pair of converging paths reaching a common location. For example,
if the formula ¬ f ∧ g is attached to a pair of variables (x , y) at a certain program point
n (written Sn(x , y) = ¬ f ∧ g), this means that the analysis was able to detect that, for
every two paths π1 and π2 in the heap starting from x and y , respectively, and both ending
in the same (shared) location,

— π1 certainly does not traverse field f, as dictated by ¬ f (arrows from top-left to bottom-
right refer to paths from x , i.e., the first variable in the pair under study); and

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:48 I. Mastroeni and D. Zanardini

— π2 certainly traverses g, as prescribed by g (arrows from top-right to bottom-left refer
to paths from y).

In presence of such an analysis, two kinds of improvements can be potentially obtained
when analyzing a field update:

— the number of variables which can be actually affected by an update is, in general, reduced
since it is possible to guarantee that some (traditionally) sharing variables will not be
affected;

— even for variables which are (still) possibly sharing with x , the set of field sequences ḡ
to be considered can be substantially smaller.

Example 7.20. Suppose that field-sensitive sharing analysis is able to guarantee the
following at a program point before the field update x. f:=e:

—The formula ¬ f ∧ g correctly describes the sharing between x and y; and
—The formula h correctly describes the sharing between x and z.

According to the traditional notion of sharing, both y and z may share with x. However,

— the assignment x. f:=e provably does not affect y because no path from x traversing f will
reach a location that is also reachable from y; and

—when considering all the possible field sequences starting from z, only those containing h
have to be considered.

The rule g-fassign can be refined by using field-sensitive sharing, as follows. Let n be
the program point before the field update.

— in pre-condition (∗∗), the only sharing variables that have to be dealt with are those for
which it cannot be proved that they are unaffected by the update; this can be done by
defining a new set shf (x) of variables which are possibly sharing with x in such a way
that some path from x to a shared location could traverse f :

shf (x) = {y | Sn(x , y) 6|= ¬ f }

This means that y is considered as potentially affected by the update when the propo-
sitional formula describing how it shares with x does not entail that paths from x to
shared locations do not traverse f .

— in the same pre-condition (∗∗), the universal quantification on field sequences can be
restricted to those compatible with field-sensitive information. More formally, a field se-
quence 〈.f1.f2.....fn〉 has to be considered only if it is possible that a path from y traversing
exactly those fields ends in a shared location, or, equivalently, if the set { f , f1 , f2 , .., fn }
is a model of Sn(x , y). That such a set is a model of Sn(x , y) is equivalent to say that
the field-sensitive information is compatible with the existence of a pair of paths π1 and
π2 such that (1) π1 starts from x ; (2) π2 starts from y ; (3) π1 only traverses f ; (4) π2
traverses all and only the fields f1, f2, ...fn ; and (5) both paths end in the same shared
location. Let fields(ḡ) be the set of fields contained in the field sequence ḡ . Then, the
above condition can be written as

shx ,y
seq (f , ḡ) ≡

∧
p∈X

p ∧
∧
q /∈X

¬q |= Sn(x , y)

where X = { f } ∪ { g | g ∈ fields(ḡ)}, and q /∈ X means that q is any proposition h or
h (for some field h) not included in X .

The refined g-fassign rule, called g-fassign2, comes to be

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Abstract Program Slicing: an Abstract Interpretation-based approach to Program Slicing A:49

(∗) ∀y ∈ dal (x) . ∀σ1 |= β, σ2 |= β.
G(σ1, σ2)⇒
G′(σ1[y .f ← JeK (σ1)], σ2[y .f ← JeK (σ2)])

(∗∗) ∀y ∈ shf (x) . ∀ḡ . shx ,y
seq (f , ḡ)⇒ (∀σ1 |= β, σ2 |= β.

G(σ1, σ2)⇒
G′(σ1[y .ḡ ← JeK (σ1)], σ2[y .ḡ ← JeK (σ2)]))

(∗∗∗) ∀y /∈ dal (x) . G(y) v G′(y)
{G}β x .f :=e {G′}

g-fassign2

7.5. Comparison with related algorithms
The Tukra Abstract Program Slicing Tool [Halder and Cortesi 2012] implements the compu-
tation of a Dependence Condition Graph [Halder and Cortesi 2013] for performing abstract
slicing. To use a Program Dependence Graph is somehow alternative to the computation of
agreements. As far as the author make it possible to understand, Tukra only deals with nu-
merical values, and it is not clear which properties are supported (i.e., which is the “library”
of ucos mentioned in Section 7.4.1).
Moreover, the authors of that tool point out that their approach is able to exclude some

dependencies that were not ruled out in previous work introducing abstract dependencies
[Mastroeni and Zanardini 2008]. However, they do not consider that a rule system for com-
puting agreements (essentially, the g-system described in the present paper) was introduced
[Zanardini 2008] before Tukra was developed, and does not suffer from the limitations they
describe.

8. RELATED WORK
The formal framework referred to in this paper [Binkley et al. 2006a] is not the only at-
tempt to provide a unified mathematical framework from program slicing. In [Ward and
Zedan 2007], the authors have precisely this aim. In this work, the authors unify differ-
ent approaches to program slicing by defining a particular semantic relation, based on the
weakest precondition semantics, called semirefinement such that, given a program P , the
possible slices are all the programs that are semirefinements of P . In this framework, dif-
ferent forms of slicing are modeled as program transformations. Hence, a program Q is a
slice of P if the transformation of Q (corresponding to the particular form of slicing to
compute) is a semirefinement of the same transformation of P . This approach is extremely
interesting, but does not really allow to compare the different forms of slicing, feature that
we consider fundamental for introducing the new abstract forms of slicing as generalizations
of the existing ones. It may surely deserve further research to study whether also abstract
slicing could be modeled in this framework.
As far as the relation between slicing and dependencies is concerned, there are at least

two works that are related with our ideas in different ways. One of the first works aiming
at formalizing a semantic approach to dependency, leading to a semantic computation of
slicing, is the information-flow logic by Amtoft and Banerjee [Amtoft and Banerjee 2007].
This logic allows us to formally derive, by structural induction, the set of all the indepen-
dencies among variables. In Figure 21, the original notation proposed by the authors is
used, where [x ny] is to be read as “the current value of x is independent of the initial value
of y”, and holds if, for each pair of initial states which agree on all the variables but y , the
corresponding current states agree on x . Hence, T# stands for sets of independencies, and
G is a set of variables representing the context, i.e., (a superset of) the variables on which
at least one test surrounding the statements depends on.
In our aim of defining slicing in terms of dependencies, the first thing we have to ob-
serve in this logic is that it always computes (in)dependencies from the initial val-

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:50 I. Mastroeni and D. Zanardini

G ` {T#
0 } x := e {T#}

if ∀[y n w] ∈ T#. (x 6= y ⇒ [y n w] ∈ T#
0)

(x = y ⇒ (w /∈ G ∧ ∀z ∈ vars (e). [z n w] ∈ T#
0))

G0 ` {T#
0 }s1{T#} G0 ` {T#

0 }s2{T#}

G ` {T#
0 }if e then s1 else s2{T#}

if G ⊆ G0 ∧ (w /∈ G0 ⇒ ∀x ∈ vars (e). [x n w] ∈ T#
0)

G0 ` {T#}s{T#}

G ` {T#}while e do s{T#}
if G ⊆ G0 ∧ (w /∈ G0 ⇒ ∀x ∈ vars (e). [x n w] ∈ T#)

Fig. 21. A fragment of the independency logic

ues of variables. This makes its use for slicing not so straightforward, since it loses
the local dependency between statements. Consider for example the program fragment
P = w:=x+1; y:=w+2; z:=y+3. At the end of this program, we know that z only depends on
the initial value of x, but, by using the logic in Fig. 21, we lose the trace of (in)dependencies
which, in this case, would involve all the three assignments. As a matter of fact, this logic
is more suitable for forward slicing, which is the one considered by the authors [Amtoft and
Banerjee 2007], since it fixes the criterion on the input. In the trivial example given above,
if we consider as criterion the input of x, then we obtain that all the statements depend on
x. Therefore, any slice of the original program contains all statements [Amtoft and Banerjee
2007]. In the logic, more explicitly, this notion of dependency is used for characterizing the
set of independencies holding during the execution of a program.
Another, more recent, approach to slicing by means of dependencies is [Danicic et al.

2011]. In this work, the authors propose new definitions of control dependencies: non-
termination sensitive and insensitive. These new semantic notions of dependencies are then
used for computing more precise standard slices. It could be surely interesting to study the
semantic relation between their notion of dependencies and the ones we propose in this
paper.
Finally, a related algorithm for computing abstract slices has been already discussed in

Section 7.5. It is necessary to point out that the agreement-based approach to abstract
slicing [Zanardini 2008] was introduced before the Tukra tool.

9. CONCLUSION AND FUTURE WORK
The present paper formally defines the notion of abstract program slicing, a general form
of slicing where properties of data are observed instead of their exact value. A formal
framework is introduced where the different forms of abstract slicing can be compared;
moreover, traditional, non-abstract forms of slicing are also included in the framework,
allowing to prove that non-abstract slicing is a special case of abstract slicing where no
abstraction on data is performed.
Algorithms for computing abstract dependencies and program slices are given. Future

work includes an implementation of this analysis for an Object-Oriented programming lan-
guage where properties may refer either to numerical or reference values (to the best of our
knowledge, existing tools only deal with integer variables). On the other hand, we observed
that the provided notion of abstract dependency is not suitable for slicing computation by
using PDGs. We believe that it is possible to further generalize the notion of abstract de-
pendencies allowing to characterize a recursive algorithm able to track backwards both the

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Abstract Program Slicing: an Abstract Interpretation-based approach to Program Slicing A:51

variables that affect the criterion, and the abstract properties of these variables affecting
the abstract criterion.
Another interesting line of research is to understand how other approaches to slicing can

be extended in order to include abstract slicing. As noted before, it would be interesting to
study whether it is possible to model abstract slicing as a program transformation, allowing
us to define also abstract slicing in term of semirefinement [Ward and Zedan 2007]. Another,
more algorithmic, interesting approach is the one proposed in [Barros et al. 2010], where
weakest precondition and strongest postcondition semantics are combined in a new more
precise algorithm for standard slicing. It could be very interesting to understand whether
this approach could be extended in order to cope also with the computation of abstract
forms of slicing.

ACKNOWLEDGMENTS
This work was funded partially by the EU project FP7-ICT-610582 ENVISAGE: Engineering Virtualized
Services (http://www.envisage-project.eu), by the Spanish MINECO projects TIN2012-38137 and TIN2015-
69175-C4-2-R, and by the CM project S2013/ICE-3006.

REFERENCES
T. Amtoft and A. Banerjee. 2007. A logic for information flow analysis with an application to forward slicing

of simple imperative programs. Science of Computer Programming 64, 1 (2007), 3–28.
Jose Bernardo Barros, Daniela da Cruz, Pedro Rangel Henriques, and Jorge Sousa Pinto. 2010. Assertion-

based Slicing and Slice Graphs. In Proceedings of the 2010 8th IEEE International Conference on
Software Engineering and Formal Methods (SEFM ’10). IEEE Computer Society, Washington, DC,
USA, 93–102.

A. Bijlsma and R.P. Nederpelt. 1998. Dijkstra-Scholten predicate calculus : concepts and misconceptions.
Acta Informatica 35, 12 (1998), 1007–1036.

D. Binkley, S. Danicic, T. Gyimóthy, M. Harman, Á. Kiss, and B. Korel. 2006a. A formalisation of the
relationship between forms of program slicing. Science of Computer Programming 62, 3 (2006), 228–
252.

D. Binkley, S. Danicic, T. Gyimóthy, M. Harman, Á. Kiss, and B. Korel. 2006b. Theoretical foundations of
dynamic program slicing. Theoretical Computer Science 360, 1 (2006), 23–41.

D. W. Binkley and K. B. Gallagher. 1996. Program Slicing. Advances in Computers 43 (1996).
G. Canfora, A. Cinitile, and A. De Lucia. 1998. Conditioned program slicing. Information and Software

Technology 40 (1998), 11–12.
Aniello Cimitile, Andrea De Lucia, and Malcolm Munro. 1996. A specification driven slicing process for

identifying reusable functions. Journal of Software Maintenance 8, 3 (1996), 145–178.
P. Cousot. 2001. Abstract Interpretation Based Formal Methods and Future Challenges. In Informatics -

10 Years Back. 10 Years Ahead. 138–156.
P. Cousot and R. Cousot. 1977. Abstract interpretation: A unified lattice model for static analysis of pro-

grams by construction or approximation of fixpoints. In Proceedings of ACM Symposium on Principles
of Programming Languages (POPL). ACM Press, New York, 238–252.

P. Cousot and R. Cousot. 1979. Systematic design of program analysis frameworks. In Proceedings of ACM
Symposium on Principles of Programming Languages (POPL). ACM Press, New York, 269–282.

Sebastian Danicic, Richard W. Barraclough, Mark Harman, John D. Howroyd, Ákos Kiss, and Michael R.
Laurence. 2011. A Unifying Theory of Control Dependence and Its Application to Arbitrary Program
Structures. Theor. Comput. Sci. 412, 49 (2011), 6809–6842.

A. De Lucia. 2001. Program Slicing: Methods and Applications. In Proceedings of International Workshop
on Source Code Analysis and Manipulation (SCAM).

E. Dijkstra. 1975. Guarded commands, nondeterminacy and formal derivation of programs. Commun. ACM
18, 8 (1975), 453–457.

E. Dijkstra and C. S. Scholten. 1990. Predicate Calculus and Program Semantics. Springer-Verlag.
John Field, G. Ramalingam, and Frank Tip. 1995. Parametric program slicing. In Proceedings of ACM

Symposium on Principles of Programming Languages (POPL). ACM Press, 379–392.
K. B. Gallagher and J. R. Lyle. 1991. Using program slicing in software maintenance. IEEE Transactions

on Software Engineering 17, 8 (1991), 751–761.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:52 I. Mastroeni and D. Zanardini

Samir Genaim and Damiano Zanardini. 2013. Reachability-based Acyclicity Analysis by Abstract Interpre-
tation. Theoretical Computer Science 474, 0 (February 2013), 60–79.

Roberto Giacobazzi, Neil D. Jones, and Isabella Mastroeni. 2012. Obfuscation by partial evaluation of
distorted interpreters. In Proceedings of the ACM SIGPLAN 2012 Workshop on Partial Evaluation
and Program Manipulation, PEPM 2012, Philadelphia, Pennsylvania, USA, January 23-24, 2012.
63–72.

R. Giacobazzi and I. Mastroeni. 2004a. Abstract Non-Interference: Parameterizing Non-Interference by
Abstract Interpretation. In Proceedings of ACM Symposium on Principles of Programming Languages
(POPL). ACM Press, 186–197.

R. Giacobazzi and I. Mastroeni. 2004b. Proving Abstract Non-Interference. In Annual Conf. of the European
Association for Computer Science Logic (CSL ’04), A. Tarlecki J. Marcinkowski (Ed.), Vol. 3210.
Springer-Verlag, Berlin, 280–294.

R. Giacobazzi, F. Ranzato, and F. Scozzari. 2000. Making abstract interpretations complete. J. of the ACM.
47, 2 (2000), 361–416.

Raju Halder and Agostino Cortesi. 2012. Tukra: An Abstract Program Slicing Tool. In Proceedings of
International Conference on Software Paradigm Trends (ICSOFT). 178–183.

Raju Halder and Agostino Cortesi. 2013. Abstract program slicing on dependence condition graphs. Science
of Computer Programming 78, 9 (2013), 1240–1263.

Michael Hind. 2001. Pointer Analysis: Haven’T We Solved This Problem Yet?. In Proceedings of the Work-
shop on Program Analysis for Software Tools and Engineering (PASTE). ACM Press, New York,
54–61.

C.A.R Hoare. 1969. An axiomatic basis for computer programming. Commun. ACM 12, 10 (1969), 576–580.
S. Horwitz, J. Prins, and T. Reps. 1989. Integrating non-interfering versions of programs. ACM Transaction

on Programming Languages and Systems 11, 3 (1989).
S. Hunt and I. Mastroeni. 2005. The PER model of Abstract Non-Interference. In Proceedings of Static

Analysis Symposium (SAS) (Lecture Notes in Computer Science), Vol. 3672. Springer-Verlag, 171–185.
B. Korel and J. Laski. 1988. Dynamic Program Slicing. Inform. Process. Lett. 29, 3 (1988), 155–183.
A. Majumdar, S. J. Drape, and C. D. Thomborson. 2007. Slicing obfuscations: design, correctness, and

evaluation. In Proceedings of ACM Workshop on Digital Rights Management (DRM). ACM, New
York, NY, USA, 70–81.

Isabella Mastroeni. 2013. Abstract interpretation-based approaches to Security - A Survey on Abstract Non-
Interference and its Challenging Applications. In Semantics, Abstract Interpretation, and Reasoning
about Programs: Essays Dedicated to David A. Schmidt on the Occasion of his Sixtieth Birthday,
Manhattan, Kansas, USA, 19-20th September 2013. 41–65.

I. Mastroeni and Ð. Nikolić. 2010. Abstract Program Slicing: From Theory towards an Implementation. In
Proceedings of International Conference on Formal Engineering Methods (ICFEM) (Lecture Notes in
Computer Science), Vol. 6447. Springer-Verlag, 452–467.

I. Mastroeni and D. Zanardini. 2008. Data dependencies and program slicing: From syntax to abstract
semantics. In Proceedings of Symposium on Partial Evaluation and Semantics-Based Program Manip-
ulation (PEPM). 125–134.

F. Ranzato and F. Tapparo. 2002. Making abstract model checking strongly preserving. In Proceedings of
Static Analysis Symposium (SAS) (Lecture Notes in Computer Science), Vol. 2477. Springer-Verlag,
411–427.

T. Reps. 1991. Algebraic properties of program integration. Science of Computer Programming 17 (1991),
139–215.

T. Reps and W. Yang. 1989. The semantics of program slicing and program integration. In Proc. of the
Colloq. on Current Issues in Programming Languages (Lecture Notes in Computer Science), J. Diaz
and F. Orejas (Eds.), Vol. 352. Springer-Verlag, Berlin, 360–374.

Stefano Rossignoli and Fausto Spoto. 2006. Detecting Non-cyclicity by Abstract Compilation into Boolean
Functions. In Proceedings of the International Conference on Verification, Model Checking, and Ab-
stract Interpretation (VMCAI) (Lecture Notes in Computer Science), Vol. 3855. Springer-Verlag, 95–
110.

S. Secci and F. Spoto. 2005. Pair-Sharing Analysis of Object-Oriented Programs. In Proceedings of the
Interanational Symposium on Static Analysis (SAS). Springer-Verlag, 320–335.

F. Tip. 1995. A survey of program slicing techniques. Journal of Programming Languages 3 (1995), 121–181.
M. Ward and H. Zedan. 2007. Slicing as a program transformation. ACM Transactions on Programming

Languages and Systems 29, 2 (2007).
M. Weiser. 1984. Program slicing. IEEE Trans. on Software Engineering 10, 4 (1984), 352–357.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Abstract Program Slicing: an Abstract Interpretation-based approach to Program Slicing A:53

D. Zanardini. 2008. The Semantics of Abstract Program Slicing. In Proceeding of Working Conference on
Source Code Analysis and Manipualtion (SCAM).

Damiano Zanardini. 2015. Field-Sensitive Sharing. CoRR abs/1306.6526 (2015). http://arxiv.org/abs/1306.
6526

A. THE FORMAL FRAMEWORK OF PROGRAM SLICING
In this section, we first provide a better intuition of the differences between the forms of
slicing introduced in Section 3.1 by means of examples and then we recall the main notions
introduced in [Binkley et al. 2006a; 2006b] that has been generalized in this paper in the
abstract form.

Different forms of slicing: some examples
Example A.1. Consider the program on the left in Figure 22. Suppose that the execution

start with an initial value 2 for n (written n← 2). States are denoted as (mk , µ), where m is
the program point of the executed statement, k is its current iteration (i.e., the statement
at m is being executed for the k -th time in the loop unrolling), and µ is the actual memory,
represented by a list of pairings x ← v). In the picture, mk is depicted in the first (fully
colored) box, while the memory is depicted in the remaining boxes, one for each variable.
A program state that is not executed in a trace is depicted by overwriting a grey cross on
each box (program point and variables). The execution trajectory is the following:

Mastroeni Isabella ©

Example

3

11 n

2

21 n

2

i

1

31 n

2

i

1

41 n

2

i

1

61 n

2

i

1

x

18

71 n

2

i

2

x

18

32 n

2

i

2

x

18

42 n

2

i

2

x

18

51 n

2

i

2

x

17

72 n

2

i

3

x

17

33 n

2

i

3

x

17

91 n

2

i

3

x

17

111 n

2

i

3

x

17

61 n i x 71 n i 32 n i

42 n i 51 n i x 72 n i x 33 n i x 91 n i x 111 n i x

17

11 n

2

21 n i 31 n i 41 n i

2 1 2 1 2 1 2 2 2 2

2 2 2 2 17 2 3 17 2 3 17 2 3 17 2 3

11 n 21 n i 31 n i 41 n i 61 n i 71 n i 32 n i

42 n i 51 n i 72 n i 33 n i 91 n i x 101 n i

2 1

111 n i x

172 1

2 2 1

2 1 17

x

Consider now the code in the center, whose execution trajectory is the following:

Mastroeni Isabella ©

Example

3

11 n

2

21 n

2

i

1

31 n

2

i

1

41 n

2

i

1

61 n

2

i

1

x

18

71 n

2

i

2

x

18

32 n

2

i

2

x

18

42 n

2

i

2

x

18

51 n

2

i

2

x

17

72 n

2

i

3

x

17

33 n

2

i

3

x

17

91 n

2

i

3

x

17

111 n

2

i

3

x

17

61 n i x 71 n i 32 n i

42 n i 51 n i x 72 n i x 33 n i x 91 n i x 111 n i x

17

11 n

2

21 n i 31 n i 41 n i

2 1 2 1 2 1 2 2 2 2

2 2 2 2 17 2 3 17 2 3 17 2 3 17 2 3

11 n 21 n i 31 n i 41 n i 61 n i 71 n i 32 n i

42 n i 51 n i 72 n i 33 n i 91 n i x 101 n i

2 1

111 n i x

172 1

2 2 1

2 1 17

x

precisely the same path on the statements which are in both programs (the only difference is
the execution, in the original program of the statement at point 6, erased in the "candidate"
slice); hence, it is a slice according both to the standard and the KL form, namely w.r.t.
C = ({n← 2}, {x}, {〈11,N〉}, ψ) for both possible values of ψ.
Suppose now we are interested in an IC form of slice, and the value of x at the second
iteration of the program point 3. In this case, the program on the right is not a dynamic
slice, since the value of x in the original program is 18, while it is undefined in the candidate
slice. In other words, this program is not a slice of the program on the left w.r.t. the criterion
C = ({n← 2}, {x}, {〈3, {2}〉}, ψ) (ψ may be both true or false).
Finally, let us consider the execution of the program on the right in Figure 22:

Mastroeni Isabella ©

Example

3

11 n

2

21 n

2

i

1

31 n

2

i

1

41 n

2

i

1

61 n

2

i

1

x

18

71 n

2

i

2

x

18

32 n

2

i

2

x

18

42 n

2

i

2

x

18

51 n

2

i

2

x

17

72 n

2

i

3

x

17

33 n

2

i

3

x

17

91 n

2

i

3

x

17

111 n

2

i

3

x

17

61 n i x 71 n i 32 n i

42 n i 51 n i x 72 n i x 33 n i x 91 n i x 111 n i x

17

11 n

2

21 n i 31 n i 41 n i

2 1 2 1 2 1 2 2 2 2

2 2 2 2 17 2 3 17 2 3 17 2 3 17 2 3

11 n 21 n i 31 n i 41 n i 61 n i 71 n i 32 n i

42 n i 51 n i 72 n i 33 n i 91 n i x 101 n i

2 1

111 n i x

172 1

2 2 1

2 1 17

x

This last program is a standard dynamic slice since the final value of the variable of interest
x is the same, but it is not a slice in the KL form, since in this last program the statement

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:54 I. Mastroeni and D. Zanardini
1 read (n) ;
2 i := 1 ;
3 whi le (i <= n) do {
4 i f (i mod 2 = 0) {
5 x := 17 ; }
6 e l s e { x := 18 ; }
7 i := i + 1 ;
8 }
9 i f (i = 1) {

10 x := 17 ; }
11 w r i t e (i , n , x) ;

1 read (n) ;
2 i := 1 ;
3 whi le (i <= n) {
4 i f (i mod 2 = 0) {
5 x := 17 ; }
6

7 i := i + 1 ;
8 }
9 i f (i = 1) {

10 x := 17 ; }
11 w r i t e (i , n , x) ;

1 read (n) ;
2 i := 1 ;
3

4

5

6

7

8

9 i f (i = 1) {
10 x := 17 ; }
11 w r i t e (i , n , x) ;

Fig. 22. Programs of Example A.1
1 read (n) ;
2 i := 1 ;
3 i := 2 ;
4 i f (i mod 2 = 0) {
5 x := i + n ; }
6 i f (i mod 2 = 1) {
7 x := i + n + 1 ; }
8 w r i t e (i , n , x) ;

1 read (n) ;
2 i := 1 ;
3

4

5

6 i f (i mod 2 = 1) {
7 x := i + n + 1 ; }
8 w r i t e (i , n , x) ;

Fig. 23. Programs of Example A.2

at program point 10 is executed, while in the original program it is not executed. Namely,
it is a slice w.r.t. the criterion C = ({n← 2}, {x}, {〈11,N〉}, ψ) only for ψ = false.
The following example shows the difference between standard and KL forms of static

slicing.
Example A.2. Consider the program P on the left of Figure 23. Suppose static slicing

is considered, i.e., all the possible initial memories are taken into account. Given an input
v , the state trajectory is:

Mastroeni Isabella ©

Another example

13

11 n

v

21 n

v

i

1

31 n

v

i

2

41 n

v

i

2

51 n

v

i

2

x

v+2

61 n

v

i

2

x

v+2

81 n

v

i

2

x

v+2

51 n i x11 n 21 n i 31 n i 41 n i 61 n i 72 n i x

81 n i x

v 1 v 1 v+2

v 1 v+2

v v 1

Consider now the code on the right: its state trajectory is

Mastroeni Isabella ©

Another example

13

11 n

v

21 n

v

i

1

31 n

v

i

2

41 n

v

i

2

51 n

v

i

2

x

v+2

61 n

v

i

2

x

v+2

81 n

v

i

2

x

v+2

51 n i x11 n 21 n i 31 n i 41 n i 61 n i 72 n i x

81 n i x

v 1 v 1 v+2

v 1 v+2

v v 1

Consider the standard form of static slicing interested in x at program point 81, i.e., C =
({n ← N}, {x}, {〈8, {1}〉}, false). Then, the program on the right is a slice of P w.r.t. C ,
since in 81 the value of x is v + 2 in both cases. On the other hand, if we consider the KL
form, C = ({n ← N}, {x}, {〈8, {1}〉}, true), then the program is not anymore a slice of P
since there is a program point, 71, which is not reached in P .

The unified equivalence
The first step for defining the formal framework is to define an equivalence relation between
programs, determining when a program is a slice of another. First, a restricted memory is
obtained from a memory by restricting its domain to a set of variables. More formally, the
restriction of µ with respect to a set of variables X is defined as µ � X such that (µ � X)(x)
is equal to µ(x) if x ∈ X , and undefined otherwise. This restriction is used to project the

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Abstract Program Slicing: an Abstract Interpretation-based approach to Program Slicing A:55

trace semantics only on those points of interest where we have to check the correspondence
between the original program and the candidate slice.
The trajectory projection operator modifies a state trajectory by removing all those states

which do not contain occurrences of program points which are relevant for the slicing crite-
rion.

Definition A.3 (Trajectory Projection [Binkley et al. 2006a]). Let C =
(I,X ,O, ψ), and L ⊆ L such that L 6= ∅ if ψ = true, L = ∅ if ψ = false. For any
n ∈ L, k ∈ N, µ ∈M, we define the function Proj0 as:

Proj0
(X ,O,L)(nk , µ) def=

 〈n
k , µ � X〉 if (∃〈n,K 〉 ∈ O. k ∈ K

〈nk ,⊥〉 if (@〈n,K 〉 ∈ O. k ∈ K) and n ∈ L
ε otherwise.

where ε is the empty sequence. The trace projection Proj is the extension of Proj0 to se-
quences (◦ is sequence concatenation):

Proj(X ,O,L)(〈(nk1
1 , µ1), . . . , (nkl

l , µl)〉) = Proj0
(X ,O,L)(n

k1
1 , µ1) ◦ . . . ◦ Proj0

(X ,O,L)(n
kl
l , µl)

Proj0 takes a state from a state trajectory, and returns either one pair or an empty sequence
ε. If nk is an occurrence of interest, then it returns 〈(nk , µ � X)〉. This means that, at n,
we consider exact values of variables in X . If nk is not an occurrence of interest, but, due
to a KL form, the projection has to keep trace of a set L of executed statements (even if the
variables in that point are not of interest), then Proj0 returns 〈(nk , µ � ∅)〉, meaning that
we require the execution of n, but we are not interested in the values of variables in X .
Trajectory projection allows us to define all the semantic equivalence relations character-

izing on what a program and its slices have to agree due to the chosen criterion.. Given two
programs P and Q , we can say that Q is a slice of P if it contains a subset of the origi-
nal statements and Q is equivalent to P with respect to the semantic equivalence relation
induced by chosen the slicing criterion.

Definition A.4 ([Binkley et al. 2006a]). Let P and Q be executable programs, and
C = (I,X ,O, ψ) be a slicing criterion. Let LP ⊆ L be the set of program points of P , and
L = LP ∩LQ if ψ = true16 (L = ∅ if ψ = false). Then P is equivalent to Q w.r.t. C if and
only if

∀µ ∈ I. Proj(X ,O,L)(τ
µ
P) = Proj(X ,O,L)(τ

µ
Q)

The function E maps any criterion C to the r to the corresponding semantic equivalence
relation, hence, in this case, we write 〈P ,Q〉 ∈ E(C).

Example A.5. Consider the Program P in the left of Figure 7; let the input for n be
2. Suppose we want to compute a non-iteration-count KL form of dynamic slicing, i.e.,
C = ({n← {2}}, { i , s}, 〈8,N〉, true). Namely, the variables of interest are i and s, which are
observed at the program point 8 each time it is reached, and the slice has not to execute
statements not executed in the original program. The program on the right of Figure 7 is
a slice w.r.t. C . In Figure 24 we have the execution trajectory of the original program (on
the top), the execution trajectory of the candidate slice (in the middle) and the (same)
projection of the two trajectories due to the chosen criterion (on the bottom).
The formal framework proposed in [Binkley et al. 2006a; 2006b] represents different forms

of slicing by means of a (v, E) pair: a syntactic preorder, and a function from slicing criteria

16Note that, when LQ ⊆ LP , as we suppose in this paper, then L = LQ . We provide the general definition
since the original definition of dynamic slicing [Korel and Laski 1988] does not require that all the line of
Q are included in L; however, our choice follows the paths taken in the original framework [Binkley et al.
2006b].

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:56 I. Mastroeni and D. Zanardini

Mastroeni Isabella ©

Example of Static slicing

11 n

2

21 n

2

i

1

31 n

2

i

1

s

0

41 n

2

i

1

s

0

p

1

51 n

2

i

1

s

0

p

1

61 n

2

i

1

s

1

p

1

71 n

2

i

1

s

1

p

1

81 n

2

i

2

s

1

p

1

52 n

2

i

2

s

1

p

1

62 n

2

i

2

s

3

p

1

72 n

2

i

2

s

3

p

2

82 n

2

i

3

s

3

p

2

53 n

2

i

3

s

3

p

2

91 n

2

i

3

s

3

p

2

11 n

2

21 n

2

i

1

31 n

2

i

1

s

0

41 n i s p 51 n

2

i

1

s

0

61 n

2

i

1

s

1

71 n i s p

81 n

2

i

2

s

1

52 n

2

i

2

s

1

62 n

2

i

2

s

3

72 n i s p 82 n

2

i

3

s

3

53 n

2

i

3

s

3

91 n

2

i

3

s

3

11 n 21 n i 31 n i s 41 n i s p 51 n i s 61 n i s 71 n i s p

81 n i

2

s

1

52 n i s 62 n i s 72 n i s p 82 n i

3

s

3

53 n i s 91 n i s

11 n 21 n i 31 n i s 41 n i s p 51 n i s 61 n i s 71 n i s p

81 n i

POS

s

ODD

52 n i s 62 n i s 72 n i s p 82 n i s 53 n i s 91 n i s

POS ODD

Fig. 24. Execution trace of P in Example A.5 and of the static slice and of their projection.

to semantic equivalences. The preorder fixes a syntactic relation between the program and its
slices. In traditional slicing, slices are obtained from the original program by removing zero
or more statements. This preorder is called traditional syntactic ordering, simply denoted
by v, and it is defined as follows: Q v P ⇔ LQ ⊆ LP The second component E fixes the
semantic constraints that a subprogram has to respect in order to be a slice of the original
program. As we have seen before, the equivalence relation is uniquely determined by the
chosen slicing criterion determining also a specific form of slicing. This way, Binkley et al.
are able to characterize eight forms of non-SIM slicing, and twelve forms of SIM slicing.

Finally, this framework is used to formally compare the different notions of slicing. First
of all, it is defined a binary relation on slicing criteria → [Binkley et al. 2006a]: Let C 1 =
〈I1,X 1,O1, ψ1〉 and C 2 = 〈I2,X 2,O2, ψ2〉

C 1 → C 2 iff I1 ⊆ I2, X 1 ⊆ X 2,O1 ⊆ O2, ψ1 ⇒ ψ2 (2)
At this point, we say that a form of slicing (v, E1) is weaker than (v, E2) w.r.t.→ iff ∀C 1,C 2,
slicing criteria such that C 1 → C 2, and ∀P ,Q , if Q is a slice of P w.r.t. (v, E2(C 2)), then Q
is a slice of P w.r.t. (v, E1(C 1)) as well. In this case we say that (v, E1) subsumes (v, E2).
Following this definition, Binkley et al. show that all forms of slicing introduced in [Binkley
et al. 2006a] are comparable in the way shown in Figure 25, where the symbols S, C, D,
SS, SC and SD represent static, conditioned, dynamic, static SIM, conditioned SIM and
dynamic SIM types of slicing, respectively. Subscripts i , KL and KLi represent IC, KL and
KLi forms of slicing, respectively; the absence of subscripts denotes the standard forms of
slicing. In Figure 25 we explicitly provide both the hierarchy concerning SIM and non-SIM
forms of conditioned slicing constructed in [Binkley et al. 2006a].

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Abstract Program Slicing: an Abstract Interpretation-based approach to Program Slicing A:57

(v,D)

(v,S)

(v,DKLi)

(v,SKLi)

(v,DKL)

(v,SKL)

(v,Di)

(v,Si)

(v, C) (v, CKLi)

(v, CKL)

(v, Ci)

(v,SD)

(v,SS)

(v,SDKLi)

(v,SSKLi)

(v,SDKL)

(v,SSKL)

(v,SDi)

(v,SSi)

(v,SC) (v,SCKLi)

(v,SCKL)

(v,SCi)

Fig. 25. Given two forms A and B , both (non-)SIM., A is weaker than B if A is connected to B by a solid
line and it is below B . If A is non-SIM. and B is SIM., then A is weaker than B if A is connected to B by a
dotted line and it is to the left of B .

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

