920 research outputs found

    Improving cache locality for thread-level speculation

    Full text link

    Thread partitioning and value prediction for exploiting speculative thread-level parallelism

    Get PDF
    Speculative thread-level parallelism has been recently proposed as a source of parallelism to improve the performance in applications where parallel threads are hard to find. However, the efficiency of this execution model strongly depends on the performance of the control and data speculation techniques. Several hardware-based schemes for partitioning the program into speculative threads are analyzed and evaluated. In general, we find that spawning threads associated to loop iterations is the most effective technique. We also show that value prediction is critical for the performance of all of the spawning policies. Thus, a new value predictor, the increment predictor, is proposed. This predictor is specially oriented for this kind of architecture and clearly outperforms the adapted versions of conventional value predictors such as the last value, the stride, and the context-based, especially for small-sized history tables.Peer ReviewedPostprint (published version

    Clustered multithreading for speculative execution

    Get PDF

    A Survey on Thread-Level Speculation Techniques

    Get PDF
    Producción CientíficaThread-Level Speculation (TLS) is a promising technique that allows the parallel execution of sequential code without relying on a prior, compile-time-dependence analysis. In this work, we introduce the technique, present a taxonomy of TLS solutions, and summarize and put into perspective the most relevant advances in this field.MICINN (Spain) and ERDF program of the European Union: HomProg-HetSys project (TIN2014-58876-P), CAPAP-H5 network (TIN2014-53522-REDT), and COST Program Action IC1305: Network for Sustainable Ultrascale Computing (NESUS)

    Dynamic web worker pool management for highly parallel javascript web applications

    Get PDF
    JavaScript web applications are improving performance mainly thanks to the inclusion of new standards by HTML5. Among others, web workers API allows multithreaded JavaScript web apps to exploit parallel processors. However, developers have difficulties to determine the minimum number of web workers that provide the highest performance. But even if developers found out this optimal number, it is a static value configured at the beginning of the execution. Because users tend to execute other applications in background, the estimated number of web workers could be non-optimal, because it may overload or underutilize the system. In this paper, we propose a solution for highly parallel web apps to dynamically adapt the number of running web workers to the actual available resources, avoiding the hassle to estimate a static optimal number of threads. The solution consists in the inclusion of a web worker pool and a simple management algorithm in the web app. Even though there are co-running applications, the results show our approach dynamically enables a number of web workers close to the optimal. Our proposal, which is independent of the web browser, overcomes the lack of knowledge of the underlying processor architecture as well as dynamic resources availability changes.Peer ReviewedPostprint (author's final draft
    corecore