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Abstract 

This thesis introduces the use of hierarchy and clusters in multithreaded execution, 

which allows several fragments of an application to be specifically optimised and ex-

ecuted by clusters of thread processing units (TPUs) as orchestrated by compile-time 

analysis. Our multithreaded architecture is a network of homogeneous thread pro-

cessing units. Additional features were proposed, aiming at dynamic clustering of the 

TPUs throughout the entire program execution as well as minimum hardware support 

for speculative execution. The architecture executes a sub-set of the MIPS insruction 

set augmented with multithreaded instructions. A multithreaded compilation system 

was implemented, which focuses on high-level or front-end transformation from se-

quential C programs to multithreaded ones. 

Empirical studies were conducted on benchmarks containing two types of program 

structures: loops and conditional branches. Coarse-grained control speculation enables 

simultaneous execution of several sub-problems such as loops, each of which could in 

turn be executed by multiple threads. Strategies were proposed for allocating TPU re-

sources to these sub-problems and evaluated in simulations. Significant speedups were 

observed in the performance of multithreaded loop execution, and could be further 

improved by the application of control speculation. 
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Chapter 1 

Introduction 

There is a recent trend in multiprocessor architectures towards multithreading. Threads 

are streams of instructions with each one having its own program counter and regis-

ter space. Whether the threads share memory space and other resources depends on 

the particular architecture and its implementation. A number of research groups have 

proposed architectural models which can be divided into two broad groups: Simultane-

ous Multithreading (SMT) and Chip Multiprocessing (CMP). The SMT-based model 

[3, 44, 45, 71] is built on a traditional wide-issue superscalar processor, which issues 

instructions from multiple threads to any available functional unit (FU) as the pro-

cessor's resources are shared. The CMP-based model [26, 32, 58, 66, 70],  which is 

analogous to a traditional tightly-coupled multiprocessor, fixedly partitions a single 

chip into multiple thread processing units (TPUs), each comprising of a number of 

functional units. The partitioning of computational resources (i.e. FUs) in SMT and 

CMP architectures are displayed in Figures 1.1(a) and (b), respectively. 

Much effort has also been devoted to developing compilers for the multithreaded 

architectures, notably for CMPs [11, 32, 40, 53, 54, 66, 72, 79]. Unlike SMTs, which 

can exploit thread-level and instruction-level parallelism dynamically and interchange- 

1 
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Figure 1.1: SMT and CMP architectures (reproduced from [44]) 

ably (i.e. in the absence of thread-level parallelism, an SMT would dedicate its re-

sources for instruction-level parallelism), CMPs rely heavily on the compilers to ex-

tract thread-level parallelism and typically apply conventional optimisations to further 

exploit instruction-level parallelism. Because of this, however, CMP architectures are 

relatively simple to design and optimise compared to SMT ones. 
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1.1 Thesis Overview 

This thesis proposes a framework that organises the multithreaded execution on a 

CMP-based architecture into multiple layers or hierarchy. The main ideas are: 

Distributed program analysis allow one to focus on classes of compilation tech-

niques as well as resource requirement for each sub-problem, bearing in mind 

the overall constraints of the architecture. 

. Hierarchical thread management alleviates the workload of overseeing and man-

aging all threads in the global scope. Instead, groups of individual threads, corre-

sponding to sub-problems, are mapped to clusters of TPUs and managed locally. 

Dynamic clustering of the TPUs enables resource allocation to be adjusted to 

specific requirements of the sub-problems during the program execution. 

Hierarchical program partitioning is employed. Firstly, a program is divided into a 

(small) number of subsystems which are, for example, paths of conditional branches 

or outermost loops. They can be repeatedly decomposed into finer subsystems. Even-

tually, the innermost or the deepest ones are individual threads. Clusters of TPUs are 

allocated to the program partitions and their sizes depend on the inherent parallelism in 

those partitions. To enable this, a CUT-based architecture is provided with the ability 

to construct and manage clusters at run-time, as dictated by the compile-time analy-

sis. An interface that conveys commands and inquiries between the compiler and the 

architecture is a set of special instructions added to the standard MTPS instruction set 

[22, 371. An overview of the framework is shown in Figure 1.2. 

Figure 1.3 depicts an example of program partitioning. The hierarchy is managed 

through master/slave relationships between threads, i.e. a cluster which is manipulated 
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by the master thread is allocated to a collection of slave threads, while each thread in 

the collection could, in turn, be the master thread of another cluster, and so on. The 

number of TPUs required in each cluster is determined at compile-time. At run-time, 

there could be both independent threads and collections of threads running on TPUs or 

clusters of TPUs. There are two levels of resource competition: (1) the master threads 

compete for the available TPUs in order to form clusters; and (2) the threads within the 

group allocated to a cluster compete for the available TPUs within the cluster. 

The assignment of clusters of TPUs to collections of threads is illustrated by anal-

ogy with the assignment of clusters of FUs to threads of code in the SMT model. Both 

share an underlying idea that the resource partitioning and assignment are dynamically 

performed throughout the program execution rather than fixedly done in the hardware. 

In the SMT model (Figure 1.1(a)), the FUs are virtually clustered and de-clustered by 
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Figure 1.3: An example of program partitioning 

threads on a cycle-by-cycle basis. In other words, multiple threads compete for the FUs 

in each cycle. The number of FUs used by each thread depends on the instruction-level 

parallelism and the availability of resources, both of which are exposed at run-time. 

In our model (Figures 1.4(a) and (b)), multiple collections of threads are gener -

ated to execute program partitions and compete for the TPUs. The number of TPUs 

executing each program partition depends on the thread-level parallelism predicted at 

compile-time and the availability of resources known at run-time. Figure 1.4(a) dis-

plays snapshots of the program execution shown in Figure 1.4(b). Clusters 11, 2, 3, 4, 

51 are allocated to collections of threads 11, 2, 3, 4, 5}, respectively. At cycle 1, there 

are 3 program partitions being executed simultaneously, one by a cluster of 2 TPUs 

and the rest by a single TPU each. During the execution of each program partition, 
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multiple threads may reuse a TPU since they may be spawned and retire at different 

cycles. The threads spawned concurrently can only compete for the available TPUs in 

the cluster allocated. At cycle 4, cluster 1 is still active while cluster 2 and cluster 3 

have freed their TPUs which are grabbed by cluster 4. At cycle 8, only cluster 5 is 

active which uses all the available TPUs. 

An advantage of dynamic cluster allocation is in the utilisation of TPU resources by 

various sub-problems in the program. For instance, if a non-speculative and a specula-

tive loops are to be executed in parallel, a small number of TPUs should be dedicated 

to the speculative loop while the rest are reserved for the other computation. This ap-

proach differs from other clustered multithreaded architectures (e.g. [21, 38, 47, 78]) 

in that the others statically allocate clusters, as shown in Figure 1.4(c). Within the 

clusters, their resource partitioning could be in either SMT [38, 47] or CUT [78] style. 

The main contribution of this thesis is the experimental evaluation of hierarchical 

multithreading in a framework consisting of a simulated multithreaded architecture 

and a compiler. The focus is on two types of program structures: loops and conditional 

branches. Loops are potential sources of parallelism and their nesting structures fit 

well with the hierarchy. Control speculation is a well-known method for exposing 

parallelism in programs although the speculative execution is not guaranteed to be 

useful. Based on the experimental results, significant program speedups were achieved 

by loop parallelisation, and could be further improved by control speculation. 
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1.2 Thesis Organisation 

The remaining chapters are summarised as follows: 

Chapter 2 reviews issues concerning multithreaded execution such as (1) creation, 

initialisation, and retirement of individual threads; (2) interaction between threads 

such as communication, synchronisation, and thread-level speculation; and (3) 

their collective relationship in clusters and hierarchy. 

Chapter 3 describes the multithreaded architecture, which is based on a CUT proces-

sor similar to the Superthreaded architecture [68, 69, 70].  It was enhanced to 

support hierarchical execution, control speculation, register synchronisation and 

forwarding, and novel multithreaded instructions. The multithreaded compiler 

implemented using the SUM package [84] is also described. It takes advantage 

of well-defined intermediate representation to recognise and transform loops and 

conditional branches in sequential programs for multithreaded execution. 

Chapter 4 presents examples of multithreaded loop execution. Transformation rou-

tines implemented in the compiler are described, followed by experimental re-

sults and discussion. 

Chapter 5 presents examples of multithreaded control-speculative execution. It de-

scribes how programs are transformed and executed. Strategies used to partition 

programs for control speculation and to allocate resources are explained. Exper-

imental results are presented and discussed. 

Chapter 6 summarises and discusses the main findings of this research with sugges-

tions for future work. 



Chapter 2 

Literature Survey 

The key ideas in multithreaded execution are as follows: 

The creation, initialisation, and retirement of individual threads. 

The interaction between threads, essentially the inter-thread communication, 

synchronisation, and thread-level speculation. 

The collective relationship, such as hierarchical organisation and clustering. 

We examine these ideas in some well-known multithreaded architectures, such as 

Single-Program Speculative Multithreading (SPSM) [18], Superthreaded [68, 69, 70], 

Stanford Hydra [31, 32, 53, 54], CMU STAMPede [65, 66, 67], Multiscalar [12, 26, 

35, 72], Trace processors [58, 59, 60], UPC Speculative Multithreaded [45, 46, 47], 

and Dynamic Multithreading (DMT) [3]. SPSM, Superthreaded, Hydra, and STAM-

Pede combine various software and hardware techniques. Multiscalar relies heavily on 

the hardware although compiler assistance is still needed. On the other hand, Trace, 

Speculative Multithreaded, and DMT are solely hardware-based. 



Chapter 2. Literature Survey 	 10 

2.1 Thread Creation 

2.1.1 Dynamic Approach 

UPC Speculative Multithreaded, DMT, and Trace Processors use different criteria to 

extract multiple threads from sequential programs. 

The UPC Speculative Multithreaded detects loops at run-time and generates threads 

to execute the loop iterations concurrently. In [45, 46],  a single fetch stream mecha-

nism was implemented. Instructions are fetched from the same program counter and 

broadcast to all the threads. In their follow-up work [47], a loop trace was introduced 

to support multiple control-flows. Each entry in the loop trace is a sequence of the 

predicted branch directions that defines a particular control-flow. 

DMT creates threads at procedural and loop boundaries. An after-call thread exe-

cutes the instruction at the static address after the call, while the parent thread enters 

the procedure body. Likewise, an after-loop thread starts its execution at the static 

address after the loop. Although this lookahead technique exploits coarse-grained par-

allelism, it suffers from poor resource utilisation. Because threads are spawned in the 

reverse program order, the most recently-created threads are the earliest ones to retire. 

The oldest threads which are typically further away from the main execution point hold 

resources for a longer period before retiring. To solve this, an adaptive thread predic-

tor assigns priority to threads using the lookahead distance and history patterns. The 

threads with higher priority will pre-empt the ones with the lower priority. 

Trace processors construct traces from the dynamic instruction stream. The trace 

size is restricted to 16 instructions, or even shorter if any call indirect, jump indirect, or 

return instruction is encountered. Traces are stored in the trace cache. The next-trace 

predictor [36] predicts the next instruction sequence and looks in the trace cache. If 
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the trace is found, it is fetched and sent to the processing unit. Otherwise, the trace is 

constructed by fetching from the instruction cache. 

2.1.2 Static Approach 

SPSM supports the master/slave model. The program execution starts with the main 

thread. It forks new threads which are ahead of itself in the program order. The threads 

are merged when the main thread reaches the starting address of the future thread and 

the future thread encounters a suspend instruction. After merging, the main thread 

resumes the execution after the suspend. SPSM is unaware of the actual resources at 

run-time. Depending on the hardware implementation, a thread may or may not be 

successfully forked. Hence the correct program execution must be preserved whether 

each code region is executed by the main thread (fork fails) or a future thread (fork 

succeeds). 

The Superthreaded compiler partitions a program into threads and each thread into 

four pipeline stages. Continuation variables such as loop index variables are computed 

in the first stage as they are needed for sparking a new thread. The next stage computes 

target store addresses and forward them to the successors for run-time checking of 

data dependencies. The main computation and data communication is performed in 

the following stage. Finally, the thread is synchronised and commits data to the data 

cache before retiring. Their thread allocation policy is to delay forking until the next 

thread processing unit is available, while the current thread continues after the fork 

instruction without stalling. Because of this, the Superthreaded's performance is likely 

to be sensitive to the workload distribution among threads. 

Hydra supports two types of parallel threads: subroutine (after-call) threads, and 

loop iteration threads. The subroutine threads are created automatically at run-time 
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when procedure calls are encountered. However compiler support is needed to identify 

potential loops and perform source-to-source transformation for speculative parallel 

execution. Threads are manipulated at run-time by software exception handlers which 

are implemented in the speculative coprocessor. STAMPede's approach is very similar 

to Hydra's. A program is partitioned into units of execution, epochs, at compile-time 

and the software handling routines manage threads at run-time. 

Unlike SPSM, Superthreaded, Hydra, or STAMPede, Multiscalar is biased toward 

extensive hardware support for inter-task register communication, and control and data 

speculation. However, it still relies on the compiler to analyse the control-flow graph 

of a program and use heuristics to group basic blocks into tasks. A task descriptor is 

generated for each task to indicate its boundary, a list of possible successor tasks for 

the run-time control-flow speculation, and the inter-task data dependence information. 

In Hydra and STAMPede, the partial ordering between threads or epochs can be 

controlled by the compiler, by passing the thread/epoch number as an argument to the 

fork routine. In Multiscalar, the task identification number is read from the task de-

scriptor. In Superthreaded, since a new thread only starts on the next thread processing 

unit in the uni-directional ring, the thread ordering is implicitly known by the order of 

the thread processing units and the head thread pointer. 

2.2 Thread Initialisation 

When a new thread is sparked on a processing unit, its program counter is set to the 

address it will start the execution. Local components in the processing unit, such as 

register file and branch predictor, are initialised as described next. 
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2.2.1 Register Context 

The most common approach is to copy the current register values from the parent's 

register file to its child's [3, 18, 45, 46, 58, 60]. Based on datafiow definitions given in 

[2, 4], a register carries a live-in value at the beginning of the child thread if the child 

thread reads from this register before any writes to it. Also, since this register carries 

a live-in value to the child, it is considered to carry a live-out value from the parent. 

At the time of forking, some registers may not yet be available. There are two ways to 

handle this: 

Enforce synchronisation in the child thread until the values are produced and 

forwarded from the parent. 

Use value prediction techniques to speculate the live-in values. 

To enforce synchronisation in the child thread, the compiler may explicitly insert 

synchronisation primitives such as barrier or blocking receive before the instructions 

that consume the live-in values. In Multiscalar [12], a create mask is read from the task 

descriptor, which identifies all registers that may be written during the task execution. 

The task also receives an accum mask from its parent, which is the accumulation of the 

create masks of all the active predecessors. It will block if it tries to use the registers 

indicated in the accum mask whose values have not yet been received. 

Architectures that opt for the live-in value speculation include DMT, UPC Specula-

tive Multithreaded, and Trace processors. DMT allows the child thread to speculatively 

copy all the current values from its parent at the spawning point. Because the looka-

head policy spawns threads which are further away from the current execution point, it 

might incur a high misprediction rate, particularly for after-loop threads. On the other 

hand, there is often false data dependence due to register saves and restores in the pro- 
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cedure call sequence. Value prediction for after-call threads is likely to be beneficial. 

Their experiments on the Spec95 benchmarks show a significant prediction accuracy; 

however, most benchmarks perform better when only after-call threads are allowed. 

The UPC group [45,46] uses execution history from an iteration table to determine 

register predictability. The hardware initialises predictable live-in registers for a new 

thread by inserting add $R, $R, stride instructions at the beginning of the dynamic 

instruction stream. Unpredictable registers are mapped to the live-in register file. The 

child thread will stall if it tries to read those registers, until they are forwarded from 

the parent. 

In the Trace processor, before a trace is stored in the trace cache, it is preprocessed 

in the hardware by identifying local, live-in, and live-out values. When the trace is 

fetched and started on a processing unit, it receives predictable live-in values from the 

value predictor, whereas unpredictable values are obtained from the global register file 

during the trace execution. 

Finally, in Krishnan and Torrellas [39],  when a new thread is initialised on a pro-

cessing unit, some registers in the local register file are invalidated while the rest (with 

existing values) are reused by the new thread. 

2.2.2 Branch Predictor 

There are at least three options for initialising the local branch predictor: 

1. Copy the branch history table from the parent thread. This approach incurs a 

higher initialisation overhead than the other two. A study by Marcuello and Gon-

zalez [49] showed that it gave a very close performance to the gshare predictor 

in the single-threaded execution, which predicts a branch by using the combined 

history of all the recent ones. The branch address and the combined history are 
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exclusively-ORed (XORed) to form an index for accessing the prediction table 

in the gshare. 

Use the current state of the branch history table as it was left by the previous 

thread executing on this processing unit. This option could incur less predic-

tion accuracy due to more arbitrary branch correlation between the previous and 

the current threads. Marcuello and Gonzales [49] also showed that this option 

suffered at least a 10% performance degradation. 

Initialise the branch history table to some fixed values, such as 0. With this 

approach, early branches in the thread have no memory from the previous exe-

cution. As the thread proceeds, the branch history is built up for later branches. 

An experiment by Akkary [3] showed that this scheme performed as well as the 

gshare predictor in the single-threaded execution. 

2.3 Thread Retirement 

Multithreaded execution can be broadly categorised into master/slave and predeces-

sor/successor models. Conditions as to when and how threads in these models retire, 

update program's state, or handle exceptions are different, as described next. 

2.3.1 Master/Slave Model 

In this model, the master thread maintains the state of the program. It forks slave 

threads to execute instructions which are ahead of itself in the program order. At some 

point, e.g. when a slave completes its execution, it will be merged into the master 

thread. The merge action typically induces an effect as if the slave's execution has been 
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performed by the master itself. For instance, in the SPSM architecture, the register 

values updated by the slave are copied back to the master's register file. The master 

also receives the updated program counter and consequently resumes the execution 

after the last instruction executed by the slave. An exception raised by the slave will 

be delayed and handled after it has been merged into the master. 

2.3.2 Predecessor/Successor Model 

In this model, a sequential order of active threads is maintained. The head thread 

which is the first thread in the list represents the current state of the program. It is 

usually the only non-speculative thread while the others could be speculative. When 

the head thread finishes its execution and retires, the next thread in the order list be-

comes the new head thread and its state becomes the current program state. Generally, 

if a thread causes an exception, it will stall until it becomes the head thread. Then 

the instructions before the one that raised the exception are retired and the exception 

handling is processed. As mentioned in [31], if the stalled thread is mispredicted and 

aborted, the exception should be discarded because it would not have occured in the 

sequential execution. 

Steffan et al. [65] use software interface to emulate the predecessor/successor 

model, which is called one-shot threading. Instead of relying on a centralised hardware 

structure, the identification of the oldest and the least speculative epoch is controlled 

by the software, by passing a homefree token. An epoch can be forced to block until it 

receives the homefree token. It can then commit the speculated results, pass the token 

to the next epoch, and retire. 
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2.4 Inter-thread Data Communication 

Threads communicate data in the initialisation phase and during their execution. The 

communication between threads can be categorised as follows: 

Producer-driven. Producers initialise the communication, such as register for-

warding in Multiscalar. 

Consumer-driven. Consumers initialise the communication. 

Producers and consumers communicate via shared medium such as global reg-

ister files or shared memory. 

The register communication in Multiscalar is local reads/distributed writes, i.e. an 

instruction reads a register value from the local register file and, if tagged with a for-

ward bit, propagates the value it produces to successor tasks. Vijaykumar [72] pro-

posed register communication scheduling techniques targeted at the Multiscalar archi-

tecture. He studied four strategies for register communication: End-send forwards all 

registers at the end of the task execution; Eager-send forwards a register every time 

it is modified; Last-send forwards a register after its last modification; and Spec-send 

forwards a register when there is a high probability that it will not be modified again. 

The first two strategies do not require any compiler support, whereas the others require 

dataflow analysis to determine the last modification of each register. Eager-send and 

Spec-send also involve squashing threads and re-forwarding the values. 

Traces in the Trace processor communicate via a global register file. During the 

execution, the producer trace sends live-out values to global result buses, whereas the 

consumer reads from the global register file or monitors the buses. 

Superthreaded forwards memory data instead of registers. A thread computes tar- 

get store addresses and passes them to its successor. The successor will stall if it tries 
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to load from these addresses before the data is made available. As soon as the pre-

decessor stores data in its own memory buffer, the data and the store address will be 

forwarded to the next thread. 

2.5 Synchronisation 

There are computations such as reduction operations in which the ordering of threads 

is irrelevant; however, only one thread should be allowed to update shared data at any 

time. This section focuses on two types of synchronisation to handle this situation: 

code locking and data locking. 

Code locking permits one thread at a time to execute the code inside the criti-

cal section. Common synchronisation techniques include mutex locks, conditional 

variables, and semaphores [14, 41]. The synchronisation variables used in all these 

techniques are stored in global registers or shared-memory areas. Architectures that 

support speculation may allow only non-speculative threads to execute the critical sec-

tion, as suggested in [68]. The restriction prevents speculative threads from impeding 

the non-speculative ones. 

At a fine-grained level, data locking enforces synchronisation on data items. A 

widely-used technique is multiple readers/single writer locks [14, 28, 50]. There are 

three variations to this scheme: reader preference, writer preference, and fair lock. 

All of them require readers to block until the current writer finishes. With a reader 

preference lock, once there are readers currently active, new readers that arrive can 

proceed even though there is a writer waiting. Conversely, with a writer preference 

lock, the current readers are suspended if a new writer arrives. In the case of a fair 

lock, new readers wait until earlier writers finish, while a new writer waits until both 
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Table 2.1 Categories of thread-level data speculation 

Type Register Related Memory Related 

value 

dependence 

register values 

register communication 

memory load values 

memory references 

readers and writers before it finish. Furthermore, many multiprocessors support atomic 

read-modify-write operations such as test-and-set and fetch-and-op. 

An alternative lock-free technique uses a pair of load-linked and store-conditional 

instructions [7, 57]. A thread executes a load-linked instruction to load an original 

value from a memory location, performs further computation, and tries to store a new 

value back using a store-conditional instruction. The load-linked approach does not 

prevent the other threads from loading the data or executing the critical code following 

it. However, only one thread will successfully store the new data back to the memory. 

The others whose store-conditionals failed may retry the computation. 

2.6 Thread-Level Speculation 

Thread-level control speculation enables threads to start execution before the condi-

tions on which they are dependent are resolved. On the other hand, thread-level data 

speculation enables threads to continue the execution in spite of data dependence be-

tween concurrent threads. It is further categorised as illustrated in Table 2.1. Value 

speculation speculates on register or memory load values. Memory dependence spec-

ulation conventionally speculates in the midst of ambiguous memory references. Fi-

nally, register dependence speculation assists inter-thread register communication. 
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2.6.1 Control Speculation 

In SPSM, Superthreaded, Hydra, and STAMPede, thread-level control speculation is 

performed by the compilers. In Multiscalar, tasks and their associated task descriptors 

are generated at compile-time. At run-time, the global sequencer predicts the next task 

which is one of the possible successors indicated in the current task descriptor. 

Both the task predictor in Multiscalar and the trace predictor in Trace processors are 

based on path-based trace predictors proposed by Jacobson et al. [35, 36]. Clustered 

Speculative Multithreaded [47] uses a loop trace which is also adapted from Jacobson's 

to predict control flows of the loops containing multiple conditional branches. An 

adaptive thread predictor in DMT assigns priority to threads using criteria such as 

lookahead distances and global history. 

Misspeculation penalty at the thread level can be higher than in case of the indi-

vidual branch prediction. Because the predicted branch is usually the last instruction 

in the thread, it takes many cycles before the branch is finally resolved and the wrong 

thread is squashed. To keep the misspeculation penalty as low as possible, many ar-

chitectures and compiler techniques include low-confident branches within the threads 

and expose high-confident branches to the thread-level speculation. In practice, the 

embedded branches may have even lower predictability than when they are predicted 

in the sequential execution. This is because the local branch predictors do not have a 

complete view of the continuous (global) dynamic instruction stream. 

The point where both paths of a conditional branch rejoin indicates the start of the 

control-independent path of that branch. Since the control-independent path will be 

executed regardless of the outcome of the branch, another thread can be launched to 

execute this path in parallel with the main and the control-speculated threads. The 

control-independent thread must also be treated as a speculative thread because it may 
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still be data dependent on either path of the branch. This aspect of control indepen-

dence has been studied in detail by Rotenberg [59, 60]. 

On the other hand, there are works such as Thread Multiple Path Execution (TME) 

[73] and Selective Dual Path Execution (SDPE) [33] that allow the execution of both 

paths of the hard-to-predict branches. TME spawns threads to execute the less likely 

paths when there are fewer threads running than the available hardware contexts. SDPE 

investigates dual-path forking policies in detail. 

2.6.2 Register Speculation 

Well-known value speculation techniques in superscalars [42, 43, 63] are last value, 

stride, and context-based predictors. They are based on the history pattern seen by 

individual instruction operands. Nakra et al. [52] proposed path-based value predic-

tors to predict values along different control-flow paths. The idea of correlating the 

prediction history with control-flow traces is employed in multithreaded architectures 

[47, 48, 60]. These architectures (as listed) achieve significant performance improve-

ment by limiting the speculation to only high-confidence, live-in registers. 

Register dependence speculation is performed in conjunction with register commu-

nication. It speculates whether a register is written for the last time in a thread. After 

the predicted point, the register communication hardware (or software) assumes that 

there is no further read-after-write dependence, caused by this register, from this thread 

to the others. A register forwarding strategy, Spec-send, proposed by Vijaykumar [72] 

speculatively forwards a register when it is unlikely to be further updated. An update 

probability is assigned by the compiler to each register in each basic block of a task, 

using profile information and data flow analysis. 

UPC Speculative Multithreaded predicts the number of writes to each register by 
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each thread. Once a thread performs the predicted number of writes, it will forward the 

register to the next thread. Misprediction is detected when the number of actual writes 

exceeds the predicted number. 

2.6.3 Memory Speculation 

Each thread processing unit (or processor) is typically equipped with a private memory 

buffer or Li cache to keep results from the thread execution. In the sequential control-

flow, RAW or read-after-write dependence occurs when an instruction reads a value 

which has been written by its predecessor; WAR or write-after-read dependence occurs 

when an instruction writes a new value to a memory location (or register) after the 

old one has been read by its predecessor; and WAW or write-after-write dependence 

occurs when an instruction writes a value to the same memory location (or register) 

as its predecessor. In the multithreaded execution, the multiple versions of memory 

data must be handled properly to honour the RAW, WAR, and WAW dependencies. 

Generally, a load must see the latest store to the same address (RAW rule) and should 

not be aware of stores to the same location by successor threads (WAR rule). It must 

be squashed and re-executed if it has read the wrong version of the data. Finally, 

concurrent threads perform write-back to the shared memory in the correct sequential 

order (WAW rule). 

Hydra and STAMPede allow threads to dynamically switch between speculative 

and non-speculative execution. A speculative region is marked by start .speculation 

and end-speculation instructions. Because a thread can store to the shared memory 

when it is non-speculative, the compilers must ensure that store operations outside the 

speculative regions are safe. They use hardware to detect dependence violation and 

software to control recovery actions. Hydra relies on a snooping-bus-based mecha- 
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nism. When a processor writes back to the next level shared memory (L2 cache), all 

the other processors watch the write bus to detect the violation. On the other hand, 

STAMPede extends invalidation-based cache coherence. When an epoch stores to a 

location that has been speculatively loaded, it sends invalidation signals to the con-

sumer epochs. The consumers detect the violation by comparing their sequence orders 

with the producer's. 

More complicated approaches include Address Resolution Buffer (ARB) [26, 27] 

and Speculative Versioning Cache (SVC) [30]. Both of them aggressively perform 

memory speculation, i.e. every load and store can be executed as soon as its address 

is known even if memory references in the preceeding tasks are still unresolved. ARB 

is a centralised structure. It keeps all versions of the data from all tasks, and conse-

quently suffers from limited bandwidth and long access delays. In contrast, SVC is 

a decentralised structure. The memory references are spread across multiple caches. 

Although it solves the problems in the ARB, the SVC incurs lower hit rate and larger 

amount of communication between caches. 

2.7 Hierarchical Organisation and Clusters 

The M-Machine [23] has two levels of concurrency. As illustrated in Figure 2.1(a), 

V-threads share the same set of processing units and can be swapped in and out of the 

processors. A V-thread is composed of subthreads or H-threads which simultaneously 

execute on separate processing units. In contrast, the two-dimensional Superthreaded 

[68], as shown in Figure 2.1(b), has X-threads allocated to different processing units, 

each of which comprises of multiple resident Y-threads. Normal policies for context 

switching are round-robin and event-trigger (e.g. cache misses). A major advantage 
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Figure 2.1: Two-level multithreaded models 

of hierarchy in the M-Machine and the two-dimensional Superthreaded is in its ability 

to exploit more parallelism, by hiding the long latency of operations such as memory 

access and inter-thread communication. 

Zahran and Franklin [78] have proposed Hierarchical Multithreading (HMT). Their 

architecture is basically a network of Multiscalar processors. A program is partitioned 

into supertasks which are assigned to the Multiscalar nodes. The supertasks are further 

broken into tasks and assigned to processing units within the nodes. The HMT takes 

advantage of coarse-grained thread-level parallelism since the supertasks are typically 

far apart in the sequential control-flow order. In addition, control and data depen-

dencies between them are minimised in order to limit the amount of communication 

between the Multiscalar nodes. 

Simultaneous Subordinate Microthreading (SSMT) [15] employs a concept simi-

lar to interrupt handling. Events, such as branch mispredictions and cache misses, 

occurring as a result of a (primary) thread's execution automatically spark specialist 
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microthreads. The microthreads execute optimisation routines which are written in 

the internal machine format and stored on-chip. During the microthread initialisation, 

these routines are loaded into the decode/rename stage and issued simultaneously with 

the primary thread's instructions. Another example of using separate threads to handle 

exceptions is described in Zilles et al. [80]. Exception threads are sparked to fetch 

and execute exception handlers before the normal execution resumes. By fetching the 

exception handlers separately, the main threads need not squash the instructions fol-

lowing the ones that cause the exceptions, and are able to execute the independent ones 

in parallel with the exception handling. 

In Dorai and Yeung [ 17], foreground threads perform high-priority or critical corn-

putation whereas background threads perform low-priority ones. They aimed at mak-

ing the background threads transparent or having almost no impact on the performance 

of the foreground threads. Hardware resource are divided into three classes: instruc-

tion slots, instruction buffers, and memories. Competition for each type of resources 

affects the performance of the foreground threads differently. For example, the fore-

ground threads are disrupted for only single cycle if they lose out on instruction slots 

such as fetch and functional units. However, they may be disrupted for several cycles 

if they lose out on instruction buffers. Although there is little contention for mem-

ory resources such as caches and branch prediction tables, interfering accesses by the 

background threads may cause performance degradation in the foreground threads. 

As an architecture is scaled up, the wire delays become a hurdle to the overall per-

formance. Because of this, there have been proposals to group multiple processing 

units into clusters [21, 38, 39, 47].  Programs are typically partitioned, either stati-

cally or dynamically, to exploit communication locality. In general, threads that cause 

frequent communication are allocated to processing units in the same clusters. 
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2.8 Other Techniques 

A new dynamic resource allocation approach has been introduced in a-Coral architec-

ture [77]. It has a large register file and a program counter queue holding the states 

of all currently-active threads in the processor, both of which are centralised. New 

threads can be spawned until the program counter queue is full. Upon thread initiali-

sation, a segment of the shared register file is allocated to the thread. The size of the 

segment depends on the number of registers each thread requires, allowing flexibility 

in the resource management. However, a drawback of the centralised structures is poor 

scalability. 

2.9 Chapter Summary 

This chapter has investigated some of the fundamental issues in multithreaded exe-

cution. These include the creation, initialisation, and retirement of threads; the in-

teraction between concurrent threads including communication, synchronisation, and 

thread-level speculation; and hierarchical structures. Relevant software and hardware 

techniques were reviewed. Some of these have inspired our compiler and architecture 

designs in the forthcoming chapters. 



Chapter 3 

The Multithreaded Processor 

Architecture and The Compiler 

The target architecture is a CMP-based multithreaded processor which was inspired 

by hardware simplicity of the Superthreaded model [70]. The initial design was pre-

sented in [5, 6, 34]. First, hierarchical multithreaded execution is described briefly in 

Section 3.1, followed by the architectural details in Section 3.2 which include novel 

features to support hierarchical execution, register synchronisation and forwarding, 

and speculation. The multithreaded instructions are described in Section 3.3, and the 

implementation of the multithreaded processor simulator in Section 3.4. Finally, the 

multithreaded compiler is described in Section 3.5. 

3.1 Hierarchical Multithreaded Execution 

In part of the master/slave execution model [18, 23, 68, 78],  a thread can execute 

a command to form a cluster of slave TPUs during program execution. Each slave 

thread, which runs on the slave TPU, could in turn form a cluster at the next level, 

27 
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and so on recursively. The master thread could free its slave TPUs by executing a 

command to release the cluster. Hence, clusters in our context are dynamic and logical 

entities. The thread processing units in a cluster are logically connected to each other 

in a uni-directional ring and operate in the predecessor/successor style [45, 65, 68]. 

Threads can be created or forked in two directions: the master thread forks a new 

slave in the vertical direction, while the slave thread forks the next one in the horizontal 

direction. When a thread forks a new thread, it becomes the parent of that new thread. 

If a master thread T0 vertically forks a slave thread T1, and T1 horizontally forks another 

slave thread T2, then the relationships between T0, T1, and T2 would be: 

• For master/slave relationships, T0 is the master of T1 and T2 (conversely, T1 and 

T2 are the slaves of T0). 

• For parent/child relationships, T0 is the parent of T1, and T1 is the parent of T2. 

Thus, T1 is the child of T0, and T2 is the child of TI, respectively. 

As in the predecessor/successor model, the slaves retire and update the cluster's state, 

instead of the processor's state, in a sequential order. Since the cluster's state is main-

tained by the master thread, this is also equivalent to merger in the master/slave model. 

Upon merger, register values, program counter, and speculative results of the slaves 

are transferred to the master's. 

In order to incorporate this idea into the original design [5, 6, 34], additional fea-

tures were introduced in the Global Thread Control Unit (GTCU), Local Thread Con-

trol Units (LTCUs) and Speculative Buffers. Furthermore, additional multithreaded 

instructions were proposed to support hierarchical and speculative execution. 
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Figure 3.1: The target multithreaded architecture 
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3.2 Description of the Architecture 

Figure 3.1 depicts an overview of the multithreaded architecture. The processor con-

sists of a number of identical Thread Processing Units (TPUs). At the start of program 

execution, the First Level Scheduler (FLS) fetches instructions from the central instruc-

tion cache and passes them to the instruction buffer of a head thread which, by default, 

always runs on TPU 0. 

3.2.1 Global Thread Control Unit (GTCU) 

As the architecture relies on static program partitioning, thread sequence according to 

the sequential semantics has to be conveyed from the compiler to the hardware. Be-

sides controlling the retirement order of concurrent threads, the sequence information 

is needed for handling multiple versions of loads/stores in speculative execution. The 

Global Thread Control Unit (GTCU) was added to the original design, which main-

tains the relative order, by ascending sequence numbers, of all the active threads in the 

processor. If multiple threads have the same sequence number, then they are ordered 

by the time of creation, starting from the oldest. A sequence number is assigned to a 

thread either explicitly or implicitly, as described next. 

Explicit assignment. For a normal fork operation (frk instruction in Section 

3.3.1), a sequence number is given as an argument of the fork. 

Implicit assignment. In the cases of vertical and horizontal fork operations (yfrk 

and xfrk instructions in Section 3.3.2), a child is given the same sequence num-

ber as the parent's, and the master/slave relationship has priority over the par-

ent/child relationship. Thus, slave threads are inserted in the order list immedi-

ately after the master and following the parent/child relationship between them. 
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The thread sequence is updated each time a new thread is forked or an existing 

thread retires, by receiving signals from the Local Thread Control Units (LTCUs). 

The GTCU also maintains a pointer to the head thread, which is generally the oldest 

running thread on the processor. 

3.2.2 Thread Issue Unit (TIU) 

The TIU decodes instructions and passes them to the corresponding execution units. 

Instructions are issued in-order from the instruction buffer but can be executed out-of-

order as soon as resources are available. The instruction-level parallelism is exposed by 

the compiler's instruction scheduling and optimisation techniques. Normal arithmetic 

and memory instructions are sent to ALUs and MUs respectively, while multithreaded 

instructions are sent to the LTCU. 

3.2.3 Local Thread Control Unit (LTCU) 

The LTCU executes the multithreaded instructions. It also maintains the following 

information: 

. Parent Address. It is set when a thread is initialised. 

. Child Addresses Table. A child address is added to the table if the fork operation 

succeeds. As soon as the parent thread retires, its children will be notified to 

invalidate the parent address. 

. Slave Addresses Table. This table is set when a thread successfully forms a slave 

cluster and is cleared when the cluster is released. 

. Master Address. It is set for a slave thread to retain the address of its master. 
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Figure 3.2: State transitions for (W, U) in a register 

3.2.4 Register File 

A simple register synchronisation and forwarding mechanism was proposed. As a 

preliminary study, the register forwarding is restricted to only from parent to child 

threads. Each register in the local register file is associated with the following 2 bits: 

• W bit. This bit is set for the child thread's register to enforce synchronisation 

until the register is forwarded from its parent. If the thread tries to read a register 

whose W bit is set, then it has to wait until the bit is turned off. If the thread 

writes this register for the first time (before any read), then the W bit is turned 

off since it no longer has to wait for the value forwarded from the parent. 

• U bit. This bit is set, prior to forking a new thread, for the parent thread's register 

whose value is unavailable to the child. 

When a new thread is initialised, the register values are copied from the parent's 

register file to the child's. Figure 3.2 (a) depicts the state transitions of a register from 

parent to child: (W(parent),U (parent)) (W(child),U(child)). The initial state 
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of the child's register is set to either (1,0) or (0,0). The former implies that the register 

might be live-in; the latter implies that the register is dead-in. If the state of the parent's 

register is (1,1) or (0,1), then the child's state is set to (1,0) which indicates that the 

register might be live-out from the parent but its value is not yet available to the child. 

After the parent produces a value for the live-out register, it can be forwarded to 

the child. The forwarding operation resets the U and W bits in the parent's and child's 

registers, respectively. Figure 3.2 (b) depicts the state transitions of a register of the 

same thread due to the register communication: (W, U) action  (W, U). The thread can 

forward a register to its children only if the state is (0,0) or (0,1), i.e. it is not waiting 

for that register itself. Upon receiving the values, the receivers set their corresponding 

W bits to 0. Finally, a set of live-out registers whose values have not yet been produced 

can be declared by executing uregs (see Section 3.3). This instruction sets the specified 

U bits to 1 and consequently enforces synchronisation in the successor threads when 

they try to read those registers. 

3.2.5 Speculative Buffer 

The speculation is almost entirely controlled by the compiler. The hardware support is 

very simple, as described next. 

A thread can switch between non-speculative and speculative modes during its exe-

cution, in the same style as in STAMPede [65].  When the thread becomes speculative, 

it writes to the speculative buffer instead of to the shared memory. These stores are 

flushed to the memory when the thread commits. If the thread stops without commit-

ting these stores, then the speculative buffer is simply cleared. For a load operation, 

the thread should see the latest version of the data as if the program is executed in the 

sequential order. Firstly, it checks the load address in its own buffer. If the address 
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is not found, it will lookup the predecessors' buffers. Finally, if the address is still 

not found in any of the predecessors' buffers, then it will load from the memory. The 

information as to which threads are the predecessors of the current thread is obtained 

by scanning the thread order list maintained by the GTCU. If the dependency distance 

between threads is large, i.e. a thread is data dependent on a predecessor which is far 

ahead of itself in the order list, then the overhead of loading can be quite high. Com-

piler techniques such as loop unrolling [20] can reduce the dependency distance so that 

the thread is only data dependent on its immediate predecessor. 

However, both misspeculation detection and recovery are performed in the soft-

ware. The misspeculation is handled by aborting the wrong thread and starting a new 

one to execute the correct path. 

In the non-speculative mode, the thread directly reads from and writes to the shared 

memory. The compiler determines whether a load/store operation is safe and chooses 

the execution mode accordingly, in order to guarantee the program correctness. For 

example, a thread can store its result in the speculative buffer and then load data from 

the shared memory, by switching from the speculative mode (before the store) to the 

non-speculative one (before the load). 

In the hierarchical execution, if the master thread is speculative, then its slaves 

should also run in the speculative mode. Our execution model expects the master 

to only fork slave threads to execute parts of the program which are logically ahead 

of itself. As shown in Figure 3.3, there is a temporary storage inside the speculative 

buffer, which maintains the cluster's state. When the slaves are merged into the master, 

their register and memory updates are collected as the master's temporary state (or the 

cluster's state). As soon as the clustered execution is completed and the cluster is freed, 

the temporary register values (including the program counter) will be transfered to the 
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1,2 Slave 1st is merged. Registers and speculative stores are saved to the master's temporary state. 

3,4 Slave Nth is merged. Registers and speculative stores are saved to the master's temporary state. 

5,6 Master releases cluster. 

5 	Temporary register updates are transfered to register file. 

6 	Temporary speculative stores are transfered to speculative stores. 

7 Master retires. Registers and speculative stores are saved to temporary state of the higher-level master. 

8 The highest-level master commits speculative stores to the shared memory. 

Figure 3.3: Retirement actions in the hierarchical-speculative execution. 

current register values while the speculative stores from the slaves will be transfered to 

the master's speculative stores instead of being flushed to the shared memory. 

3.2.6 Inter-thread Communication Unit 

The inter-thread communication unit takes care of the signal transmission between 

the TPUs. It contains a signal buffer and, depending on the implementation, signal 

handlers for some particular signals. In the absence of the signal handlers, the signal 
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transmission can be used as a synchronisation mechanism, for example, between the 

memory load/store operations. 

When a signal is transmitted, its number is written in the buffer of the target TPU. 

The thread that executes wait signal instruction checks its signal buffer and blocks until 

the signal has arrived. Then it either invokes the signal handling routine or simply 

continues its execution, after which the signal is removed from the buffer. A signal 

might be lost before it has been processed should the buffer be full and the old signal 

be replaced by a new one. 

3.3 Multithreaded Instructions 

A subset of the standard MIPS instructions [22,37] was augmented with multithreaded 

instructions. These can be categorised into 4 groups: basic instructions (Tables 3.2 and 

3.3), auxiliary instructions (Table 3.4), instructions that support hierarchical execution, 

(Tables 3.5 and 3.6), and instructions that support speculative execution (Table 3.7). In 

the tables, $s and $d denote source and destination register operands, respectively; L 

is a label; and I is an integer value. Description and pseudo-code of each instruc-

tion are also provided in the tables. Pseudo-functions, other than the ones associated 

with the instructions, perform operations as indicated by the names of these functions 

(examples are listed in Table 3.1). 

Most multithreaded operations are guarded. Semantics of a guarded operation is 

to evaluate the guard operand: if the condition is true, then the instruction is executed; 

otherwise it is treated as a nop instruction. Similar to the thread creation or forking 

in SPSM [18], the fork-operation may succeed or fail depending on the availability of 

resources at run-time. Subsequent multithreaded instructions must therefore be exe- 
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cuted under guarded conditions to preserve the program correctness, particularly those 

involved in synchronisation and communication as they could potentially cause dead-

locks. In order to prevent premature program termination, a thread needs to check on 

occasion if it has successfully forked the next one before it retires. Thus, the retirement 

operation is also guarded. 

3.3.1 Multithreaded Instructions Group 1 

Tables 3.2 and 3.3 summarise the basic instructions for simple non-speculative multi-

threaded programs. They are modified from the preliminary proposal in [5, 34]. 
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Table 3.1 Examples of pseudo-functions 

Function 

1 TPU& get.TPUs(nuITLTPUs) 

II Get available TPUs and return a pointer to these TPUs 

2 bool TPt.J::avail() 

II Check whether the TPtJ is available 

3 void thread_init(TPU&, 	sequence, label) 

II Initialise a new thread on the TPU 

4 void cluster_init(master_thread, TPU&) 

Initialise a new cluster 

II Thread's operation 

5 void thread: :wait.signal (signal) 

6 void thread: :get.signal(signal) 

7 void thread: :save_pc(label) 	II Set OPC = PC and PC = label.PC 

8 void thread: :restore_pc() 	II Set PC = OPC 

9 void thread::interrupted() 

10 void thread::stop(merge) 

11 void thread: :comrnit() 

12 void thread: :set_head(thread) 	II Nominate a new head thread 

II Master thread's operation 

13 void master_thread: :pass_signal (slave_thread&, signal) 

14 void master_thread: :cluster_release() 

15 void master_thread: :cluster_abort() 
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Table 3.2 Multithreaded Instructions Group 1 (continued in Table 3.3) 

Instruction Description 

frk 	$d, 	$sl, 	L Fork a new thread to execute target label L. Return d = TRUE, 

if successful. si is a sequence number associated with the new 

thread. 

op frk(op si, op L) 	{ 

if 	(pt_TPUs = get_TPUs(l)) 	{ 

d = TRUE; 

thread_init(pt_TPUs, 	si, L); 

} 
else d = FALSE; 

return d; 

stp 	$sl, 	$s2 If guard si is set, then stop. If it is the head thread, set thread 

s2 as the new head. 

void stp(op si, op s2) 	{ 

if 	(si) 	{ 

this thread. set_head (s2); 

thisthread.stop(merge = FALSE); 

} 

sstp 	$sl, 	$s2 Wait for synchronisation signal and pass it to thread s2. If 

guard si is set, stop. If it is the head thread, set s2 as the new 

head. 

void sstp(op si, 	op s2) 	{ 

thisthread.wait_signal (SYNCH); 

if 	(si) 	{ 

this thread. set_head(s2); 

thisthread.stop(merge = FALSE); 

} 
s2 .get_signal(SYNCH); 
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Table 3.3 Multithreaded Instructions Group 1 (continued from Table 3.2) 

Instruction Description 

psg 	$sl, 	$s2, 	I If guard si is set, pass signal I to thread s2. 

void psg(op si, op s2, op I) 

{_if 	(Si)_s2.get_signai(I);_} 

wat 	$sl, 	I If guard si is set, wait until signal 1 is received. 

void wat(op si, op I) 	{ 

if 	(Si) 	{ 

thisthread.wait_signai (I); 

signais[I] .handler(thisthread); 

} 

isg 	$sl, 	$s2, 	L If guard si is set, interrupt the execution of thread s2. The 

interrupted thread jumps to label L. 

void isg(op si, op s2, op L) 	{ 

if 	(Si) 	
{ 

s2.save_pc(L); 

s2 .interruptedO; 

} 

mop 	$sl If guard si is set, move the old program counter to the current 

program counter. 

void mop(op si) 

{ 
if 	(si) 	thisthread.restore_pc; 	} 



Chapter 3. The Multithreaded Processor Architecture and The Compiler 	41 

The frk instruction forks a new thread on an available TPU and returns TRUE, or 

returnsFALSE if no TPU is available. The TPU address of the newly-forked thread 

is retrieved by executing cadr (see Table 3.4). An alternative design is to return the 

child's TPU address if the fork succeeds, or an INVALID value (e.g. -1) if it fails. 

However, we opted for the first approach because the values TRUE/FALSE are handy 

to use either as guards in the subsequent multithreaded instructions or as operands in 

conventional branch instructions (e.g. beqz). 

A thread can stop either with or without waiting for a synchronisation signal, by 

executing either the stp or sstp instructions. Before the thread stops, it will nominate 

a new head thread. The nomination is valid only if it is currently pointed to by the 

head pointer. If the nominated thread is not active, then the GTCU will move the head 

pointer to the next thread in the order list. 

The psg and wat instructions communicate signals. The psg is a non-blocking send 

while the wat is a blocking receive. The psg puts the signal number in the receiver's 

signal buffer. When the thread executes wat and receives the signal, it either performs 

a sequence of actions as specified by the signal handler or continues its execution if 

there is no handler for that signal. 

The isg instruction interrupts the execution of the target thread. Having been inter-

rupted, the thread saves its current program counter (PC) to the old program counter 

(OPC) before branching to the interrupt handling routine. The thread may invoke a 

default hardware procedure by sending a signal to itself and receiving that signal. Fi-

nally, the mop instruction can be inserted at the end of the interrupt. When the thread 

reaches mop, it copies the content of the OPC back to the PC and resumes its execution. 
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Table 3.4 Multithreaded Instructions Group 2  

Instruction Description 

adr $d Return the address of this thread. 

op adr() 

{ 
return thisthread.address; } 

padr $d Return the address of the parent of this thread. 

op padr() 

{ 
return thisthread.parent.address; 	} 

cadr $d Return the address of the most recent child of this thread. 

op cadr() 

{ 
return thisthread.children[last] .address; 	} 

hadr $d Return the address of the head thread. 

op hadr() 

{ 
return thisthread.head.address; } 

3.3.2 Multithreaded Instructions Group 2 

The auxiliary instructions such as adr, padr, cadr, and hadr are summarised in Table 

3.4. They do not have guard operands since the execution of these instructions have no 

side-effect on the state of the TPU or the processor. The cadr, as mentioned earlier, is 

used as a complement to frk and might be omitted in an alternative design. The adr, 

padr, and hadr can be replaced by the use of the additional software routines to keep 

track of the thread information, as was done in the preliminary work [34]. 

3.3.3 Multithreaded Instructions Group 3 

The instructions in Tables 3.5 and 3.6 support hierarchical multithreaded execution. 

They can be emulated by a sequence of the basic multithreaded instructions described 

earlier, at the expense of additional software thread manipulation costs. 
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Table 3.5 Multithreaded Instructions Group 3 (continued in Table 3.6) 

Instruction Description 

cform 	$d, 	$51 Form a cluster of si slave TPUs. Return d = TRUE, if suc- 

cessful. 

op cform(op si) 	{ 

if 	(pt_TPUs = get_TPUs(sl)) 	{ 

d = TRUE; 

cluster_init(thisthread, pt_TPUs); 

} 

else d = FALSE; 

return d; 

yfrk 	$sl, 	$d, 	L Vertical fork. 	If guard si is set, fork a new thread on the 

first slave TPU, and return d = TRUE, if successful. The new 

thread executes label L. 

op yfrk(op si, op L) 	{ 

if (si && pt_TPUs = 

thisthread.slave_TPUs{O] .availW { 

d = TRUE; 

thread_mit (pt_TPUs, 	thisthread. seq, 	L); 

} 

else d = FALSE; 

return d; 

xfrk 	$sl, 	$d, 	L Horizontal fork. If guard s] is set, fork a new thread on the 

next slave TPU, and return d = TRUE, if successful. The new 

thread executes label L. 

op xfrk(op si, op L) 	{ 

if 	(si && pt_TPUs = 

thisthread.next_TPU.availO) 	{ 

d = TRUE; 

thread_mit (ptTPUs, 	thisthread. seq, 	L); 

} 

else d = FALSE; 

return d; 
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Table 3.6 Multithreaded Instructions Group 3 (continued from Table 3.5) 

Instruction Description 	 I 
crels 	$sl 	$s2 Cluster release. 	Execute if guard si is set. If s2 = TRUE, 

send synchronisation signal to slaves and free the cluster when 

the signal returns. Otherwise, abort the slaves and release the 

cluster. 

void crels(op sl, op s2) 

{ 
if 	(sl) 	{ 

if 	(s2) 	{ 

this thread. pas s_signal(pt_slaves, SYNCH); 

thisthread. cluster_release 0; 

} 

else thisthread.cluster_abort0; 

} 

xstp 	$sl, 	$s2 Similar to sstp. Synchronisation signal is passed to the next 

slave or back to the master if it is the last active slave. 	s2 

indicates whether the slave's state is merged into the master's. 

void xstp(op si, op s2) 	{ 

thisthread.wait_signai (SYNCH); 

if 	(sl) 	thisthread.stop(merge = s2); 

thisthread.pt_next.get_signal(SYNCH); 
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The cform instruction checks for available TPUs in the processor and reserves 

them as slave TPUs. A TPU is considered to be available if it is unclustered and there 

is no thread running on it. 

A thread can fork new threads in 2 directions: vertical fork (yfrk) and horizontal 

fork (xfrk). The yfrk is executed by the master thread to fork a child on the first 

slave TPU. The slave then executes xfrk to fork a successor thread on the next slave 

TPU. The slaves are inserted in the list maintained by the GTCU, after their master 

and in the order in which they are forked. Hence the sequence number is not given 

in both instructions. An assumption is that the master should only fork the slaves to 

execute program partitions which are encountered after the one executed by the master, 

according to the sequential semantics. Figure 3.4 (a) demonstrates the use of yfrk and 

xfrk where the threads in level 1 execute the outer loop iterations and the ones in 

level 2 execute the inner loop iterations. The order of the current running threads is 

depth-first or in-order: T0, T1, T11, T12, T2, T21, T22, T3, T4. 

The master and slave threads synchronise by executing crels and xstp instructions, 

respectively. This is equivalent to merging in the SPSM model [18].  Unlike the SPSM, 

where the main thread's merging point is implicitly the starting address of the future 

thread, the master thread in the hierarchical model explicitly executes crels. It passes 

the synchronisation signal to the first active slave and waits until all the slaves have 

been retired. When the slave executes xstp, it waits for the synchronisation signal 

before merging its state into the master's temporary state. If it is the last active slave in 

the cluster, then it passes the signal back to the master. Otherwise, it passes the signal 

to the next slave. When the signal returns to the master, it frees the slave TPUs and 

transfers its temporary state to the current state. The execution resumes after the last 

instruction executed by the last slave (as if the slaves' execution has been sequentially 
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Figure 3.4: Hierarchical multithreaded execution 

performed by the master itself). If the slave cluster is aborted, then all the slaves are 

interrupted from their execution and stop. 

Figure 3.4 (b) demonstrates the synchronisation between the threads in Figure 3.4 

(a). The order of execution is the in-order traversal of the tree: T0 -* T1 -p T11 

T12 -* T2 - T21 -* T22 -* T3 -* T4. Since T11 and T12 execute the inner loop of the 

first outer loop iteration (executed by T1), then they must be merged into T1 before 

the synchronisation signal is passed to the next outer loop iteration (executed by T2). 
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When T0 aborts its cluster IT, , T, T3, T41, T1 and T2 also abort their next-level clusters 

before stopping. 

3.3.4 Multithreaded Instructions Group 4 

The instructions in the final group, as shown in Table 3.7, support speculative execu-

tion. The safe instruction switches between the non-speculative and the speculative 

modes. By default, a thread is non-speculative when it starts the execution. When it 

becomes speculative, all the store operations write to the speculative buffer instead of 

to the shared memory. 

Because the speculative buffer is cleared when the thread stops, it must explicitly 

execute cmmt to write to the memory if the speculation is correct. In the case of 

misspeculation, the guard operand of the cmmt can be set to FALSE. The thread will 

simply stop without committing the results from the speculation. 

The uregs and fregs instructions manipulate the U and W bits of the thread's reg-

isters. The registers whose corresponding bits are to be set are specified by the mask 

which encodes base registers 0-31 and the offset which is an integer to be multiplied by 

32, (register number = base register number + 32(offset)). The uregs sets U bits to 

TRUE which indicates that the corresponding registers are unavailable to the successor 

threads. The fregs instruction sets U bits to FALSE and forwards the register values 

to the thread's successors. Upon receiving the values, the successors will set their W 

bits to FALSE. If the thread executes fregs when it has no children, then the specified 

U bits are simply switched off. 
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Table 3.7 Multithreaded Instructions Group 4 

Instruction Description 

safe 	$sl, 	$s2 Execute if guard si is set. If s2 = TRUE, the following stores 

will write-through to memory. Otherwise, the following stores 

will write to speculative buffer. 

void safe(op si, 	op s2) 

{ if 	(Si) 	this thread. set_ment.access(s2); 	} 

cmmt 	$sl If guard si is set, wait for synchronisation signal and commit 

speculative stores to memory. 

void crrant(op si) 	{ 

if 	(si) 	{ 
thisthread.wait_signai (SYNCH); 

thisthread.commit 	; 

} 

uregs 	$sl, 	1($s2) If guard si is set, set U bits of the registers specified by mask 

I and offset s2 to TRUE. 

void uregs(op si, op I, op s2) 	{ 

if 	(si) 	{ 

while 	(r = decode(I, 	s2)) 

thisthread.regs[r] .set_U(TRUE); 

} 

fregs 	$sl, 	1($s2) If guard si is set, forward the registers specified by mask 1 and 

offset s2 to the child threads. 

void fregs(op si, op I, op s2) 	{ 

if 	(Si) 	{ 

while 	(r = decode(I, 	s2)) 	{ 

thisthread.regs [id] .set_U(FALSE); 

for 	(iO; 	i<=last; 	i++) 

thisthread.children[i] .get_reg(r); 

} 

} 
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Figure 3.5: An overview of the simulator 

3.4 The Multithreaded Processor Simulator 

A sequential processor simulator [55] was modified to handle the multithreaded pro-

cessor architecture. The basic multithreaded features were implemented in [5]. It was 

enhanced considerably to reflect the details described in Sections 3.1, 3.2, and 3.3. 

3.4.1 Simulator Framework 

The framework is based on a process-based, discrete-event simulator. Figure 3.5 de-

picts an overview of the simulator. It was implemented in C++ and can be divided into 

three layers: processor model, simulator kernel, and context switching. 

3.4.1.1 Simulator Kernel 

The simulator kernel is a general-purpose library for discrete-event simulation. It de-

fines class entity, from which the processor components are derived. Entities are di-

vided into two types: (I) participating entities such as First Level Scheduler (FLS), 

Thread Processing Units (TPUs), and Arithmetic and Logic Units (ALUs); and (2) 



Chapter 3. The Multithreaded Processor Architecture and The Compiler 	50 

Pending 

schedu1u1e 

passivate 	.__- 

Active 	 Iw ( Passive 

Holding 

Figure 3.6: State transitions of a participating entity 

non-participating entities such as register files. 

A participating entity may be in one of four states: passive, active, holding, or 

pending. Figure 3.6 depicts the transitions between these states. Solid lines denote ex-

plicit transitions made by function calls and dotted lines are implicit transitions made 

by the simulator kernel. Passive entities have no control over the progress of the sim-

ulation. They can be scheduled and placed in the pending queue (see below) by active 

entities. The active entities may change the state of the simulation, schedule passive 

entities, or reschedule themselves. Holding entities are ones waiting for the state of the 

simulation to meet certain conditions before activating. Pending entities are ones being 

scheduled to activate after certain times; they are held in the pending queue which is 

ordered by the activation time. Both holding and pending entities are passive. Once 

the current active entity deactivates and there is no other active entity, the simulator 

kernel searches for a new active entity. It first checks in the holding list. If no holding 
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entity is able to activate in the current state of the simulation, the kernel picks the first 

entity in the pending queue and advances the simulation time. 

3.4.1.2 Context Switching 

The context-switching layer is a layer on which the rest of the simulator is built. Enti-

ties are derived from the base class context. Each context is an operating system thread. 

Mechanisms to maintain and switch between contexts are implemented in this layer. It 

is also the only layer that handles operating system functions. 

3.4.1.3 Processor Model 

The processor is modelled in the top layer. Its components are derived from the base 

class entity and the behaviours of these components are implemented using state tran-

sition functions. For example, the Thread Issue Unit (TIU) inside an active Thread 

Processing Unit (TPU) repeatedly performs the following operations: 

1: Get a new instruction. 

2. If there is a buffer hit, 

Hold until the registers required are unlocked. 

Fetch the source registers and lock the destination register. 

Issue the instruction to (i.e. schedule) Arithmetic and Logic Unit, Memory 

Unit, or Local Thread Control Unit. 

Reschedule itself, accounting for issue cycle time. 

3. If there is a buffer miss, 

(a) Send a request to First Level Scheduler and passivate. 
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However, components such as the buses and the bus interface are not simulated 

separately. It was assumed that the delay for a processor component to perform its 

task has included bus delay if that component accesses the buses, and bus contention 

is lumped in the contention for that component. In practice, the bus delay is also 

affected by distances between the components. For example, in a large application 

where several clusters of TPUs are allocated to execute several program partitions, the 

TPUs in large clusters may be more scattered than in smaller ones. Our multithreaded 

execution models, which will be described in Chapters 4 and 5, permit communication 

between parent and child threads only. Assuming that they often (if not always) execute 

on neighbouring TPUs, the communication delay which includes the bus delay is set 

to be uniform. 

Delays are measured in terms of number of time units. The absolute number is in 

itself less important, but the ratio between time delays should be realistic or correspond 

to the architectural assumptions being made - the actual execution time can be correctly 

estimated once a clock speed has been set. For example, a normal ALU instruction is 

split into four operations: fetch instruction, read registers, execute, and write back. 

Thus, the delay is set to 4 time units. On the other hand, the delays of the auxiliary 

multithreaded instructions (Section 3.3.2) are expected to be short, as these instructions 

are frequently used to support the multithreaded execution. The delay of the First Level 

Scheduler (ELS) is proportional to its fetch bandwidth and the size of the instruction 

buffer in the TPU. For instance, if the fetch bandwidth is 2 instructions per time unit 

and the TPU's buffer holds 10 instructions, then the FLS delay for processing a request 

from a TPU would be 5 time units. 

The Global Thread Control Unit (GTCU) was implemented as a non-participating 

entity in the simulator because it does not perform any action other than maintaining 
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threads' information. Accesses to the GTCU are managed in a multiple-readers/single-

writer style as the thread sequence can be updated by only one thread at any time 

(experiments on the GTCU's access delay are reported in Appendix B). 

3.4.1.4 Instruction Definitions 

The instruction set module is defined separately from the processor model. An in-

struction definition is implemented for each opcode and has two main functions: syn-

tactic analysis and instruction evaluation. At the start of the simulation, an input file is 

parsed. For each instruction, syntactic analysis is performed, which includes checking 

the number and type of operands, and tagging the type of functional units required. 

During the simulation, instructions are executed by the ALUs, MUs, or LTCUs, by 

calling the evaluation methods of the appropriate instruction definitions. 

There is also a set of profiling instructions as listed in Table 3.8, which are the 

interface between the program being executed and the simulator. The prb.t instruction 

prints out the probe number and the current simulation time. It is useful for measuring 

the execution length of a program fragment. The prb.a and prb.ai  instructions register 

an address in a lookup table. During the simulation, when a store (to shared memory) 

is executed, its target address is checked in the lookup table. If the address has been 

registered, it will be printed out along with the data to be stored. When a debug 

instruction is encountered by the current head thread, the processor's activities from 

that point onwards are printed out. The information as to which is reported depends on 

the level of debugging specified. These instructions do not have delays, but they may 

slightly affect the performance of some processor components such as ELS, since they 

are fetched into the instruction streams together with the application instructions and 

occupy space in the instruction buffers. 
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Table 3.8 Probing Instructions 

Instruction Description 

prb.t 	I Return probe number I and current time. 

prb.a 	I ($sl) Register address I ($sl) for profiling. 

prb.ai 	L, I Register address L + I for profiling. 

debug 	I Report processor's activities as specified by switch I 

3.4.2 Limitations 

The simulator runs on a SUN Solaris platform. It reads an input file in the assembly 

format (ASCII) rather than the binary executable. This allows us to introduce and 

experiment with new multithreaded instructions without being restricted by the actual 

instruction set architecture (ISA) and its binary format. However, the simulator does 

not deal with OS or library calls. When these calls are encountered, they are treated as 

dummy instructions, i.e. no action is actually executed. 

Another limitation is that currently cache hits/misses for the instruction cache are 

not modelled. The cache is always large enough to accommodate the whole input file 

which is loaded once at the start of the simultion. Similarly, the notion of data cache 

is deliberately omitted. Instead, we refer to the first-level shared memory which is also 

large enough to accommodate the whole program execution. 

3.5 The Multithreaded Compiler 

Compilers for parallel and multithreaded programs traditionally comprise a front-end 

source-to-source paralleliser, and a back-end optimiser and code generator. Examples 

include SUIF [84], Agassiz [79], Polaris [11, 40], and PROWS [62]. 
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Most front-end parallelising compilers are language-independent and machine-

independent. Source programs written in FORTRAN, C, C++, or Java are parsed into 

universal intermediate representation (IR) format, where structures such as loops and 

arrays are reserved for parallelisation analyses and transformations. The discovery 

of parallelism and the extraction of useful information from the sequential code are 

difficult to be done fully automatically. Interference from programmers is allowed, 

most commonly via interactive user interface (e.g. SUIIF, PROMIS) and the augmenta-

tion of source programs with preprocessor directives. The supplementary information 

can also be provided as external files, as in [29] and [61]. To minimise the degree 

of machine-dependence, thread manipulating code is typically inserted in the form of 

function calls which will be later linked to the target-specific multithreaded libraries. 

Output from the front-end compiler is fed into the back-end optimiser and code 

generator. High-level IR is broken down into low-level JR. Propagating high-level in-

formation, e.g. alias information and loop-carried data dependence, to the back-end 

can increase the efficiency of further analyses and optimisations. In SUIF, the infor-

mation is encapsulated in the annotations attached to SUIF JR objects. In Agassiz, an 

assertion file is generated to identify the mapping between the front-end and the back-

end representations. The back-end compilers are often modified versions of commer-

cial compilers. For instance, Agassiz uses a modified GCC back-end and Polaris uses 

a modified SGJ back-end. The multithreaded libraries are linked to produce the final 

executable code. 

Multiscalar compiler [72] focuses solely on the low-level compilation. A GCC 

front-end parses, optimises, and compiles a program down to assembly code. The 

Multiscalar compiler then performs task selection, schedules register communication, 

and annotates the assembly code with task information. It does not use high-level 
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structures or information since the task selector processes control-flow graphs at the 

basic-block level. Furthermore, only register dependence and communication are han-

dled by the compiler, while memory dependence is handled by the hardware. 

3.5.1 Compiler Implementation 

A multithreaded compiler threadsuif was implemented, which analyses sequential 

programs written in C and automatically transforms them for the multithreaded execu-

tion. The SUIF framework [84] was chosen due to its availability and support provided 

by the distributor (Stanford SUIF Compiler Group). Given SUI1F's modular construc-

tion and well-defined interface, new functions could be implemented and easily slotted 

into the compilation flow. 

The SUTF compiler system includes a set of compiler passes that perform pro-

gram analyses, optimisations, and transformations on the SUIF intermediate represen-

tation (IR). Each pass can be implemented as a separate program. The SUIF IR uses a 

language-independent abstract syntax tree (AST) representation in two levels: 

High-S UIF. In this level, the AST nodes are high-level control-flow structures 

such as TREEJFs, TREEJORs, or TREE LOOPs. 

Low-SUIF. In this level, the high-level tree nodes are dismantled into lists of 

instructions. 

Both levels of representation can co-exist. For instance, unstructured control-flow in 

high-SUIF code is represented by low-level branch and jump instructions. The com-

piler passes communicate by reading from and writing to SUTF files, where information 

such as results from the analyses are carried in the annotations attached to the SUIF 

objects. The SUIF packages [84] used were: 
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. basesuif (version 1.1.2). It is the base system for all other packages. 

. bas eparsuif (version 1.0.0.beta.2). This package includes libraries and passes 

for parallelisation and dependence analyses, loop transformations, and relevant 

optimisations. 

oldsui f (version 6.0.0). This package is a collection of libraries and passes that 

work on an earlier generation of the SUIF IR format. 

. suifbuilder (version 1.0.0). It is an interface for generating SUIF code. 

. suifvbrowser (version 1.0.0.beta.1). It is a graphical user interface (GUI). 

• tcovsui f (version 2.0) [85]. This is a contributory package which incorporates 

profile information into the SUIF code. 

The threadsuif package comprises of three main modules: 

Multithreaded loop transformer (loopth). 

Multithreaded control-speculation transformer (specth). 

• Multithreaded code generator (thgen). 

3.5.1.1 Front-end Transformations 

The front-end transformers, loopth and specth, process code in the high-SUIF format. 

They recognise TREE-FOR and TREE-LOOP structures for the multithreaded loop 

transformation (Chapter 4), and TREE-IF structures for the control-speculation trans-

formation (Chapter 5). The transformations are described in detail in those chapters. 
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3.5.1.2 Multithreaded Code Generation 

thgen generates the code targeted at the multithreaded architecture. It is a modi-

fied version of a MIPS code generator, mgen, in the oldsuif package. The output 

files from the front-end transformers are pre-processed by the SUIF passes including 

sw±ghnflew, oldsuif, and mexp. They reformat the code and prepare information 

such as register usage for thgen. The code generator works in three steps: 

Translate SUTF instructions into assembly ones and gather the register usage. 

Allocate saved registers. 

Determine the size of stack frame and allocate temporary registers. 

In our multithreaded model, each thread has a separate register file but they share 

the same memory space. Therefore, spilling registers to memory is avoided, assuming 

that there are always sufficient registers in the register file. Moreover, when a pro-

cedure call sequence is generated, infinite-saved-registers option is used so that the 

registers are not saved onto stack which is shared by all threads. If the program con-

tains recursive function calls, a private stack should be allocated to each thread. The 

front-end transformers allocate private memory to threads in the form of arrays and 

structures which are indexed by the thread numbers, and will be translated into . data 

section in the assembly code. 

3.5.2 Compilation Process 

An overview of the compilation process is illustrated in Figure 3.7. The analysis in 

SUIF function is quite simple and may not expose all the parallelism in the programs. 
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User hints, if needed, can be given in the source files using a pragma directive: 

#pragina suif_annote <annotation name> <information> 

hint 

When the source code is translated into SUTF IR, the hints will be written as SU1F 

annotations. Alternatively, annotations can be inserted directly into SUIF files via the 

graphical user interface, sui f vbrows er. 

The code is pre-processed by various distributed SUIF passes. First, porky handles 

classic optimisations including constant folding, forward propagation, copy propaga-

tion, and constant propagation. A new version of C program is generated from the 

optimised code. It is next compiled with gcc -a option, and executed to collect profil-

ing statistics. tcovsui f then annotates tree nodes in the SUIIF file with the basic block 

and line counts. The next step analyses high-SUTF structures, such as TREE_FORs, 

TREE...LOOPs, and TREEi1Fs, and determines whether they present good opportuni-

ties for the multithreaded and/or speculative execution. Besides detecting parallelis-

able loops, skweel also applies standard transformations such as loop normalisation 

and loop interchange. 

Following the analyses, loopth and specth recognise the threadable structures and 

transform them. Cost models can be used to aid the transformation. Ideally, this step 

should be machine-independent. Practically, however, the transformers are aware of 

the underlining target architecture and its execution models. After the transformation 

and code generation (by thgen), machine-specific optimisations can be applied, for 

example, instruction and register communication scheduling. 

Finally, the assembly output is supplied to the multithreaded simulator. Profile 

information is collected. It can be used to help improve the compiling options as well 

as to adjust the architectural assumptions such as the number of TPUs and ALUs. 
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Figure 3.7: An overview of the compilation process 
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3.6 Discussion 

A CMP-based multithreaded architecture has been described, which was enhanced to 

support hierarchical multithreaded execution, speculation, and register synchronisation 

and forwarding. The architecture executes the MIPS instruction set which was aug-

mented with multithreaded instructions. There are some similarities and differences 

between our clustered multithreaded architecture and previous ones, as described next. 

During program execution, a thread can dynamically allocate a cluster of slave 

TPUs to execute a program partition. The number of TPUs in the cluster can be spec-

ified in the cluster allocation command, which allows TPUs to be used in correspon-

dence to the parallelism in that program partition. This was inspired by the dynamic 

resource partitioning concept in the Simultaneous Multithreading (SNIT) [44]. Each 

slave thread can also allocate a cluster of slave TPUs at the next level. 

Interaction between the master and the slave threads was adapted from architec-

tures such as SPSM, M-Machine, and Superthreaded [18, 23, 68, 78]. Although the 

slave threads can be related to subthreads in [23, 68, 78], the latter typically reside in 

the master TPU or share hardware resources owned by the master thread. Our slave 

threads, on the other hand, execute on their own TPUs and transfer results to the master 

thread after they retire. These results are collected as the cluster's state (or the mas-

ter's temporary state), and will become the master's current state once the cluster is 

released. This operation is similar to merger in SPSM [18]. An underlining assump-

tion is that the slaves only execute program partitions which are encountered after the 

one executed by the master, according to the sequential semantics. If the program par-

titions executed by the master and by the slaves are encountered in the reverse order, 

then the master's current state will be reset to the point as if its execution had not yet 

started. 
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The slave threads in the same cluster operate in the predecessor/successor style 

[45, 65, 68] as follows. Since the slave TPUs are logically connected to each other in 

a uni-directional ring, a new slave thread is only forked on the next TPU in the ring. 

After finishing their execution, the slaves must synchronise and retire sequentially. 

Hardware support for speculative execution is very simple. Like STAMPede [65], 

threads can switch between non-speculative and speculative modes - they rely on the 

software to determine in which mode they should be during the execution. Misspec-

ulation detection and recovery are also performed in the software. Mechanisms are 

provided for handling a mispredicted thread which include: interrupting that thread; 

aborting the slave cluster, if it is a master thread; or switching off the merger flag in 

the slave retirement command, if it is a slave thread. Then, the thread can retire and a 

new one performs the correct execution. 

A simple register synchronisation and forwarding mechanism was added to the ar-

chitecture. The strategy is as follows: a parent thread first executes a command to set 

unavailable bits in the registers, prior to forking a new thread; as the new thread is 

initialised, wait bits in these registers will be automatically set, which enforces syn-

chronisation if it tries to read these registers before they are forwarded from the parent. 

The set of unavailable registers can be determined by dataflow analysis in the compiler. 

This idea was borrowed from Multiscalar [12], which declares a set of registers to be 

written by each task in a create mask, and passes this mask to a successor task as an 

accum mask; a task blocks when it tries to read the registers specified in the accum 

mask whose values have not yet been available. The Multiscalar hardware propagates 

forwarded registers to all the processing units, whereas our multithreaded architecture 

only forwards registers from the parent to its children. 

Because the architectural support for multithreading is kept to the minimum, the 
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onus is on the compiler to orchestrate the parallelism in programs and specify the 

execution. New multithreaded instructions were proposed to pass commands from 

the compiler to the architecture. At run-time, allocating clusters or forking threads 

are not guaranteed to be successful, depending on the availability of TPUs. In the 

case of clustering or forking failure, the program will be executed sequentially instead. 

Guarded execution is therefore a key feature in most of the multithreaded instructions. 

The main idea is to use the result from clustering or forking as guard operands in the 

subsequent multithreaded instructions, to ensure that the program is correctly executed 

in both sequential and multithreaded modes. 

The compiler implemented consists of source-to-source transformers for multi-

threaded loop execution and control speculation, and a code generator targetting the 

multithreaded architecture. The transformers are aware of the underlining architec-

ture and its execution models, which have been summarised and discussed earlier in 

the section. Then, the code generator generates MIPS instructions combined with the 

multithreaded ones. The multithreaded loop execution will be described in detail in 

Chapter 4, and the multithreaded control-speculative execution in Chapter 5. 



Chapter 4 

Multithreaded Loop Execution 

Loops are an important source of parallelism in sequential programs. Loop paralleli-

sation can be performed either statically or dynamically. In a dynamic approach the 

sequential loops are parallelised at run-time. A static approach, in contrast, transforms 

the loops at compile-time by inserting thread manipulation routines. Parallelisable 

loops can be either do-all loops, which contain no dependencies between iterations, or 

do-across loops, otherwise. Techniques for testing data dependence can be found in 

the literature [9, 19, 56, 75, 76].  A number of well-known loop optimisation techniques 

can be applied prior to the multithreaded transformation in order to expose more loop-

level parallelism. For instance, loop normalisation, loop skewing, and loop reversal, 

rearrange bounds and data dependency pattern in the loops, which enable further opti-

misations. Loop interchange switches the inner and the outer loops in a loop nest - a 

parallelisable loop can be moved outward to increase the granularity of the loop-level 

parallelism, or inward to prevent cache overflow. Loop fission separates sequential and 

parallelisable parts of a loop, by breaking a single loop into multiple smaller ones. It is 

also used to break large loops that do not fit into the cache. Loop fusion is the inverse 

of loop fission, which helps increase instruction-level parallelism in the loops. Loop 

64 
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unrolling can be applied for similar purposes, by replicating the body of the loops. 

Strip-mining and loop tiling improve memory locality by dividing the iterations into 

tiles and traversing between the tiles. Loop coalescing and loop collapsing transform 

a loop nest into a single loop, which eliminates the overheads of multiple loops and 

multi-dimensional array indexing. Loop peeling is usually performed in conjuction 

with the other optimisations as it handles remnant iterations which are leftover from 

applying other techniques. 

The multithreaded transformation is then performed after dependency and paral-

lelism analysis, and this is described next. 

4.1 Multithreaded Loop Transformations 

An overview of the compilation flow is displayed in Figure 4.1. The transformers de-

tect parallelisable loops in SUIF programs (the SUTF framework was described in Sec-

tion 3.5); they are TREE_FORs and TREE_LOOPs attached with annotations "do-all" 

or "do-across". These loops can be detected in SU]F passes such as skweel, from 

pragma directives inserted in the source code, or via the SUIF graphical user interface 

(GUT). Each parallelisable loop is pre-processed before it is transformed into the mul-

tithreaded version. High-level TREE_FORs and TREE_LOOPs constructs are disman-

tled into straight-line code using functions in the SUM module, porky. Figure 4.2(a) 

shows a dismantled structure similar to those produced from porky, which is next ex-

panded in preparation for the transformation (Figure 4.2(b)). The pre-processing pass 

also analyses the loop and prepares the following information: 

• The number of available TPUs in the processor, which is fixed for all the loops 

in the program. 
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Detect parallelisable loops 
- SUM package, e.g. skweel 
- User hints 

(annotations, directives, interactive GUI) 

Recognise parallelisable loops 
- Extract dependency information 
- Reformat code layout 

I (3) Transform 	I 

Figure 4.1: An outline of the loop transformation 

. The number of slave threads to execute the loop in parallel, which is obtained 

from the cost analysis. 

. The lists of instruction pairs that may cause loop-carried dependence. Sources 

and sinks of the dependency edges are maintained in strlist [num_dep_pairs] 

and lodi 1st [num_dep_pairs I  respectively. 

. Exit points. The natural exit of a loop is after the continuation test or BRK_JJABEL 

in Figure 4.2(a). Other exit points may also be present inside the loop body. 

Two loop transformation algorithms are described in Sections 4.1.1 and 4.1.2, 

respectively. Loop-Transformer-1 transforms loops with only natural exits while 

LoopTransformer2 transforms loops with multiple exits. The appropriate algorithm 

is chosen automatically for each loop by the pre-processing routine. 



67 Chapter 4. Multithreaded Loop Execution 

Reformatted 

I PRE-LOOP: 

TOP LABEL: 

PROLOGUE: 
TREE-NODE-LIST 

T 	- _____ PARENT-LABEL: 

TREE-FOR / TREE-LOOP (loop body 

TOP-LABEL: _______________ 
(loop body) 	 I HlLD_LABEL: 

CONT_LABEL: 
(loop continuation test } H 	CONT_LABEL: 

loop continuation test 

I BRK_LABEL: 	 I 
I 	 EPILOGUE: 	 I 

........................................ 
TREE _NODE _LIST 	 . 	PRE _ABORT _LABEL: 

(a) 
ABORT-LABEL: .............. . 

BR K_LABEL: 

(b) 

Figure 4.2: Loop structure in SUIF IA, (a) before and (b) after loop expansion 
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1 
	

mt guard[NUM_TPUS]; 

	

2 
	

mt readsynch, csucc, xsucc, ysucc, merge; 

	

3 
	

mt myself, mychild, myparent; 

	

4 
	

for (i = 0; i < NUM_TPUS; i++) guard[i) = 1; 

	

5 
	

PRE-LOOP: 

	

6 
	

readsynch = csucc = ysucc = 0; 

	

7 
	csucc = cform (NUM-SLAVES); 

	

8 
	myself = adr 0; 

	

9 
	

guard[myself] = csucc; 

	

10 
	ysucc = yfrk (guard[myselfl, TOP-LABEL); 

	

11 
	mychild = cadr 0; 

	

12 
	if ( ysucc ) { 

	

*13 	 sstp (0, mychild); 

	

14 
	

independent works 

	

15 
	 crels (guard[mychild],  1); 

16 

	

17 
	else 

	

18 
	

independent works 

	

19 
	

TOP-LABEL: 

20 PROLOGUE: 

	

21 
	

xsucc * 0; 

	

22 
	myself = adr 0; 

	

23 
	xsucc = xfrk (guard[myself], CHILD-LABEL); 

	

24 
	mychild = cadr 0; 

	

25 
	

PARENT-LABEL: 

	

26 
	

original loop body 

	

27 	merge * 1; 

	

28 
	if ( xsucc ) goto EPILOGUE; 

	

29 
	

else { 

	

30 
	

readsynch = 0; 

	

31 
	

goto CONTLABEL; 

32 

	

33 
	

CHILD-LABEL: 

	

34 
	

readsynch = 1; 

	

35 
	

merge * 0; 

36 CONT.LABEL: 

	

37 
	 original loop test 

	

38 
	

EPILOGUE: 

	

39 
	myself = adr 0; 

	

40 
	xstp (guard[myselu],  merge); 

41 BRK_LABEL:  

II working variables 

II working variables 

II working variables 

II initialise guards 

'- 

Il 
/I form a slave cluster 

II get self's address 

I - 

II fork the first slave 

II get child's address 

I - 

/I send synchronisation signal to 1st slave 

from code motion 

release the cluster 

II the same copy as line 14 

II start loop execution 

II 

/I 

II get self's address 

II fork the next slave 

II get child's address 

I- 

II 
II useful execution completed 

I- 

II 

I- 

II 

I- 

II 
I- 

II 
I- 

II branch to TOP-LABEL if continue 

II get self's address 

II retire slave thread 

II natural exit 

Figure 4.3: Multithreaded loop generated by LoopTransformer_1 
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4.1.1 Simple Loops 

Thread manipulation code is inserted in each block of the reformatted loop (Figure 

4.2(b)). Figure 4.3 shows the code outline of a multithreaded loop with the only exit 

at BRKJABELJ. Private variables can be allocated via arrays, e.g. guard[NUN_TPUS], 

and indexed by the thread addresses. They may also live in registers, provided that the 

number of registers is sufficient to prevent spilling to the shared memory. 

Master Thread 

The execution starts at PRE-LOOP. The master thread attempts to form a slave clus-

ter (line 7) and stores the result in guard. If the operation succeeds, then the loop 

will be executed by the slaves; otherwise, it will execute the loop itself. Due to the 

guard operands of subsequent multithreaded instructions (e.g lines 23 and 40), they 

are treated as flop instructions when executed by the master. 

Independent computation before or after the loop can be inserted ahead of crels 

(line 15) by code motion technique, and executed in parallel with the main loop ex-

ecution. When the master reaches crels, it sends a synchronisation signal to the 

slaves and waits until they retire. Then it transfers temporary register updates by the 

slaves to its register file and frees the cluster. Since the program counter of the last 

slave becomes the current program counter of the master, the execution will resume at 

BRKJJABEL (line 41) which is the exit point of the original loop. 

Slave Threads 

The execution starts at TOP-LABEL (line 19). A new thread is forked (line 23) before 

the current thread continues to execute the loop body. At the end of the execution, 

the merge flag is set (line 27) indicating that the register updates by this thread will 
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master 

j 

 

PRE-LOOP 

1_yfrk slave_i 

slave-1 

rTOP-LABEL 

PROLOGUE 

xfrk slave-2 

0  PARENT_LABEL 
(loop body) 

xfrkfa 

0 EPILOGUE 

H BRK_LABEL 

more iteration 

01  CHILD-LABEL 
TOP LABEL 

PROLOGUE 

xfrk slave-3 

, PARENT-LABEL 
(loop body 

0 1 EPILOGUE 

_,.4 CONT_LABEL 
(loop continuation test 

more iteration 

slave_2 

more iteration 	- 

101 CHILD-LABEL 

more iteration 

xfrk fails 	CONT_LABEL 
loop continuation test 

Figure 4.4: Diagram of the multithreaded loop in operation 

be merged into the master's temporary state. If the fork is successful, then the current 

thread waits to retire and passes the synchronisation signal to its child (line 40). Oth-

erwise, it will perform the loop continuation test and execute the next iteration itself. 

The child's execution begins at CHILD LABEL (line 33). The loop continuation 

test (line 36) is performed early to determine whether to start a new iteration, thereby 

limiting the amount of speculative work of the child thread. If the test fails, the child 

only waits to synchronise with its parent and retires without merger. Figure 4.4 depicts 

the multithreaded loop in operation. Life cycles of the slave threads, except the first one 

which is spawned by the master (the first slave thread starts at TOP-LABEL), start from 
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iteration i 	 iteration i + 1 

store instruction 

psg (xsucc, mychild, signal_id); 	 wat (readsynch, signal-id); 

load instruction 

Figure 4.5: Store/load synchronisation in Loop-Transformer-1 

childhood which are paths represented by dotted lines. When a child thread reaches 

PROLOGUE and executes the xstp instruction, it becomes a parent and follows the paths 

represented by the solid lines. From the diagram, the master thread follows the paths 

represented by the dashed line. 

Since every thread encountering an xstp is blocked until the signal is received 

from its parent, the master thread executes sstp (line 13) in order to pass the signal 

to the first slave prior to its own computation. This permits the slave TPUs to be 

reused by multiple slave threads, which is called recycling execution. However, this is 

impractical for nested loops. As a thread executing an outer loop iteration tries to pass 

the signal to its slaves, it may be blocked waiting for the signal from its own parent 

(since the signal is forced to pass around in the correct order, the thread will eventually 

be unblocked without causing any deadlock). In such cases, the sstp instruction is 

excluded since the execution is non-recycling. The non-recycling execution will be 

discussed later in the chapter. 

Data Dependence 

For each pair of dependent instructions in strlist and lodlist, synchronisation is 

enforced by passing and waiting for a signal, as shown in Figure 4.5. The signal-id is 

an integer value unique to each store/load pair; psg is a non-blocking send while wat is 
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a blocking receive. The execution of wat is guarded by readsynch, whose value is set 

when a new thread is created (line 34 in Figure 4.3). If a thread has to execute the next 

iteration itself, i.e. either xfrk fails or it is the master thread, then readsynch must 

be switched off (line 30 in Figure 4.3), since the new iteration need not synchronise 

its memory operations with the previous iteration executed by the same thread. On the 

other hand, psg is guarded by xsucc whose value is set if the thread successfully forks 

a new thread. 

4.1.2 Loops with Multiple Exits 

Loop-Transformer-2 (Figure 4.6) operates on loops with multiple exit points. At 

present, it automatically handles break statements in C which are embedded in the 

loop body. Thread manipulation code for PRELOOP, PARENTJJABEL, and CHILD_LABEL 

is the same as before with modification being made to PROLOGUE and EPILOGUE, and 

the additional PRE-ABORT-LABEL and ABORT-LABEL were introduced to handle specu-

lation. 

Speculation Handling 

Although the loop continuation is tested early when a new thread is spawned, the 

iteration may still be invalid if a thread executing any previous iteration encounters an 

exit point. Therefore, a newly-created thread has to turn off the safe flag and become 

speculative (line 23). Subsequent stores by the thread will be buffered in its private 

memory and only committed to the master thread's temporary buffer before it retires 

(lines 39 and 40). 

The original breaks in the source program were translated to jumps to BRK_LABEL 

in the SUIF code. The targets of these jumps were changed to PRE-ABORT-LABEL by 
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the transformer. When the first thread encountering an exit branches to this label, it 

interrupts the child's execution (line 45) and commits its speculative stores and reg-

ister updates up to the break point (lines 46 and 47) before retiring. The subsequent 

threads are recursively interrupted (line 52) and retire without merger (line 53). If the 

interrupted thread governs the multithreaded execution of the inner loop, it also aborts 

its slave cluster (lines 44 and 51). 

Suppose that the following loop is transformed for the multithreaded execution: 

mt a[5] = 11, 2, 3, 4, 5}; 

mt b[5] = 16, 7, 8, 9, 101; 

for (mt j = 0; i < 5; i-H-) { 

if (1 < 3) 

a[i] = ( (a[i] * 111) + (b[i] * 222) ) * 333; 

if (i > 0) break; 

II 
The compiler will generate 5 slave threads {To, T1, T2, T3, T41 to execute the loop 

iterations (with induction variable i = 10, 1, 2, 3, 41, respectively). As T3 by-

passes the computation under the first condition and arrives at break before the others, 

it will interrupt T4 and try to commit its result. The xstp and cmmt instructions force 

the threads to wait until they are signalled by their predecessors. The next thread that 

encounters break is T1. It interrupts T2, which, in turn, interrupts T3 from blocking 

at the cmmt instruction. Eventually, the threads will commit and retire in the correct 

sequential order despite exiting the loop out-of-order, as shown in Table 4.1. 
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1 
	

mt guard(NWLTPUS); 

	

2 
	

jot readsynch, csucc, xsucc, ysucc, merge; 

	

3 
	

jot myself, mychild, myparent; 

	

4 
	

for (i = 0; i < NW4_TPUS; i++) guard[i] = 1; 

	

5 
	

PRE-LOOP: 

	

6 
	

same as Figure 4.3, line7s6-18 

19 TOP-LABEL: 

	

20 
	

PROLOGUE: 

	

21 
	

xsucc = 0; 

	

22 
	

myself = adr 0; 

	

*23 	safe (guard[myselfl, 0); 

	

24 
	

xsucc = xfrk (guard[myself],  CHILD-LABEL); 

	

25 
	mychild = cadr 0; 

26 PARENT-LABEL: 

	

27 	same as Figure 4.3 lines 26-32 

	

33 
	

CHILD-LABEL: 

	

34 
	

same as Figure 4.3, lines 34-35 

	

36 
	

CONT..LABEL: 

	

37 	 original loop test 

	

38 
	

EPILOGUE: 

	

*39 	if C guard[myself] C cmmt (merge); 

	

40 
	

xstp (guard[myselfl,  merge); 

	

41 
	

goto BRK_LABEL 

	

*42 	PRE-ABORT-LABEL: 

	

43 
	

if ( guard[myself) ) { 

	

44 
	

crels (incsucc, 0); 

	

45 
	

isg (xsucc, mychild, ABORT-LABEL); 

	

46 
	

cmmt (1); 

	

47 
	 xstp (guardEmyselfi,  1); 

	

48 
	

} 

	

49 
	

goto BRK._LABEL; 

*50 ABORT-LABEL: 

	

51 
	crels (in_csucc, 0); 

	

52 
	

isg (xsucc, mychild, ABORT-LABEL); 

	

53 
	

xstp (guard[myself],  0); 

	

54 
	

BRICLABEL:  

II working variables 

II working variables 

II working variables 

II initialise guards 

I - 

II 

II start loop execution 

'- 

Il 

/I get self's address 

II become speculative 

II fork the next slave 

get child's address 

II 

/I 

I - 

II 

I - 

II branch to TOP-LABEL if continue 

I - 

II commit/discard speculative stores 

retire slave thread 

I - 

II 

I - 

II abort inner-level cluster 

II interrupt child's execution 

1/ commit/discard (current thread) 

1/ retire slave thread 

/1 

1/ abort inner-level cluster 

/1 interrupt child's execution 

retire without merger 

/1 natural exit 

Figure 4.6: Multithreaded loop generated by Loop-Transformer-2 
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Table 4.1 Order of commit and retirement  

Thread Action Code Executed (line in Figure 4.6) 

T0 commits line 39 

T0 retires line 40 

T1 commits line 46 

T1 retires line 47 

T2 retires line 53 

T3 retires line 53 

T4 retires line 53 

Master Thread Execution 

As discussed in Section 4.1.1, the master thread suspends at the crels instruction. 

Some slaves commit their speculative stores to the master's temporary buffer. The data 

from this buffer is transfered to the working speculative buffer before the master thread 

resumes its execution at BRKJ.JABEL. If the loop is in a nest, then the master commits 

these results in the EPILOGUE of the outer loop iteration. For the outermost loop, the 

results collected from all the threads in the system are committed after the master exits 

at BRXLABEL. 

Data Dependence 

Data dependence between iterations is handled in much the same way as before. How-

ever, being speculative, each slave reads from the speculative buffer of its predecessor 

instead of from the shared memory. The psg/wat instruction pair (Figure 4.5) ensures 

that the consumer waits until the most recently-updated data is available. Figure 4.7 

shows an example of multithreading in nested loops, which assumes that there is data 
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Level 	
... LJ 

Level 
Outer LOOP 	1j 

Level 2 
Inner Loop. Ic,  ~iLl 2) .... T 

GTCU L 	T1  T1 i Ti 2 I T2 	112L1 14 

SPEC BUFFER 	 I 	I 	I 	I 	I 	I 
sf1 	I 1d 	 I 	I 

Figure 4.7: Nested loop execution in speculative mode 

dependence between the outer loop iterations. Following the thread order maintained 

by the global thread control unit (GTCU), T2 retrieves the data from T1 's buffer after 

the synchronisation. Our transformation is applied to each loop separately. Therefore, 

data dependence between iterations of different loops, such as between T12 and T2, 

is not recognised by the transformer. In those cases, only one loop is chosen for the 

multithreaded execution. 

Arbitrary Exits 

In the case of arbitrary exits other than break statements, the first thread reaching an 

exit saves the target address before jumping to PRE  -ABORT JABEL. Instructions are in-

serted at the end of the aborting sequence, i.e. after line 47, to load and branch to the 

target address after the execution is resumed by the master thread. 
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This transformation is also applicable to loops from the previous section. Because 

no exit is found in the body of such loops, PRE-ABORT-LABEL and ABORT-LABEL blocks 

are never executed. 

4.1.3 Register Communication 

Data dependence between threads can also be handled by register forwarding. This 

approach requires dataflow analysis in the assembly level or after the register alloca-

tion phase. As a result, when this option is selected, the front-end transformers only 

mark places where data dependencies might occur. The actual instructions, uregs and 

fregs, will be inserted during the code generation phase. The multithreaded transfor-

mation of the following loop is next considered: 

mt a[10] = 11, 2, 3, 4, 5, 6, 7, 8, 9, 10}; 

mt total = 0; 

for (mt j = 0; i < 10; i++) 

total = total+ a[i] * 2; 

Loop-carried data dependence exists due to the reads and writes of the variable total. 

Figure 4.8 shows the assembly code of the multithreaded loop when memory commu-

nication is used. The result of the summation (line 20) is stored in the shared memory 

and loaded by the next iteration. Synchronisations are required before the load (line 

18) and after the store (line 22). 
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2 L2.rnain: If TOP-LABEL 

3 L3.main: II PROLOGUE 

4 ii $75, 0 II 

5 adr $76 II 

6 muli $11, $76, 	4 II 

7 lai $12, __S1.main, 	0 II 

8 addu $13, $12, 	$11  

9 1w $73, 0($13) II load guard value 

10 xfrk $73, $75, 	L5.main II 

ll cadr $77 /- 

12 L4.main: II PARENT-LABEL (loop body) 

13 muli $14, $69, 	4 /- 

14 la $15, 64($29) /- 

15 addu $24, $15, 	$14 II calculate address of a(i) 

16 1w $25, 0($24) II load a[i] 

17 muli $80, $25, 	2 II $80 	- a(i) 	* 2 

*18 wat $79, 1 II synchronise load 

19 1w $8, 104($29) II load total 

20 add $9, $8, 	$80 II $9 * total + $80 

21 sw $9, 104($29) // store result 

*22 psg $75, $77, 	1 II synchronise store 

23 beqz $75, L8.main /- 

24 Ll0.main: II xfrk succeeds 

25 j L6.main /- 

26 L8.main: II xfrk fails 

27 li $79, 0 II turn off wat's guard 

28 j L0.main /- 

29 L5.main: II CHILD-LABEL 

30 ii $79, 1 II turn on wat's guard 

31 L0.main: // CONT_LABEL 

32 addi $69, $69, 	1 /- 

33 li $10, 10 /I 

34 bgt $10, $69, 	L2.main II continuation test 

35 L6.main: II EPILOGUE 

36 II 

Figure 4.8: Transformed loop using memory communication 
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1 

	

2 
	

L3.main: 

3 

	

4 
	

ii 	$45, 2 

	

*5 	 uregs 	$73, 64($45) 

	

6 
	 xfrk 	$73, $75, L5.main 

7 

	

8 
	

L4 main: 

	

9 
	

muli 	$14, $69, 4 

	

10 
	

la 	$15, 64($29) 

	

11 
	

addu 	$24, $15, $14 

	

12 
	

1w 	$25, 0($24) 

	

13 
	 mull 	$80, $25, 2 

	

14 
	

8 [''synch-read'' 11 

	

15 
	

8 (''synch-write'' 11 

	

16 
	

add 	$70, $70, $80 

	

*17 
	

fregs 	$75, 64($45) 

	

18 
	

beqz 	$75, L8.main 

19 

I - 

/I PROLOGUE 

I - 

/I offset 

II set $70 unavailable 

I - 

II 

II 

 

PARENT-LABEL (loop body) 

Il 

/I 

II calculate address of a[i] 

II load a(i) 

II $80 — a(i] * 2 

II annotation added by transformer 

II annotation added by transformer 

II $70 $70 + $80 

II set $70 available and forward 

I- 

/I 

Figure 4.9: Transformed loop using register communication 

Figure 4.9 shows assembly code of the same loop when register communication is 

used. In our example, the source and sink of the dependency edge point to the same 

instruction (line 16). Lines 4, 5, and 17 are added after the code generation as it is 

when the register dependence (caused by $70) is known. The register identifier of $70 

is encoded as 

base register = 6 

	

70 = 6+32(2) , mask 	= 0x00000040 or 64 

	

offset 	=2 

The uregs instruction is inserted before xfrk to enforce synchronisation if the child 

thread tries to read $70 before it is available. The instruction is guarded by the same 

condition as xfrk. After the register value is produced, it is forwarded to the next 

thread by fregs which is guarded by the result of the fork. Figure 4.10 depicts the 

register communication between threads. 
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master 

PRE—LOOP 

yfrk slave_i 

slave-1 

[mu $70: (W, U) = (0,0) 

PROLOGUE 

[

uregs($70 ) 
set $70: (W, = (0,1) 

xfrk 	slave-2 

PARENT-LABEL 
(loop body) 

fregs 	{$70} 	'. 
set $70: (W, U) = (cJ;•Q,1,. 

N 

slave-2 

{ mit $70: (W, U) = (1,0) 	J 
CONT_LABEL 
(continuation test) 

PROLOGUE 

1ure 	{$70}  
set $70:(W,U)=(1,1)J 

xfrk slave-3 

PARENT_LABEL 
(loop body) 

egs ($70) ' 

L set $70: (w, U) = (JQJ 
N 

N 

slave_3 

CONT_LABEL 
(continuation test) 

PROLOGUE 

Cure ($70) 
set $70: (W, U) = (1,1) 

xfrk slave-4 

PARENT_LABEL 
(loop body) 

receive $70: (W,U) = (0j±J 

[fregs {$70} 
set $70: (W, U) = (0,0) 

Figure 4.10: Diagram of register communication for register $70 
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4.2 Performance Evaluation 

This section reports results of executing sequential and multithreaded programs on our 

simulated architecture. The architectural details and compilation framework were de-

scribed in Chapter 3. Optimisations performed by SUIF prior to the multithreaded 

transformation are classic optimisations (constant folding, forward propagation, copy 

propagation, and constant propagation) and basic loop optimisations (loop normalisa-

tion, loop skewing, and loop reversal). Sequential programs were transformed using 

Loop-Transformer-1 and Loop-Transformer-2 described earlier. Techniques such 

as loop unrolling and loop peeling were also explored. 

4.2.1 Benchmarks 

The C version of the Livermore kernels [82] were used as benchmarks in the experi-

ments. The kernels are placed in separate programs which consisted of three phases: 

initialisation, main computation of the kernel, and verification. Each kernel is executed 

repetitively enough to dominate the total execution time of the program. 

The statistics for the Livermore kernels are summarised in Table 4.2. The parame-

ters K and I were taken from the full benchmark version [81] (the first set of DO-loop 

spans), except matrix multiplication (U...21) which was scaled down to correspond to 

the same workload as the other kernels. The last four columns present statistics of the 

benchmarks from the sequential execution. 
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Table 4.2 Benchmark description and general statistics  

Kernel Statistics Dynamic Distribution (%) 

K 	
] 

I 	J K * 1 mit Main Verify Name Kernel Description Instructions 

A.] Hydrodynamic code 70 1,001 70,070 1,779,326 0.64 99.03 0.32 

C..3 Inner product 90 1,001 90,090 1,183,761 0.95 99.05 0.00 

D_4 Banded linear equations 140 600 84,000 1,546,251 0.83 99.17 0.00 

F6 General linear recurrence equation 30 1,954 58,620 1,240,448 2.85 97.12 0.03 

G_7 State equation 40 995 39,800 2,616,272 3.08 96.70 0.22 

H8 Alternating direction, implicit inte- 100 198 19,800 3,489,128 1.09 98.67 0.24 

gration code 

I..9 An integration predictor 360 101 36,360 2,019,297 0.97 98.99 0.04 

J_10 A difference predictor 340 101 34,340 2,649,431 1.18 98.35 0.46 

L_12 First difference 120 1,000 120,000 2,060,662 0.75 98.92 0.33 

N_14 1-Dparticle-in-cell code 20 2,000 40,000 1,450,765 0.82 99.15 0.03 

R_18 2-D explicit hydrodynamic code 20 495 9,900 3,035,697 1.33 98.32 0.35 

U.21 Matrix multiplication 5 15,625 78,125 1,849,569 0.84 98.89 0.26 

V22 Planckian distribution procedure 70 1,001 70,700 2,415,445 0.79 98.96 0.25 

Average 2,102,773 1 	1.24 1 	98.56 0.20 

the number of times a kernel is executed. 

the number of iterations executed in a kernel execution. 

K *1 	: the total number of iterations executed. 
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Table 4.3 Parameters for the simulated multithreaded architecture  

Configuration Sizes Latencies (in time units) 

instruction buffer (inst.) 10 ALU multiply 12 

total TPUs 18 ALU divide 20 

ALUs/TPU 2 ALU others 4 

registers/TPU 120 MU load/store 4 

LTCU queries (group 2) 2 

LTCU others 4 

buffer hit 1 

buffer miss 5 

Table 4.4 Multithreading overheads 

Overheads 
[ 	

Routine Average Tim7units] 

Master's PRE-LOOP 50 

Slave's: Loop-Transformer-1 

Fork / Initialisation PROLOGUE and CHILD 50 

Retirement EPILOGUE 42 

Slave's: Loop-Transformer-2 

Fork / Initialisation PROLOGUE and CHILD 54 

Retirement EPILOGUE 50 

PRE-ABORT 20 

ABORT 12 
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Table 4.5 Details of parallelisable loops in the benchmarks  

Program AA C3 F..6 G...7 H8 1-9 J..10 LJ2 NA4 V22 

Loop-carried X / .J X X X X X X X 

Dependence 

Body Length 132 73 68 358 749 266 317 75 173 169 

(time units) a 

'From sequential execution, ALUs =2. 

4.2.2 Results and Discussions 

The first experiment compared the performance of multithreaded programs to their 

sequential version. Parameters used in the simulation are listed in Table 4.3. The 

sequential programs had been optimised using classic optimisations and executed on 

the architecture with the number of ALUs ranging from 1 to 4. It was observed that 

most programs used at most 2 ALUs. Although some programs used 3 or 4 ALUs, the 

utilisation of those extra ALUs were quite low. Thus, the number of ALUs per TPU in 

the table is set to 2. 

All the benchmarks except D_4, RJ8, and U21 contain one-level nested parallelis-

able loops. They were transformed into multithreaded code, for cluster sizes ranging 

from 2 to 16, in steps of 2. Because the benchmarks have only natural exits, we tested 

Loop-Transformer-2 by re-writing the loops using while (TRUE) instead of the orig-

inal for ( ... ),and break once the loop index value exceeds the upper bound. The 

execution times of both versions were similar, and therefore the results from the origi-

nal loops were reported in Figure 4.11. The multithreading overheads in Table 4.4 are 

the average execution time of the thread manipulation routines, which were measured 

from the experiments in this section. 
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2 	4 	6 	8 10 12 14 16 	2 	4 	6 	6 1U 11 14 10 	 & 	 4 	 0 	 0 	 IV 
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2 	4 	6 	8 	10 12 14 16 2 	4 	6 	8 	10 12 14 16 	2 	4 	6 	8 	1U 1Z 14 101 

V-axis: Speedup w.r.t sequential program 
X-axis : No. of slave TPUs 

Figure 4.11: Speedup of multithreaded programs with cluster size ranging from 2 to 16 

TPUs, in steps of  
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TPU4 	TPU5 
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ri 

.5 

(a) cluster size = 4 
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___ 
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.............. 

.0 

(b) cluster size = 6 

Figure 4.12: A saturation point being reached at cluster size = 4 

Loop bodies of the loops in C3, F_6, and LJ2 are fairly short. The ones in C3 

and F_6 also contain loop-carried data dependence. The multithreaded versions of 

these benchmarks deliver little speedup over the sequential programs; they are even 

worse when the cluster size is 2. In contrast, the multithreaded execution offers good 

speedup in G_7, H8, I_9, and f_JO and the loop bodies in these benchmarks are rea-

sonably large (see Table 4.5). The speedup generally levels off after 8-10 slave TPUs. 

The slave TPUs are recycled among slave threads. Due to the inherent parallelism and 

the execution pattern of the loops, after certain points, their performance will no longer 

improve in spite of the increase in the number of TPUs. Figure 4.12 depicts an exam-

ple. As mentioned in Section 3.4.1.3, the simulated architecture assumes that the bus 

delay is included in the delays of the other processor components such as ALUs, and 

bus contention is lumped in the contention for these resources. Communication delay 

was assumed to be uniform since the communication is only permitted between parent 

and child threads which are likely to execute on neighbouring TPUs. 
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Table 4.6 Details of parallelisable nested loops 

from outermost to innermost loops 

Program Iterations Body Length (time units) a 

D_4 (3,194) (17633,67) 

R_18 (5,100) (5, 100) (5, 100) b  (51116,497) (75174,720) (12586, 108) 

U_21 (25, 25, 25) (72489, 2881, 95) 

'From sequential execution, ALUs =2. 
b3 sets of nested loops executed sequentially. 

In the next experiment, multithreaded execution in nested loops in D_4, RJ8, and 

U.21 were performed (the details of these loops are shown in Table 4.6). The speedup 

of the multithreaded versions of DA, R_18, and U21 across different numbers of TPUs 

are shown in Figures 4.13 and 4.14. The nested loop execution is labelled as follows: 

N(2, 4), indicats that 2 and 4 slave TPUs are allocated to the outer and the inner loops, 

respectively. OUTER, MID, or INNER represent the multithreaded execution in the 

outermost, middle, or innermost loops only. The total number of TPUs in the graphs 

includes the master and the slave TPUs. 
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Figure 4.13: Speedup of multithreaded versions of D.4 and Ri8 
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Total no. of TPUs 

Nested Pvt.iltithreading: 	innermost loop is sequential 	outermost loop is sequential 

middle loop is sequential 	others 

Figure 4.14: Speedup of multithreaded versions of U.21 

For all the benchmarks, two-level multithreading yields no better performance than 

one-level multithreading in the outermost or middle loops. In the case of one-level 

multithreading in the innermost loops, it appears that the loop bodies in these bench-

marks are too small for the multithreaded execution to be beneficial. A drawback of 

the multithreading method as mentioned earlier is that at the start of each iteration, a 

fork instruction is executed and is only successful if the next slave TPU is available. 

A thread occupies a TPU, even though its execution has completed, until it receives 

the synchronisation signal from its predecessor, allowing it to commit and free the 
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Level 0 

Level 1 
Outer Loop 

Level 2 
Inner Lop 

Figure 4.15: An example of nested multithreading 

TPU. An example is shown in Figure 4.15. In cluster {T41, T42}, the first slave thread 

( 1'41) waits for the signal from its master (T4) which, in turn, awaits the signal from its 

preceding master (T3). As a result, after a few iterations are executed in parallel, the 

remaining ones are executed sequentially because no thread is further sparked. 

One approach to this problem is to enhance the architecture, by differentiating the 

synchronisation between global and local levels so that the clusters can be managed 

fully independently from each other. The solution proposed in this thesis is to use 

compile-time techniques such as loop unrolling and loop peeling to improve perfor-

mance of the multithreaded programs. This approach was chosen as it does not require 

any alteration to the architectural design. In addition, since the current architecture 

permits threads to commit and retire one-by-one, it simplifies the study of control-

speculative execution which will be described in Chapter 5. 

4.2.2.1 Loop Peeling 

Loop peeling removes a small number of iterations from either the beginning or the end 

of a loop and executes them separately. A common use is to remove data dependencies 
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Figure 4.16: RIEavg  of the multithreaded programs shown in Figure 4.11 

caused by the first or the last few iterations from the main loop, allowing the main 

loop to be further optimised and then parallelised. This section focuses on the main 

parallelisable loop and examines further use of loop peeling. 

Figure 4.16 gives the average ratio of the instructions executed (RIE) by the master 

TPU to those executed by the slave TPU. The RIE implies how the master TPU is 

utilised in comparison to the slave TPUs. In the multithreaded execution, each slave 

TPU may be reused by multiple slave threads, which is called recycling execution. 

From the graph, the master TPU is utilised less than 20% of the average utilisation of 

a slave TPU. Exceptions are F_6 and N_14. In F6, the multithreaded loop resides in 

a serial loop (which is executed by the master) and its upper bound is not constant. 

In N14, the multithreaded loop is followed by a serial loop and they cannot overlap; 

however, N_14 (d) gives the ratios after the number of instructions executed in the 

serial loop is deducted from the total number of instructions executed by the master. 
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Due to the nature of the kernel code, while the slaves are executing the loop, little 

useful computation is left to the master. In the next experiment, early iterations of 

the loops were peeled prior to the multithreaded transformation. Once transformed, 

downward code motion is applied to allocate the peeled iterations to the master thread. 

If there are multiple exits from the loops, abort cluster instructions are inserted in the 

master's code ahead of those exits. The following variations were explored: 

. p.00 represents the original version of the multithreaded loop. 

. p.05 represents the loop in which 5% of the iterations were peeled. 

. p.10 represents the loop in which 10% of the iterations were peeled. 

. p.20 represents the loop in which 20% of the iterations were peeled. 

The percentage of iterations peeled is limited to 20% so that its sequential execution 

does not dominate the overall program execution. Due to the characteristic of the 

multithreaded loop in F_6, as mentioned earlier, it is excluded from the experiment. 

The resulting speedup is shown in Figure 4.17, and the RIE graphs and their stan-

dard deviations are shown in Figures 4.18 and 4.19, respectively. 
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The multithreaded programs with loop peeling increase program speedup with the 

improvement up to 20%. In N_14, there is no improvement at all since the program's 

speedup is restricted by the serial loop execution. Comparisons of the RIE bars in 

Figures 4.16 and 4.18 reveal that the utilisation of the master TPU is substantially 

improved. However, as more iterations are allocated to the master, e.g. 10% - 20%, 

and the cluster size increases, the slave TPUs appear to be under-utilised in comparison 

to the master TPUs. Consequently, the program performance, in spite of some modest 

speedup, is limited by the sequential execution of the master thread. The standard 

deviation of the RIE, shown in Figure 4.19, implies how the iterations or threads are 

distributed among the slave TPUs. When there are fewer threads to distribute to the 

slave TPUs, i.e. p.10 and p.20, uneven workload becomes more visible, especially in 

those benchmarks composed of larger threads such as H_8, 1-9, and L10. 

4.2.2.2 Loop Unrolling 

Loop unrolling replicates the body of loops. If a loop is unrolled n times, then the new 

loop body contains n + 1 copies of the original loop body and the iteration step of the 

new loop is multiplied by n + 1. It is a common technique to increase the size, and 

therefore instruction-level parallelism, of the loop body which corresponds to thread 

size in the multithreaded execution. 

First, the impact of loop unrolling on the recycling multithreaded execution is stud-

ied. The following conditions are explored: 

. b.1 represents the original loop. 

. b.x2. The loop is unrolled once. 

. b.x4. The loop is unrolled 3 times. 
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• b.x8. The loop is unrolled 7 times. 

5% of the total loop iterations plus leftovers are peeled (they are early iterations of 

the loop) so that the remainder is an exact multiple of the unrolling factor plus one. 

Exceptions are H8, 1-9, and JJO. In these benchmarks, the loops have only few 

iterations and the loop bodies are quite large; thus only the leftovers are peeled so that 

the master TPU does not execute more (original) loop iterations than those executed 

by a slave TPU. 

Graphs shown in Figures 4.20 and 4.21 demonstrate that a combination of loop 

unrolling and loop peeling yield significant speedup for most benchmarks. The perfor -

mance gained in N_14 is limited by the serial loop execution in the program, whereas 

the performance gained in N_14 (d) is more pronounced as the execution time of the se-

rial loop is deducted from the total execution time (of both the sequential and the mul-

tithreaded programs) and therefore the speedup observed is due to the multithreaded 

execution. The upper bound of the loop in F_6 is not constant; if the number of itera-

tions is less than the number of copies to be replicated, then the loop will be executed 

sequentially. Therefore the performance drop in b.x8 is due to the increasing ratio 

of the sequential execution to the multithreaded execution. Finally, H_8, 1-9, and J_10 

show little improvement because their original versions already performed well. More-

over, they had few loop iterations. As a result, the more the loops are unrolled, the less 

is loop-level parallelism exploited. 
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Figure 4.20: Speedup of recycling multithreaded execution after loop unrolling and loop 

peeling (continued in Figure 4.21) 
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Figure 4.21: Speedup of recycling multithreaded execution after loop unrolling and loop 

peeling (continued from Figure 4.20) 

In the non-recycling multithreaded execution, multiple threads cannot reuse the 

slave TPUs. It is more logical to allocate a chunk of iterations to each thread where the 

size of the chunk has impact on loop-level parallelism. In the second experiment, the 

benchmarks were optimised to fit resource utilisation of the non-recycling model and 

avoid any fork failure. For instance, if the loop in LJ2 that comprises 1000 iterations 

is to be executed by 4 TPUs, it will be unrolled 249 times to generate 4 chunks of 250 

iterations at the most. These chunks are re-rolled, producing small loops similar to 

the original one but with conditional exit and with adjusted upper and lower bounds', 

as illustrated in Figure 4.22. This was called loop chunking by Olukotun et al. [53]. 

The maximum number of iterations per chunk is I ' Then, a (full) 

1 1n practice, the loop is never unrolled and re-rolled - the new loops are constructed by modifying 
the original one. 
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Figure 4.22: Loop chunking for multithreaded execution on 4 TPUs 

chunk and leftover iterations can be jammed, peeled, and allocated to the master TPU 

while the rest are distributed among the slaves. 

The optimisation is performed prior to the multithreaded transformation. The total 

number of TPUs in the experiment, including the master and the slaves, is varied from 

2 to 16. F6 is excluded from the experiment because the number of iterations of the 

multithreaded loop is not constant and is unknown at the compile-time - the compiler 

would let F6 pass without any modification. 

The results are shown in Figure 4.23. Reasonable speedup can be seen in all the 

benchmarks since each of their multithreaded version is specifically compiled to match 

the number of TPUs available in the cluster. Because each TPU hosts only one thread 

that performs its computation in parallel with the others, the execution time of a loop is 

approximately the average execution time per thread, which corresponds to the amount 

of computation in a chunk, plus the total delays between all the threads. When the 

number of TPUs increases to a point that the chunk becomes too fine or there are 

insufficient iterations to allocate to every TPU, then the program performance will no 

longer improve. An example is H8, in which the number of iterations per chunk when 

there are 12, 4, 6, 8, 10, 12} TPUs participating in the execution are {50, 25, 17, 13, 

10, 91, respectively. The speedup significantly rises when 2-6 TPUs are used as the 
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chunks size is reduced from 50 to 17 iterations. It then levels off when more than 6 

TPUs are used as the chunk size is almost unchanged. However, when the number of 

TPUs increases to 14 (13 slaves plus a master), only 12 slave TPUs are actually used 

because there are not enough iterations to allocate to the last one. 

Comparing these results to the ones from the recycling model (Figures 4.20 and 

4.21), particularly b.x8, demonstrates that both versions give fairly similar speedup. 

Exceptions are GJ and LJ2, where the recycling model with loop unrolling performs 

noticeably better than the non-recycling one with loop chunking. In the former, new 

unrolled iterations can be further optimised during the back-end compilation. For ex-

ample, some memory references are replaced by registers and repetitive address cal-

culations are eliminated. In the latter, the new loop iterations are rolled back and even 

more instructions are added for checking and adjusting the loop bounds. Therefore, 

the performance gained from applying loop chunking to the non-recycling execution 

is due to the fact that the iterations are allocated to match the availability of resources, 

thus eliminating the fork penalty. However, there is still the overhead of the chunking 

added to each thread. 

In the next experiment, loop chunking was applied in conjunction with nested mul-

tithreading in benchmarks R_18 and U.21. The multithreaded execution in nested loops 

is non-recycling. The benchmarks were prepared as described next. 
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Figure 4.23: Speedup of non-recycling multithreaded execution after loop chunking 
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. For RJ8, 

- {N(2,2), ..., N(2,7)1 allocate 2 slave TPUs to the outermost loops while 

the innermost loops were chunked, with the number of TPUs ranging from 

2to7. 

- {N(3,2), ..., N(3,4)} allocate 3 slave TPUs to the outermost loops while 

the innermost loops were chunked, with the number of TPUs ranging from 

2to4. 

. For U21, 

- The innermost loops were always executed sequentially. 

- {N(2,2,1), ..., N(2,6,1)} allocate 2 slave TPUs to the outermost loops 

while the middle loop was chunked, with the number of TPUs ranging 

from 2 to 6. 

- {N(3,2,1), ..., N(3,4,1)} allocate 3 slave TPUs to the outermost loops 

while the middle loop was chunked, with the number of TPUs ranging 

from 2 to 4. 

Figure 4.24 compares the results from before (Figures 4.13 and 4.14) and after the 

optimisation. Fair improvement can be seen in both the benchmarks, with the increase 

in the speedup ranging between 25% and 30%. In the case of (L21, the benefit of the 

optimisation is less pronounced as more TPUs are used to execute the middle loop. 

This is due to the fact that it comprises only 25 iterations, and the amount of work per 

thread when more than 3 TPUs are used is little different, i.e. the number of iterations 

executed by a thread when there are 12, 3, 4, 5, 61 TPUs participating in the execution 

are 113, 8, 6, 5, 41, respectively. 
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4.2.2.3 Cluster and Fork Penalties 

According to the multithreaded execution model, if the master thread fails to form a 

slave cluster, then it has to execute the whole loop by itself. Although some instructions 

whose guard values are zeros can be bypassed, the performance of the transformed loop 

executed sequentially may still be worse than the original loop's. Once a cluster is 

allocated, if a thread fails to fork a new slave, its penalty is to execute the next iteration 

instead of retiring. Two multithreaded versions of each benchmark were prepared: 

. MSEQ is the multithreaded program using cluster size 2. 

. SSEQ is the multithreaded program using cluster size 1. 

The total number of TPUs in the architecture is changed to 2. Because of this, cform 

operations in MSEQ always fail. On the contrary, those in SSEQ always succeed, 

although the sole thread in the cluster always fails in xfrk. Hence both MSEQ and 

SSEQ are always executed sequentially. 

The performance displayed in Figure 4.25 indicates a worst case of the cluster and 

fork penalties in the unoptimised multithreaded programs. Given the performance lost 

from 100% of the cluster and fork failures, an average speedup of all benchmarks is 

around 0.8. In C3, F_6, and L_12, the speedup is only around 0.6 as they contain 

very small loops. Optimistically, with a combination of loop unrolling and loop peel-

ing such as the b.x8 strategy (in Figures 4.20 and 4.21), the speedup of the recycling 

multithreaded execution could be around 5 or higher if the cluster and fork operations 

succeed, or closer to 1 if they all fail. 
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Figure 4.25: Speedup of multithreaded programs being sequentially executed 

Loop chunking restructures the loop prior to the multithreaded transformation, 

which allows the number of threads created to match the number of TPUs available. 

However, in the next experiment, a loop is restructured so that ni chunks are created, 

but it is then transformed to be executed by n2 TPUs, n2 <n1 . The benchmarks were 

prepared as follows: 

• crnpl.T6. The loop is restructured to create 6 chunks, and multithreaded trans-

formed using cluster size 11, 3, 51. 

• crnpl.T8. The loop is restructured to create 8 chunks, and multithreaded trans-

formed using cluster size 11, 3, 5, 71. 

• crnpl.T1O. The loop is restructured to create 10 chunks, and multithreaded trans-

formed using cluster size 11, 3,5,7, 91. 
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The total number of TPUs actually used is equal to cluster size plus one. In 

cmpl. Tmatch, the loop is restructured and transformed such that the number of threads 

created is equal to the number of TPUs, i.e. 12, 4, 6, 8, 10, 12, 14, 16}. They are the 

same programs as the ones shown in Figure 4.23. 

In Figure 4.26, the performance of cmpl.T6, cmpl.T8, and cmpl.T1O slightly drops 

when there are more threads than the TPUs available. A common observation in all 

benchmarks is that although both cmpl.T8 and cmpl.T10 suffer from fork penalty when 

they are given 6 TPUs, cmpl.T1O always performs better than cmpl.T8. This can be 

explained by the fact that cmpl.T1O generates more threads, thus exposing more loop-

level parallelism when the slave TPUs are reusable. The loops in this experiment are 

un-nested, which allows the masters to signal the slaves immediately after completing 

their execution. Even in nested loops, the execution can switch between recycling 

and non-recycling; this depends on the length of the outer and the inner loop bodies 

and the passing of the synchronisation signals at run-time. Therefore, the fork penalty 

observed in this experiment is optimistic. 

cmpl. Tmatch gives an upper bound of the multithreaded performance. Its approach 

involves restructuring and multithreading a loop for every specific number of TPUs. 

The loop that is restructured so that too few chunks are created offers little flexibility to 

the multithreaded transformation and execution. Hence, an optimistic approach should 

allow the pre-processor to create more chunks than the number of TPUs estimated 

by the multithreaded transformer to be available. For example, from Figure 4.26, it 

may be worth using the cmpl.T10 strategy if the loop can be pre-processed only once 

because the disadvantage of this program being executed by fewer than 10 TPUs is not 

too severe, considering its speedup and the best one achieved by cmpl.Tmatch. 
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4.2.3 Summary 

The following conclusions can be drawn from the experiments. Firstly, because our 

multithreaded execution relies on the software thread manipulation, the thread size 

should be large enough so that the benefit gained from the multithreading outweighs 

the overheads. Loop unrolling is employed for this very purpose. Furthermore, the 

resource utilisation of the master TPU can be improved with the application of loop 

peeling. The combination of both techniques achieved speedup between 5-10, when 

the loops were unrolled 7 times and one-level multithreading was applied. Figures 4.27 

and 4.28 summarise the performance of the one-level multithreaded programs. 

Limitation of multithreading in nested loops was noted. There are several clusters 

executing outer and inner loops simultaneously at different nest levels. In the current 

system, a unique (synchronisation) signal can be received by one thread at a time, 

which allows the thread to commit, retire, and free the TPU. As a result, while the 

signal is passed around in one cluster, the others repeatedly suffer from fork failures 

since the TPUs cannot be recycled. Aggressive loop unrolling provides a solution to 

this. Chunks of iterations are generated to match the number of TPUs available and 

allocated to individual threads. Speedup between 4-5 was achieved after the restruc-

turing of the inner loops in the nests (as seen in Figure 4.24). However, this technique 

compromises loop-level parallelism if too few threads are created while the TPUs are 

reusable at run-time. 

From the hardware perspective, increasing the number of TPUs allows more over-

lapping computation. However, there are points after which the increase in the number 

of TPUs will no longer improve the program performance. A case for the recycling 

execution is: when the execution pattern of the loop reaches a point that a new thread 

can reuse a TPU which has been freed by a previous thread, instead of using a new one. 
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For the non-recycling execution, which assigns a chunk of iterations to an individual 

thread, the chunk size is reversely proportional to the number of TPUs participating in 

the execution. If the chunk is already small, then adding an extra TPU will result in 

even finer threads, which is no further beneficial to the multithreaded execution. 

There are other compiler techniques which have not been explored. Because data 

cache is omitted from the simulation, techiques such as strip-mining or loop tiling 

which improve memory locality were not considered. In addition, most benchmarks 

contain small single loops, providing no opportunity for the application of loop fusion 

or loop fission. Finally, loop coalescing and loop collapsing which transform nested 

loops into single-level ones were not considered as the multithreaded execution in 

nested loops is one of the subjects to be examined in this research. 

4.3 Chapter Summary 

Two multithreaded loop transformers were implemented using SUTF framework. One 

handles simple loops with only natural exits. The other handles loops with multiple 

exits or whose upper bounds are unknown; such cases require the execution to be 

speculative. Results from the preliminary experiments were reported and discussed. 

Generally, the multithreaded programs deliver reasonable speedup with respect to the 

sequential ones. Other traditional techniques such as loop unrolling and loop peeling 

were also applied to improve the multithreaded performance. 
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Figure 4.27: Performance of one-level multithreaded programs (continued in Figure 

4.28) 
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Figure 4.28: Performance of one-level multithreaded programs (continued from Figure 

4.27) 



Chapter 5 

Multithreaded Control-Speculative 

Execution 

Control-speculative execution permits either or both control-dependent paths of a 

branch to be executed before the outcome of that branch is known. In the multi-

threaded execution, the speculated paths are typically executed by separate threads. 

The choice of which path to speculate on is made using profile-based branch predic-

tion. The studies in [13, 24] revealed that most branches, especially the ones that can 

take either direction with high probability, exhibit the same behaviour across different 

program executions that use different input data. Strategies which rely on static pro-

gram analyses were studied by [8, 641. Their findings were that a branch, that chooses 

between continuing or exiting a loop or a procedure, is likely to take the continuation 

path. Moreover, the path that does not contain function calls is more likely to be taken 

since most programs use conditional calls to handle exceptions which rarely occur. 

If a branch has low confidence, i.e. both paths are equally probable, then the specu-

lation may be omitted; alternatively, by employing dual-path speculation both threads 

113 
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are launched to execute speculatively. For branches with high prediction confidence, 

single-path speculation forks only one thread to execute the more probable path. De-

ciding whether a branch has low prediction confidence based on the difference in prob-

abilities is subjective. It depends on a number of different factors such as the prediction 

accuracy, the misprediction penalty, or the resource availability. 

Control speculation allows several program partitions to be executed simultane-

ously, each of which may, in turn, be executed by multiple threads. Empirical studies 

undertaken as part of this work prioritised concurrent program partitions and evaluated 

resource allocation strategies. In the next section, the transformation for multithreaded 

control-speculative execution is first explained. 

5.1 Transformations for Control Speculation 

The transformers process SUIF programs in which high-level TREE-IF nodes are 

marked and dismantled into straight-line code, and low-level branch instructions are 

recognised'. The following analysis are performed prior to the transformation. 

The program is compiled procedure-by-procedure, for each one, a control-flow 

graph (CFG) is constructed. The first node in the graph is always ENTRY and the last 

one is either EXIT or RETURN, as shown in Figure 5.1. Dominator (or pre-dominator) 

and post-dominator nodes of the branches are calculated [2, 4], which is described next. 

Given two nodes n  and n2 in a CFG, ni dominates n2 if every path from ENTRY to n2 

goes through ni. Similarly, n2 post-dominates ni if every path from ni to EXIT goes 

through n2. Based on these definitions, the control-flow from ni to n2 is considered 

'A dismantled TREE-IF is arranged such that the original THEN path becomes the fall-through 
path and the branch is instead to the original ELSE path. To maintain consistency with other low-level 
structures, the fall-through path is called the ELSE path and the target of the branch is always the THEN 
path. 
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backward if n2 dominates ni, and a branch is considered aforward branch if it is not 

dominated by either of its targets. 

For each forward branch, parent and child regions represent boundaries at which 

speculation might be applied. The parent region is constructed by traversing the CFG 

upward, starting from the branch. Its dominators are added to the region until the first 

node which is not a dominator is reached or the re-convergent node of the previous 

branch has been included. On the other hand, traversing the CFG downward, starting 

from the branch, two child regions include nodes along THEN and ELSE paths. The 

construction of each region stops when the first post-dominator or the re-convergent 

node of that branch is reached. If a branch is found in a child region of another branch, 

then the parent region of the embedded branch is truncated so that only nodes in the 

enclosing child region are included. 

An example is shown in Figure 5.1. Node B represents a block of instructions as in 

a basic block, but the branch instruction at the end of the block is represented separately 

as an IF node 2 . The edge from IF(4) to B(1) represents backward control-flow. For-

ward branches are IF(1), IF(2), and IF(3). Their dominators, post-dominators, parent 

regions, and child regions, are calculated as shown in the figure. As IF(2) is located 

on a control-dependent path of IF(]), the parent region of IF(2) is truncated so that it 

is within the child region of IF(1). 

21 subsequent graphs in this thesis, only forward branches are represented separately. 
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Forward Branches: 

IF (1) 
Pre—dominators 	{ B( 1) 

Post—dominators { B(6), B(7), IF(3), B(1O), 

IF(4), B(11) 

Parent Region 	{ B(1) 

Child Region 1 	{ B(2), B(4) 

Child Region 2 	{ B(3), IF(2), B(4), B(5) 

IF (2) 
Pre—dominators 
	

B(1), IF(1), B(3) 

Post—dominators { 
B(6), B(7), IF(3), B(10), 

IF(4), B(11) 

Parent Region 
	

B(3) 

Child Region 1 
	

B(4) 

Child Region 2 
	

{ 
B(5) 

IF (3) 

Pre—dominators 	{ B(1), IF(1), B(6), B(7) } 

Post—dominators { B(1O), IF(4), B(1 1) 

Parent Region 
	

{ 
B(6), B(7) 

Child Region 1 
	

B(8) 

Child Region 2 
	

B(9) 

Figure 5.1: An example of a control-flow graph 
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Table 5.1 Overheads of multithreaded speculative execution  

Overheads Average time units 

Spec-Transformer-1 : parent / child 30/44 

Spec-Transformer-2: parent/ child 40/36 

Spec-Transformer-3: parent / child (per branch) 38/ 52 

Branch probability is collected from sequential execution profiling and is added to 

SUIF files by tcovsuif. It gives two types of information: 

The cumulative probability along a control-flow path until a branch is encoun-

tered indicates whether that branch significantly contributes to the overall pro-

gram execution. In the example in Figure 5. 1, the cumulative probability of IF(1) 

and IF(3) are 1.0, but the cumulative probability of IF(2) is only 0.2. 

The individual probability determines which direction to speculate. Both paths 

of the branch can be speculatively executed if they are equally probable. 

Branches that are too fine for speculation are merged into parent or child regions of 

their neighbours, if possible. Criteria which are used to determine whether a branch 

is too fine or not include the cumulative probability of that branch and the size of its 

parent and child regions. The latter is compared with the speculation overheads in 

Table 5. 1, which are the average execution time of the thread manipulation routines in 

the parent and the child threads (measured from the experiments in Section 5.2). 

For a predicted branch, incoming control-flow from nodes other than itself to the 

child regions are diverted to new targets, by means of code replication which is similar 

to tail duplication techniques in superbiock or trace scheduling [10, 16, 19]. Outgoing 

control-flow from nodes other than the last one in the region is permitted from the 
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parent, but not from the child as the speculative execution can only be performed within 

the child region's boundary. 

In Figure 5. 1, the child regions of IF(1) and IF(2) are overlapped, starting from 

node B(4). Hence, B(4) is replicated and the control-flow from B(2) is directed to a 

new node B(4'), as shown in Figure 5.2. The replication of B(6) is optional since B(6) 

post-dominates both IF(1) and IF(2), but it is not included in the child region of neither 

branch. However, by adding B(6') to the major path of IF(1), the size of the speculated 

region can be increased to amortise the speculation overheads. The control-flow from 

unconditional branch orjump instructions are handled in the same way. More examples 

of code replication can be found in [51]. 

The final analysis involves extracting data dependency information from each pair 

of parent-and-child regions. Then, each predicted branch is transformed for the mul-

tithreaded control-speculative execution. An overview of the compilation flow is dis-

played in Figure 5.3. 
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Figure 5.2: The control-flow graph in Figure 5.1 after code replication 
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Determine predictable branches 
- tcovsuif 
- control—flow analysis 
- dependency analysis 
- user hints 

Pre—process selected branches and code regions 
- Extract information 
- Reformat code layout 

Transform 

Figure 5.3: An outline of the transformation for speculative execution 

5.1.1 Single-Path Speculation 

In single-path speculation, a thread is forked to speculatively execute the predicted 

path of the branch. For instance, path { B(2), B(4'), B(6') } of the branch IF(1) in 

Figure 5.2 is chosen for the single-path speculation. 

The branch structure which has been reformatted for the transformation is shown 

in Figure 54(b), from its original form in Figure 54(a). Figure 5.5 gives an example 

of the transformed code when the THEN path is predicted. Only the lines marked with 

an asterisk (*) are modified should the ELSE path be predicted; the alternative code 

can be found in the comment section of those lines. 
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PAR—PREDICT: 
TREE—NODE—LIST 

parent region 

TREE—NODE—LIST Reformatted 

PAR — VERIFY: 

TREE-NODE-LIST : 	 ( condition 

parent region  

I PAR-RIGHT: 

TREE—IF PAR—WRONG: 

(condition) 	 Hi 
I I CH_PROLOGUE: 

ELSE—LABEL: 
ELSE path 

jump to DONE _LABEL 

THEN —LABEL 
THEN path 

DONE-LABEL 

TREE—NODE _LIST 
post—dominating child region 

TREE— NODE—LIST 

( a ) 

ELSE-LABEL: 
ELSE path 

jump to CH-RESOLVE 

THEN-LABEL: 
THEN path 

CH-RESOLVE: 

CH_COMMIT: 

CH-ROLLBACK: 

DONE_LABEL: 

(b) 

Figure 5.4: Branch structure in the SUIF intermediate representation 
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1 
	

mt guard, fsucc, pbra; 

2 
	

mt myself, mychild, myparent; 

3 PAR-PREDICT: 

4 
	

fsucc = frk (sequence-no, CH-PROLOGUE); 

5 
	mychild = cadr 0; 
6 
	

guard = 0; 

7 
	 parent region's code 

8 
	

PAR-VERIFY: 

9 
	

II branch THEN-LABEL 

*10 
	

branch PAR-RIGHT; 

*11 	goto PAR-WRONG; 

12 
	

PAR-RIGHT: 

13 
	

if (fsucc) { 

14 
	 psg (fsucc, mychild, sequence-no); 

15 
	 sstp (fsucc, mychild); 

16 

*17 	else goto THEN-LABEL 

18 PAR-WRONG: 

19 
	

isg (fsucc, mychild, CH-ROLLBACK); 
*20 	goto ELSE-LABEL; 

21 CH-PROLOGUE: 

22 
	

guard = 1; 

23 
	safe (guard, 0); 

24 
	myparent = padr 0; 

*25 	goto THEN-LABEL; 

26 
	

ELSE-LABEL: 

27 	pbra = 1; 

28 
	

ELSE path's code 

29 
	

goto CH-RESOLVE; 

30 THEN-LABEL: 

31 
	

pbra = 0; 

32 
	

THEN path's code 

33 
	

CH-RESOLVE: 

34 
	

if (!guard) goto DONE-LABEL; 

35 
	wat (guard, sequence-no); 

36 CH-COMMIT: 

37 
	cmmt (guard); 

38 
	goto DONE-LABEL; 

39 CH-ROLLBACK: 

40 
	 abort slaves in THEN 

41 
	stp (guard, -1); 

42 DONE-LABEL: 

43 
	

if (pbra) 

44 
	

{ 	. post-dominating region 	}  

II working variables 

II working variables 

I - 

II fork a speculative thread 

II get child's address 

If indicate that this is parent thread 

I - 

II 

II original branch instruction 

If ''branch PAR_WRONG'' if ELSE is predicted 

''goto PAR_RIGHT'' if ELSE is predicted 

II 

I, 

II pass signal to child 

II parent synchronises and stops 

II ''goto ELSE_LABEL'' if ELSE is predicted 

II interrupt child's execution 

If ''goto THEN-LABEL'  if ELSE is predicted 

indicate that this is child thread 

II become speculative (unsafe) 

II get parent address 

II ''goto ELSE-LABEL' ' if ELSE is predicted 

I - 

II post-dominating instructions excluded 

I-

II 

predicted path 

II post-dominating instructions included 

I' 

ll 
if this is parent, exit 

if this is child, wait for the signal 

II 

I, commit speculative stores 

I - 

/I or ELSE if it is predicted 

II child stops 

II exit 

I - 

/I 

Figure 5.5: Code generated by Spec-Transformer-1, THEN path is predicted 
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Parent Thread 

The parent thread speculatively forks a child (line 4) before continuing its execution in 

the parent region. As the target of the predicted branch is always THEN-LABEL (line 9), 

it is verified as follows: 

If the THEN path is predicted: 

• the prediction is correct if the branch is taken (branch PAR-RIGHT). 

• the prediction is wrong otherwise (goto PAR-WRONG). 

If the ELSE path is predicted: 

• the prediction is wrong if the branch is taken (branch PAR-WRONG). 

• the prediction is correct otherwise (goto PAR-RIGHT). 

At PAR_RIGHT, if the frk instruction had succeeded, then the parent thread passes a 

signal to its child (line 14) and stops (line 15). The parent retires only when it becomes 

the head thread; therefore, sstp instruction is used. If the frk had failed, then the 

parent has to execute the correct path itself (line 17) since no child thread had been 

spawned. In case of a wrong prediction, i.e. PAR-WRONG, the parent interrupts its 

child's execution (line 19), and goes to the correct path (line 20). 

Child Thread 

The child's execution starts at CH-PROLOGUE (line 21). Being a speculative thread, it 

turns off the safe flag (line 23) before jumping to the predicted path (line 25). After 

the path's execution, it waits for a signal from its parent (line 35). If the prediction is 

correct, then all the speculative stores will be committed (line 37) as soon as the signal 
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parent 
	 child 

store instruction 

psg (fsucc, mychild, signal-id); 	 wat (guard, signal-id); 

load instruction 

Figure 5.6: Memory communication in Spec-Transformer-1 

is received. The child will also be appointed the next head thread and leave the branch 

structure at DONE-LABEL. 

There can be multithreaded loops along the speculated path. For a series of them, 

only the first loop is actually a speculative one since the master thread is always 

blocked when trying to pass the synchronisation signal to the slaves. Once the branch 

prediction is verified and the loop is on the correct path, the execution can resume and 

move on to the next loop. If the prediction is wrong, the child will be unblocked or 

interrupted from its current execution. It then jumps to CH-ROLLBACK and aborts the 

slave cluster before stopping. 

Data Dependence 

The data dependence between parent and child threads is handled in the same way as 

in the loop transformations. Memory communication for each dependent instruction 

pair is shown in Figure 5.6. Synchronisation between the parent and the child is en-

forced by passing and waiting for a signal. In the case of register communication (see 

Section 4.1.3), a set of registers that may cause data dependencies is declared by uregs 

instruction which is inserted before the frk (line 4). These registers can be forwarded 

to the child thread by fregs instruction, once they are available. 
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For a large number of data dependencies, the register communication would in 

practice be less costly than the memory communication. This is due to the following 

two reasons: no extra instruction is needed for the child thread, and the parent can 

forward up to 32 registers in one instruction. However, since the register usage infor-

mation is required, this has to be done during the back-end compilation, possibly in 

conjunction with the instruction scheduling, and should ensure that the child thread 

does not starve of registers. 

Post-Dominating Region 

To increase the thread size, post-dominating instructions, or instructions below the 

re-convergent point, might be included in the child thread. A branch structure is sym-

metric if both paths exclude the post-dominating code, or include the same copy of the 

post-dominating code. The variable pbra is set, in the THEN and the ELSE paths, to 

either 0 (included) or 1 (excluded). It is checked by the thread that leaves the branch 

structure as to whether additional execution is required (lines 43 and 44). 

Control-Flow Breaks 

Control-flow breaks in the parent and child regions are handled in the following ways: 

1. Conditional and unconditional branches or jumps. Trivial branches that are 

not speculated might be included in the parent or child regions during the pre-

transformation analysis. If the branches are included in the child region, then 

their targets must also be inside the region. If they are included in the parent 

region but the targets are outside the region, then interrupt instructions (similar 

to line 19) are added. The child thread is aborted before the parent jumps to the 

outside targets. 
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Procedure returns and program exits. These breaks are typically guarded by 

conditional branches. They are only included in the parent region. Interrupt 

instructions are inserted before the breaks to abort the child thread. Then the 

parent exits the current procedure or stops the program execution. 

Procedure calls. Only calls to non-recursive procedures are included. The pro-

cedure should not contain instructions that may raise exceptions. As dependence 

on data is not speculated, if the child consumes a value returned from a proce-

dure which is called by the parent, it has to wait until that value is available. As 

infinite-save-registers option is used in the back-end code generator, the values 

passed to and from the procedures are saved in registers only. The procedure 

calls might be included in the child region although it is avoided. 

Exceptions. The source code had been checked and modified to handle excep-

tions before it was translated into SUM JR. Instructions that may cause excep-

tions are guarded by conditional branches. If a condition leading to an exception 

occurs inside a procedure, then a unique value is returned. At the caller's site, a 

conditional branch is also added to check whether the value is returned by an ex-

ception or a normal execution. In case that the current site is the main procedure, 

then the program execution stops. This is translated into SUTF IR as a series of 

procedure returns and program exit guarded by conditional branches. 

5.1.2 Dual-Path Speculation 

In contrast to the single-path speculation, the dual-path one does not predict the branch 

direction. Instead, threads are forked to speculatively execute both paths. The more 

probable one is forked earlier so that it can acquire any available TPU before the other. 
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The parent thread also executes the code in the parent region and the conditional code 

in parallel with the child threads' execution. As soon as the branch direction is known, 

one of them will proceed while the other will be squashed. 

An example of code generated for dual-path speculation is shown in Figure 5.7. 

The transformer keeps two lists of dependent instruction pairs. Each of them is for data 

dependency between the parent and each child. Memory communication is handled in 

the same way as in the single-path speculation. Variables originally accessed by both 

paths are replicated to avoid the second speculative thread reading the value written by 

the first speculative thread. Otherwise, load operations in the second path are guarded 

by safe/unsafe switch indicating whether to load the safe version of data from the 

shared memory instead of searching through the speculative buffers (this applies to all 

threads, in the case of compound speculation). 

If register communication is used, an fregs instruction broadcasts registers to both 

child threads at once. The registers forwarded from the parent will be received only if 

the wait bits in the child's registers are set to TRUE. Figure 5.8 is an example of register 

communication, in which both child threads are register dependent on different regis-

ters of the parent. The dependent registers are declared by a uregs instruction prior to 

each fork; however, the effect of uregs is cumulative. Thus, upon thread initialisation 

of the second child, both $rl and $r2 are unavailable. During the computation, the 

wait bit in $rl is automatically set to FALSE upon the second thread's write-back op-

eration. If $rl is forwarded from the parent before the write-back, then it is accepted 

but overwritten afterwards. Alternatively, $rl in the second path could be renamed. 
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1 
	

mt guard, Tfsucc, E_fsucc, pbra; - 

2 
	

mt myself, T..mychild, Emychild, myparent; 

3 
	

PAR-PREDICT: 

4 
	

guard = 1; 

5 
	

Tlsucc = frk (sequenceno, THEN-LABEL); 

6 
	

Tmychild = cadr 0; 

7 
	

Eisucc = Irk (sequenceno, ELSE-LABEL); 

8 
	

Emychild = cadr 0; 

9 
	

guard = 0; 

10 
	 parent region's code 

11 
	

PAR-VERIFY: 

12 
	

branch PAR-THEN 

13 
	

PAR-ELSE: 

14 
	

isg (Tlsucc, Tmychild, CH-ROLLBACK-THEN); 

15 
	psg (E_fsucc, E_mychild, sequence-no); 

16 
	

sstp (E_fsucc, E_mychild); 

17 	goto ELSE-LABEL 

18 
	

PAR-THEN: 

19 
	

isg (Elsucc, Emychild, CH-ROLLBACK-ELSE); 

20 
	psg (T_fsucc, T_mychild, sequence-no); 

21 
	sstp (T_fsucc, T_mychild); 

22 
	

goto THEN-LABEL 

23 CH-PROLOGUE: 

24 
	

ELSE-LABEL: 

25 
	

pbra = 1; 

26 
	

safe (guard, 0); 

27 
	

ELSE path's code 

28 
	

goto CH-RESOLVE; 

29 
	

THEN-LABEL: 

30 
	 same as lines 25-26 

33 
	

THEN path's code 

34 
	

CH-RESOLVE: 

35 
	

if (!guard) goto DONE-LABEL; 

36 
	wat (guard, sequence-no); 

37 
	

CH-COMMIT: 

38 
	cunt (guard); 

39 
	

goto DONE-LABEL; 

40 CH-ROLLBACK-ELSE: 

41 
	 abort slaves in ELSE 

42 
	stp (guard, -1); 

43 CH-ROLLBACK-THEN: 

44 
	 abort slaves in THEN 

45 
	stp (guard, -1); 

46 DONE-LABEL: 

47 
	

if (pbra) 

48 
	

{ 	post-dominating region 	} 

II working variables 

II working variables 

I - 

II inherited by child threads 

II fork 1st speculative thread 

I - 

II fork 2nd speculative thread 

I - 

II indicate that this is parent thread 

'-

Il 

/I original is ''branch THEN-LABEL'' 

I - 

II interrupt child's execution in THEN 

II pass signal to child in ELSE 

II parent synchronises and stops 

I- 

II 

interrupt child's execution in ELSE 

II pass signal to child in THEN 

parent synchronises and stops 

I-

II 

I- 

II post-dominating instructions excluded 

II become speculative (unsafe) 

I - 

II 

I - 

/I initialise thread 

I - 

/I 

I! if this is parent, exit 

II if this is child, wait for the signal 

I - 

II commit speculative stores 

II 

/I 

II child stops 

I - 

/I child stops 

exit 

I- 

II 

Figure 5.7: Code generated by Spec-Transformer-2 
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parent 

uregs 	{ $rl 
fork 	child-1 
uregs 	( $r2 
fork 	child-2 

$r2 

$rl <-- . 

fregs { $rl, $r2 } 

I $rl  I 

child-1 

mit: unavailable ($ri) 

< _49 , wait 

[$rl, $r2) 

child-2 

mit:unavailable I $rl, $r2 I 

II avail 

< _49 II wait 

Figure 5.8: Register communication 
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loop A 

IF ( I) 

Figure 5.9: Sample nest of branches for Figure 5.10 

5.1.3 Nested Speculation 

The speculation is extended to nested branches. We focus on completely-nested branch 

structures. Interference from any other control-flow path was eliminated as a result of 

the code replication applied during the pre-transformation analysis. 

Figure 5.9 gives an example of nested branches, in which paths THEN(1), THEN(2), 

and THEN(3) are predicted. The generated code (a skeleton is shown in Figure 5.10) is 

similar to the one produced by SpecTransformeri (or SpecTransformer2, in the 

case of dual-path speculation), but with a few additional constraints. 
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1 ROOT-PROLOGUE: 
	 II executed by outermost branch 

2 
	out-guard = 0; 
	 II 

3 
	

NEST-ID = sequence-no 
	 I, unique signal used in the nest 

4 
	

mt guard, fsucc, pbra; 

5 
	

mt myself, mychild, myparent; 

6 
	

PAR-PREDICT: 

7 
	 same as Figure 5.5 

8 PAR-VERIFY: 

*9 	wat (out-guard, NEST-113); 

10 
	 same as Figure 5.5 

11 
	

PAR-RIGHT: 

12 
	

if (fsucc) { 

13 
	

cmmt (1); 

*14 	 psg (fsucc, mychild, NEST-ID); 

15 
	 sstp (fsucc, mychild); 

16 

17 
	else goto THEN-LABEL 

18 PAR-WRONG:  

19 
	

isg (fsucc, mychild, CH-ROLLBACK); 

*20 	psg (1, myself, NEST-113); 

21 
	goto ELSE-LABEL; 

22 
	

CH-PROLOGUE: 

23 
	

out-guard = 0; 

24 
	 same as Figure 5.5 

25 
	

ELSE-LABEL: 

26 
	

ELSE path's code 

27 
	goto CH-RESOLVE; 

28 THEN-LABEL: 

29 
	

THEN path's code 

30 
	

CH-RESOLVE:  

31 
	

if (!guard) goto DONE-LABEL 

32 
	wat (guard, NEST-ID); 

33 
	

CH-COMMIT:  

34 
	cmmt (guard); 

*35 	psg (1, myself, NEST-ID); 

36 
	goto DONE-LABEL 

37 CH-ROLLBACK: 

38 
	 abort slaves in THEN 

*39 	isg (inisucc, mychild, IN-CH-ROLLBACK); 

40 
	stp (guard, -1); 

41 
	

DONE-LABEL:  

II local variables (per branch) 

If local variables (per branch) 

II fork a speculative thread 

I - 

II wait until all outer branches resolved 

II evaluate the branch 

I - 

II 

I-
II pass signal to child 

I - 

II ''goto ELSE-LABEL'' if ELSE is predicted 

I - 

II interrupt child's execution 

depositsignal before proceeding 

II ''goto THEN-LABEL'' if ELSE is predicted 

I - 

/I switch off guard from outer branch 

II initialise child thread 

I - 

II 

II predicted path 

I- 

II 

I - 

II child waits for signal 

I - 

II 

II signal itself 

II or ELSE if it is predicted 
interrupt next thread in the nest 

I- 

II 

Figure 5.10: Code generated for nested speculation 
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Firstly, the branches are resolved in sequential order. The parent thread is blocked 

(line 9) until it receives the signal from its own parent which speculates the previous 

or outer branch. Once the signal is received, it proceeds to evaluate the branch and 

pass the signal to its child if the speculation is correct (line 14) before stopping (line 

15). Due to the default forking operation, the parent inherits all the guards from its 

predecessors and passes them to the child. The child leaves its own guard on but 

switches off the others (it only has to switch off the parent's guard). If the parent 

thread encounters any control-flow break from its parent region, it has to wait until the 

outer branches are resolved. Thus, a wat instruction similar to line 9 is inserted in front 

of the break. 

Another constraint is how incorrect speculation is handled (line 18). A simple strat-

egy has been implemented, i.e. the child thread and all its successors are aborted (line 

39). The parent thread then executes the correct path (line 21). After the speculation is 

resolved, the thread that executes the correct path (either the parent or the child) will 

leave the current branch at DONE-LABEL (line 41) and arrive at CH-RESOLVE (line 30) of 

the outer branch. 

Data Dependence 

The handling of data dependence is slightly more complicated as the transformation 

of each branch is performed separately. An example is displayed in Figure 5.11(a). At 

run-time, the order of threads T1, T2, and T3 is maintained by the global thread control 

unit (GTCU). T3 should read A from T1 's buffer (since there is no store to A's address 

by T2). Synchronisation between the grandparent (T1) and grandchild (T3) is required 

to ensure that the data retrieved by T3 is the correct version. 
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	 (b) 

Figure 5.11: Handling of data dependencies in nested branches 

We had opted to handle data dependencies and synchronisation on a parent/child 

basis. A copy instruction is therefore inserted in T2's code, as shown in Figure 5.11(b), 

to convey the data from T1 to T3. The same strategy is applied if register communi-

cation is used in place of memory communication. Although simple to implement, a 

drawback of this method is the introduction of artificial data dependencies. 
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Table 5.2 Description and general statistics of synthetic benchmarks 

Dynamic Distribution (%) 

mit I Main Verify Name Description Instructions 

SYN_1 Simple branch I 3,316,589 0.34 99.66 0.00 

SYN_2 Simple branch II 3,847,163 0.37 99.63 0.00 

SYN_3 A series of branches I 4,512,484 0.32 99.49 a  0.19 

SYN_4 A series of branches H 4,516,761 0.37 99.63 0.00 

SYNi A nest of branches I 3,846,046 0.34 99.56 0.10 

SYN6 A nest of branches II 4,481,544 0.35 99.65 0.00 

SYN7 Branch in multithreaded loop 4,682,408 0.12 99.88 0.00 

Average 
41171,856 

1  0.32 99.64 
J0.05 

'Sequential loop that computes Lrt3 is included 

5.2 Performance Evaluation 

5.2.1 Benchmarks 

Benchmarks used in the experiments were synthesised from modified Livermore loops 

which were arranged in conditional branch structures. Table 5.2 displays the general 

statistics of the benchmarks collected from their sequential execution. Figures 5.12 to 

5.20 show the modified Livermore kernels (their average execution time are shown in 

Table 5.3) and fragments of the benchmarks' source code and control-flow graphs. The 

simulator takes as its input the assembly code of the benchmarks. It takes around 25-30 

minutes to run a sequential program of 4.5 million dynamic instructions to completion, 

and up to 40-45 minutes for a multithreaded version of the same program (the overhead 

is due to the updating and searching of thread information in TPUs and GTCU). 
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Table 5.3 Average sequential execution time (per invocation) 

Kernel A_i C3 G7 L12 

Time Units 56613 28056 176000 39500 

II global variables 

mt xAL5011, xC(501) 	xG(501], xL(5011, y[SOl], z[523], u(523]; 

mt r, t, q; 

mt Lrtl, Lrt2, Lrt3, kLrtl, kLrt2; 

mt L, LOOP, N, csuxn; 

void mit () 

{ 

mt k; 

for (k = 0; k <= 500; k++) { 

xA(k) = xG[k) = xL[k] = 0; 

xC[k] = 500 - 

y(k] = 1; 

} 

for (k = 0; k < 522; k++) { 

u[k] = k; 

z[k] = k + k; 

} 

r = 5; t = 2; q = 0; 

} 

void A_i (mt ni, mt n2) 

{ 

for (mt k = nl; k < n2; k++) { 

xA[k] = q + y[k) * Cr * z(k + 101 + t * z(k + 11]); 

} 

} 

mt C_3 (mt ni, mt n2, mt mci, mt mc2) 

{ 

rC = 0; 

for (mt k = ni; k < n2; k++) { 

rC = rC + z[k] * xC(k]; 

rC = rC + md + mc2; 

} 

return rC; 

} 

II Loop A 

II Loop C 

Figure 5.12: Modified Livermore kernels (continued in Figure 5.13) 
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void G7 (mt ni, mt n2, mt mg) 

{ 

for (mt k = ni; k < n2; k++) { 
xG[k) = u[k] + r * (z[k] + r * y(kl) + 

t * ( u(k + 3) + r * (u(k + 21 + r * u[k + 1]) + 
t * ( u(k + 6] + r * (u[k + 5) + r * u[k + 4]))); 

xG(k] = xG[k) - mg; 

} 

} 

void L_12 (mt ni, mt n2, mt mu, mt m12) 
{ 

for (mt k = ni; k < n2; k++) { 
xL[k) = (nil * 	+ 1]) - (m12 * 

} 

} 

II Loop G 

II Loop L 

Figure 5.13: Modified Livermore kernels (continued from Figure 5.12) 

Four Livermore loops were used: L, A, and G are small, medium, and large fully-

parallelisable loops, respectively; C is a small loop with cross-iteration dependence. 

The structures of the synthetic benchmarks provide opportunities for single-path, dual-

path, and nested speculation. The first six benchmarks can be divided into two groups: 

{SYNJ, SYN3, SYN.51 and {SYN2 SYNA, SYN61. The second group imitates the 

first one, but it provides further opportunities to speculate on control-independent paths 

of the branches (Section 5.2.2.2). Branch probabilities and loop sizes in the parent and 

the child regions are varied between the benchmarks, in order to explore different 

resource allocation strategies. 

. SYNJ and SYN..2 contain simple branch structures. In SYN_1, the loops inside 

the branch structure (speculative) are bigger than the one dominating the branch 

(non-speculative), while the opposite is the case in SYN..2. 
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main (C 

{ 

LOOP = 70; N = 501; csum = 0; 

for CL = 1; L <= LOOP; L++)  

Lrtl = CL + r) * 	
I 

Lrt2 = CL 	r) + t; 

A_i (0, N); 	
11 IIE' (O 2 	 ELSE 0.77) 

> (xALN/2] * Lrt2() 	

7(1.N.) 

else 

for 

G7(1,N,Lr); 

k = k+50) 

esum = csum + xA[k] + xG[k]; 

} 

} 

Figure 5.14: Synthetic benchmark SYNJ 

• SYNJ and SYNA contain a series of branch structures. They are used for testing 

if the code generated from the transformers work correctly, i.e. the structures 

must be handled one-by-one. Hence, the first structures and their threads must 

be resolved before subsequent ones are speculated. 

• SYN..5 and SYN_6 contain nests of branch structures. The loops inside the inner 

branch structures (speculative) are the biggest ones in SYN5, but the smallest 

ones in SY!'L6. 

The last benchmark SYN_7 contains a parallisable loop, inside which is a branch struc-

ture. At present, the loop transformers and the speculation transformers work sepa-

rately, and control dependence across loop iterations are neither recognised nor han-

dled by the loop transformers. Thus, an assumption being made is that the branches 

inside the iterations must be independent of each other. 
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main (C 

{ 

LOOP = 70; N = 501; 

for (L = 1; L <= LOOP; L++) 

Lrtl = (L + r) * 

Lrt2 = CL * r) + t; 

A1 (0, N); 

if 	(xALN_11*Lrtl) ' (xA[N/21 Lrt2) 

L_12 (0, N-i, Lr(i, LrL2); 

else 

L..12 (0, N-i, Lrt2, Lrtl); 

G7 (1, N, 0); 

for (k = 1; k < N; k = k+50) 

csum = csuxu + xA[kJ+xG[kl+xL[k); 

}IF\ .0 23 	 ELSE 0 77 

Figure 5.15: Synthetic benchmark SYN_2 

main (C 

{ 

LOOP = 70; N = 501; 

for CL = 1; L <= LOOP; L++) { 

Lrtl = CL + r) * 

Lrt2 = CL * r) + t; 

A_i (0, N); 

if ((xA[N-l) * Lrtl) > (xA[N/2) * Lrt2)) 

G_7 (1, N, Lrtl); 

else 

G_7 (1, N, Lrt2); 

Lrt3 = 0; 

for (k = 1; k < N; k++) 

Lrt3 = Lrt3 + 3 * xG[k] / (xA(kl + 1); 

if C Lrt3 ' (Lrtl. * Lrt2) 

L_12 (0, N-I, r, t); 

else 

L_12 (0, N-i, t, r); 

for (k = 1; k < N; k = k+50) 

csuni = csum + xA[k] + xG[k] + xL[kj; 

ThE 0 : 	 ELSE 0 77 

THEN (0.59) 
	

ELSE (0.41) 

L_12(0.N-I,r,t) 
	

(0. N-I. 

Figure 5.16: Synthetic benchmark SYN3 
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main H 

{ 

LOOP = 70; N = 501; 

for 	(L = 1; 	L <= LOOP; 	L++) 	{ 

Lrtl = 	(L + r) 	* t; THEN (0.23) ELSE (0-77) 

Lrt2 = 	(L 	* r) 	+ t; -- 	 - 

A_i (0, N); - - 	- 	 - 

if 	((xA[N-11 	* 	Lrtl) 	> 	(xA[N/2] 	* Lrt2)) 

G_7 (1, N, Lrti); 

else 

C_7(1,N,Lrt2); 
.N.-LnL-- 

qC = C3 (0, N, -Lrti, -Lrt2); 

if 	( 	(qCI500) 	> 	(Lrtl*Lrtl + Lrt2*Lrt2) 

L_12 (0, N-i, r, t); 

else THEN O 7 4 ELSE (0.26) 

L12 (0, N-i, t, r);  
for 	(k = 1; k < N; 	k = k+50) -- 

csuin = csum + xA[k] 	+ xG[k] 	+ xL[k]; 

Figure 5.17: Synthetic benchmark SYN_4 
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main H 

LOOP = 70; N = 501; 

for CL = 1; L <= LOOP; L++) { 

Lrtl = CL + r) * 

Lrt2 = CL * r) + t; 

A_i (0, N); 

if ((xA[N-1] * Lrtl) > (xA[N/21 	Lrt2)) { 

qC = Ci (0, N, Lrti, -Lrt2); 

if C (qC/800) > ( Lrtl • Lrtl * Lrt2) 

G7 (1, N, Lrtl); 

else 

G_7 (1, N, -Lrti);  

continued 

else { 

qC = Ci (0, N, -Lrtl, Lrt2); 

if ( (qC/800) < ( Lr2 * Lrt2) 

G_7 (1, N, .Lr12); 

else 

G_7 (1, N, Lrt2); 

} 

for (k = 1; k < N; k = k+50) 

csum = csum + xA[k] + xGIkJ; 

THEN (0.23) 	 ELSE (0.77) 

C_3 (0, N. -LrLI, Ln2) 

	

THEN (0625) 
	

ELSE (0375) 
	

THEN (046) 
	 ELSE (054) 

	

Q_7 (I, N. LrtI) 
	

U_i (I. N. -Utl) 
	

G-7 (I. N. -Lri2) 
	

O_7 (1. N, UM 

Figure 5.18: Synthetic benchmark SYN_5 
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main C) 

{ 
LOOP = 70; N = 501; 

for CL = 1; L <= LOOP; L++) { 
Lrtl = CL + r) * 

Lrt2 - CL * r) + t; 

Ai (0, N); 

if ((xA[N-l1Lrt1) < (xALN/2]*Lrt2)) { 
qC = Ci (0, N, Lrtl, 0); 

if C (qC % Lrtl) > (Lrtl / r) 

L_12 (0, N-i, r, 2*t); 

else 

LJ2 (0, N-i, t, 2*r); 

G7 (1, N, Lrtl); 

continued 

else { 
qC = Ci (0, N, Lrt2, 0); 

if C (qC % Lrt2) > (Lrt2 I r) 

L12 (0, N-i, 2*r,  t); 

else 

L_12 (0, N-i, 2t, r); 

G_7 (1, N, Lrt2); 

for (k = 1; k < N; k = k+50) 

CSUTh = CSUIS + xAtk]+xG[k]+xL[k); 

<lF(2) 

THEN OI 	 ELSE 0.575) 

~(O N- I,L2*r 

	

fHE 0.80) - 	 U SE 0.20 

	

0,NI.2,1) 	 2-1.  

G_7 ti. N. UiI) 
	

G_7 (I. N. Ln2) 

Figure 5.19: Synthetic benchmark SYN_6 
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main () 

LOOP = 30; N = 51; 

for (L = 1; L <= LOOP; L++) { 

for (k = 0; k < N; k++) { 

xA[k] = q + y[kJ * ft * ZR + 101 + t * ZR + 11]); II hi. 

kLrtl=k* (L+r+t)• 

kLrt2=k+ (L*r*t) ;  

if (xA[k) > (kLrtl * kLrt2)) 

qC = C3 (0, 201, kLrtl, -kLrt2); 

else 

qC = C3 (0, 201, -kLrtl, kLrt2); 

xA[k] = xA[k] + qC; 

} 

for (k = 1; k < N; k = k+10) 

csum = csun + xA[k]; 

} 

Aj 

THEN (0.28) 	 ELSE (0.72) 

01, 

Figure 5.20: Synthetic benchmark SYNJ 
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5.2.2 Results and Discussions 

Calls to the Livermore procedures were inlined so that the main procedures (main 0) 

contain the complete Livermore loops. The loops in all the benchmarks, with the 

exception of SYN_7, are unrolled 99 times and re-rolled to produce chunks of 100 it-

erations each. For loops A and C, the first chunks in each case contain 101 iterations. 

When the loop is multithreaded, the first chunk is allocated to the master thread while 

the others are distributed to the slaves. The architectural parameters used in the simu-

lation are the same as those listed in Table 4.3, except that the total number of TPUs 

is increased to 24. The probability threshold is set to 0.65, which implies that if the 

more probable path of a branch is less confident than this threshold, then the branch 

will be transformed for dual-path speculation. Since the synthetic benchmarks are 

well-structured, the pre-transformation processing which involves control-flow analy-

sis, region formation, and dependency analysis is straightforward. 

The performance of multithreaded non-speculative and speculative programs were 

compared. During the execution of control-independent loops in both cases, the slave 

TPUs are reusable. For the speculative execution of control-dependent loops, the 

reusability of the slave TPUs depends on when the (speculative) master threads receive 

synchronisation signals from their parents. A loop is control-independent of a branch 

if it dominates or post-dominates that branch, and is control-dependent, otherwise. 

The first set of results is displayed in Figure 5.21. In both non-speculative (MULTI) 

and speculative (SPEC) programs, the sizes of clusters executing the control- indepen-

dent loops range from 3 to 6 TPUs, whereas the sizes of those executing the control-

dependent loops are fixed at 3 TPUs. This allocation strategy (see Section 5.2.2.1) is 

called Cindep as more TPUs are given to the control-independent partitions. 
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Y - axis : Speedup w.r.t SEQ 	X - axis : Cluster Size (master + slaves) 

Figure 5.21: Speedup of speculative programs (Cindep policy) 
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For the speculative programs, prefix "N-" refers to nested speculation, "S-" single-

path speculation in spite of branches' low confidence, and "D-" dual-path speculation 

in cases of branches' low confidence. The speculative execution offers slight improve-

ment over the non-speculative one. Single-path speculation in spite of the branches' 

low probability causes frequent misprediction. Its penalty is in the lost opportunities 

of executing the correct paths in parallel with the parent threads' execution. From the 

graphs, it seems that the opportunities lost have little impact since the performance of 

S-SPEC and NS-SPEC in SYN3 and SYN.5 is marginally poorer than D-SPEC and 

ND-SPEC in the same benchmarks. 

5.2.2.1 Cluster Allocation 

The performance of the multithreaded non-speculative programs shown earlier is be-

low its true potential, i.e. the maximum speedup it could have achieved, given the total 

number of the TPUs available. The cluster allocation in these programs corresponds to 

the scheme used in their speculative counterparts. However, it is unfair when the na-

ture of the non-speculative execution is considered, i.e. the loops are executed one-by-

one. Because the control-dependent loops are executed after the branch directions are 

known, they can in fact reuse all the TPUs released by the control-independent loops. 

Figure 5.22 shows speedup of the non-speculative programs when all the loops are 

allocated the same number of TPUs ranging from 3 to 6. The increase in the speedup 

is significant when the number of TPUs matches the number of threads executing the 

loops. 

A similar scheme can be used in the speculative programs. The difference is that 

only the control-dependent loops on the non-speculative paths can reuse all the TPUs 

because they are executed after misprediction occurs and they are confirmed to be the 
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SYN_3 

3 	4 	 5 	 6 	3 	 4 	 5 
	

6 	3 	 4 	 5 	6 

SYN_6 

3 	 4 
	

5 	 6 	3 	 4 	 5 	 6 	3 	 4 
	

5 	6 

-.- MULTI - Clndep loops 	-e- MULTI - All loops 

V - axis: Speedup w.r.t SEQ 	X - axis: Cluster Size (master + slaves) 

Figure 5.22: A comparison of 2 cluster allocation policies for non-speculative programs 

correct paths. Ideally, these loops should reuse the TPUs released from both control-

independent loops and the loops on the mispredicted paths. However, unless synchro-

nisation is added, the loops on the correct paths may try to form clusters before the 

ones on the wrong paths release theirs. If the cluster sizes are larger than the number 

of TPUs guaranteed to be available when the misprediction recovery starts, then these 

operations may be unsuccessful, causing the loops to be sequentially executed instead. 
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Another cluster allocation strategy considers the contribution of each loop to the 

overall program execution. If multiple loops are executed concurrently, the one that 

contributes most to the total execution time should receive the largest number of TPUs. 

To calculate the amount of each loop's contribution, the cumulative probability along 

the control-flow path leading to that loop and its execution time are taken into account. 

For each loop i, 

Ti = cumulative probability x sequential execution time 

contribution (%) = Ti  x 100 
Ti 

Four cluster allocation strategies are examined. They employ different criteria to 

prioritise loops in the benchmarks. The highly-prioritised ones are given numbers 

ranging from 4 to 6 TPUs 3 , whereas the others are always given only 3 TPUs. These 

strategies are 

• Clndep. The priority is given to the control-independent loops only. 

• NonSPEC. The priority is given to the non-speculative loops. If multiple loops 

are executed at the same time, the prioritised one is usually control-independent. 

The other non-speculative loops executed individually are also prioritised. 

• Critical. If multiple loops are executed at the same time, then the priority is 

given to the loop which contributes most to the overall program execution. The 

contribution factor of each loop in the benchmarks are calculated and shown in 

Table 5.4. 

• All. The same number of TPUs (3-6) is allocated to all the loops. 

3 Al1 prioritised loops in a benchmark are given the same amount of TPUs, for example, all of them 
are given 6 TPUs. 
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Table 5.4 Contribution of individual loop to the overall program execution  

rBenchmark Loop (path } 	I % Loop { path } 

SYN_1 A 	{controlindep} 24 

G 	{THEN} 17 G 	{ELSE} 58 

SYN_2 A 	{control indep} 21 L 	{THEN} 3 

G 	{control indep} 65 L 	{ELSE} 11 

SYN.3 A 	{control indep} 21 

G 	{THEN} 15 L 	{THEN} 9 

G 	{ELSE} 50 L 	{ELSE} 6 

SYN_4 A 	{control indep} 19 C 	{control indep} 9 

G 	{THEN} 13 L 	{THEN} 10 

G 	{ELSE} 45 L 	{ELSE} 3 

SYN_5 A 	(control indep} 22 

C 	{THEN} 2 C 	{ELSE} 8 

G 	{THEN, THEN} 10 G 	{ELSE, THEN} 24 

G 	{THEN, ELSE} 6 G 	{ELSE, ELSE} 28 

SYN_6 A 	{control indep} 19 

C 	{THEN} 2 C 	{ELSE} 7 

L 	{THEN, THEN} <1 L 	{ELSE, THEN} 8 

L 	{THEN, ELSE} 3 L 	{ELSE, ELSE} 2 

G 	{THEN} 14 G 	{ELSE} 45 

The results are shown in Figures 5.23 and 5.24. Generally, each speedup bar in 

the graphs has 4 layers. The bottom layer is the minimum speedup achieved by one 

of the 4 strategies, and the other 3 layers are the successive improvements of the other 

strategies over the previous ones. 
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Figure 5.23: A comparison of 4 cluster allocation policies for speculative programs 
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Figure 5.24: A comparison of 4 cluster allocation policies for the nested speculation in 

S YN.5 
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From Figure 5.23, the All strategy performs best, followed by Critical, NonSPEC, 

and Clndep. This is clearly seen when the prioritised loops are given at least 5 TPUs, 

which allows all the threads to be successfully sparked. In SYN6, NonSPEC performs 

a little better than Critical. Both strategies prioritise loops A and G which are the main 

contributors to the total execution time. However, they have different views when 

choosing between loops C and L, i.e. NonSPEC favours C while Critical favours L. If 

both loops in question have little impact on the total execution time, it seems that the 

non-speculative one should be favoured because its results are at least guaranteed to be 

useful. For all the benchmarks, in general, the biggest improvement step comes from 

the Critical strategy. In SYN.2, the cluster allocation by Cindep is identical to the one 

by Critical; therefore, it appears in this figure (and Figure 5.21) that Cindep already 

gives good speedup. 

The speedup of nested speculation in SYN..5 is shown in the first graph of Figure 

5.24. When there are loops from multiple nest levels being executed at the same time, 

dual-path speculation holds back the performance improvement as it allows even more 

loops to compete for available TPUs. Although the total number of TPUs (24) seems 

to be sufficient, during the run-time, some cluster or fork operations are executed a 

little too early or too late in relation to the availability of resources. This happens es-

pecially when there are several multithreadable loops active simultaneously. The loop 

on the secondary path is often the last one attempting to form a cluster and thus it is 

most likely to fail. If the secondary path is correct, then the benefit from it having been 

partially executed is outweighed by the remaining execution being sequential. On the 

other hand, single-path speculation delays the less probable path until the mispredic-

tion recovery takes place, but it can gain more from the multithreaded execution on 

this path. It appears that in both single- and dual-path speculation, the Critical strategy 
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performs slightly better than All as a result of fewer simultaneously-executed loops 

competing for the TPUs. 

In the second graph of Figure 5.24, either the inner or the outer branch in the nest is 

speculated. IF(2) is always speculated because it is not handled in parallel with IF(1) 

and IF(3). The prefix "I-" or "02" indicates whether the inner or the outer branch 

is chosen. Having learnt that the performance of Cindep is only, at best, as good 

as NonSPEC's, it is excluded from the experiment. When there are sufficient TPUs to 

execute several loops simulteneously, dual-path speculation yields higher speedup than 

single-path speculation. Furthermore, outer-branch speculation yields higher speedup 

than inner-branch speculation. This can be explained by the fact that the branch in 

the deeper nest level is less likely to be encountered and is therefore less profitable to 

speculate. 

5.2.2.2 Control-Independent Execution 

In addition to speculating on control-dependent paths of a branch, another thread can 

be launched to execute the code after those paths converge. Although the code is 

to be executed regardless of the branch's direction, the thread as well as its children 

and slaves are speculative because this program fragment may be on either path of 

another branch. SYN.2, SYNJI, and SYN6 are used for studying the impact of control-

independent execution. In SYN6, loop G is control-dependent on the outer branch but 

independent of the inner branches. The transformation is adapted from the one that 

generates single-path speculative programs. 

Figure 5.25 illustrates the four major sections in the control-independent (CI) and 

the control-dependent, speculative (CSP) execution. These relate to the points where a 

new thread is forked (PAR-PREDICT) and initialised (CHPROLOGUE), and where the flow 
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Control Independence (CI) 	 Control—Dependent Speculation (CSP) 

- 	 - - 	 - - 

 

PAR-PREDICT 
PAR-PREDICT 

<1 IF 	 PAR-VERIFY 

FIIEN 0 21) 	 EE (0.77) 

CH—PROLOGUE: 

PAR-VERIFY  

CH-PROLOGUE 

CH-RESOLVE 

Figure 5.25: An outline of control-independent execution in SYN2 

of control is transferred from parent to child threads (PAR-VERIFY and CH-RESOLVE). 

The order in which CI and CSP threads are forked may also affect the program perfor-

mance since the first thread can compete for the TPUs before the other. 

In Figure 5.26, two cluster allocation strategies, NonSPEC and Critical, are em-

ployed. CI-CSP and CSP-CI indicate the order in which the CI and CSP threads are 

forked. This order is not significant when a reasonably large amount of TPUs are 

present. Comparing the best results from the Critical scheme to the best results from 

Figure 5.23, where only the CSP is performed, it appears that the CI technique further 

boosts the program speedup. 
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Figure 5.26: Speedup after CSP and Cl are performed (total TPUs = 24) 
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Figure 5.27: Speedup after CSP and CI are performed (total TPUs = 8, 12) 
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The order of forking between CI and CSP threads has a visible impact when the 

total number of TPUs decreases, as displayed in Figure 5.27. In SYN.2 and SYN_6, 

the CI threads execute dominant loops whereas the CSP threads execute trivial loops. 

Thus, it is more beneficial to allow the CI threads to acquire the TPUs first. In SYN_4, 

it is the opposite case. The CI threads not only execute the trivial loops themselves, but 

also fork threads to speculatively execute other trivial loops which are further ahead. 

As a result, the CSP threads which execute the most dominant loops are hindered when 

the CI-CSP policy is used. 

Knowing that loops on the control-dependent paths of the branch in SYN.2 and the 

inner branches in SYN_6 are the least dominant in the programs, we tested only the 

CI technique but omitted the CSP one. The Critical strategy determines which loops 

among those simultaneously executed should receive more TPUs. The results were 

plotted against the best ones from CSP (due to All strategy in Figure 5.23) and CSP+CI 

(due to Critical strategy in Figure 5.26), and shown in Figure 5.28. In both the bench-

marks, the highest speedups were achieved by performing only control-independent 

execution. 

In spite of having a similar program structure to the one in SYN.A, the CI region in 

SYN3 (which dominates the first branch and post-dominates the second one) consumes 

results from both control-dependent paths of the first branch. As data speculation 

is not supported, this region can only be executed after the first branch is resolved, 

but the lookahead speculation can be performed by speculating the second branch (or 

launching its CSP threads) immediately after the first one. However, the results in 

Figure 5.29 when compared with those in Figure 5.23 show that earlier execution of 

the lookahead paths, in this case, yields no further improvement since the loops on 

these paths are very small. 
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Figure 5.29: Results from the lookahead speculation 
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5.2.2.3 Concurrent Speculation 

Unique among the benchmarks, the branch in SYN_7 resides in the body of the outer 

loop which is multithreadable. Several instances of the branch can be speculated at 

the same time as they are independent of each other. Additionally, neither the branch 

nor the execution of its control-dependent paths causes premature exit from the outer 

loop. In Figure 5.30, N-MULTI allows multithreading in both the outer and the inner 

loops; 0-MULTI allows multithreading in the outer loop; N-SPEC and 0-SPEC are 

their speculative versions, respectively. For the inner loop, loop chunking is performed 

to create a maximum of 4 threads, each of which executes 50 iterations. The loop is 

always given 4 TPUs, including the master and the slaves. 

The speculation applied in the parallel loop iterations does not increase the program 

speedup over the non-speculative execution because, within each outer loop iteration, 

the parent region is very small compared to the (speculated) child region. As a result, 

there is little computation to perform in parallel with the speculative one and the pro-

gram suffers from the multithreading overheads involving both loop parallelisation and 

control speculation. 

Figure 5.32 illustrates the restructuring of the outer loop. It is unrolled 4 times, 

followed by upward code motion so that the original parent regions of all the branches 

in a new unrolled iteration are packed together. The branches are predicted at the start 

of every outer loop iteration. There are several permutations in which the speculation 

can be performed. In Figure 5.31, SPEC.1, SPEC.2, SPEC.3, and SPEC.4 speculate 

the first 1, 2, 3, and 4 branches respectively and in the order that they are encountered 

by the sequential flow of control. Furthermore, in order to restrict the TPU utilisation, 

the inner loop is always executed sequentially. 
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Figure 5.30: Speedup of multithreaded execution, with and without concurrent specu-

lation 
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Figure 5.31: Speedup of speculative programs after the outer loop is optimised 
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Figure 5.32: Loop unrolling and code motion being applied to the outer loop 



Chapter 5. Multithreaded Control-Speculative Execution 	 161 

Comparing the speedup of 0-MULTI in Figure 5.30 and 0-MULTI (opt) in Figure 

5.3 1, the optimised program performs slightly worse. On the other hand, the speedup 

of the speculative execution increases, particularly when at least 4 branches are pre-

dicted. SPEC.4 and N-MULTI (in Figure 5.30) require similar amount of TPUs since 

each thread executing an outer loop iteration is assisted by 4 other threads. A compar -

ison of speedup from both suggests that the available TPUs are still better used for the 

loop parallelisation of the inner loop than for the speculation. 

5.2.2.4 Path Selection 

In all the benchmarks considered so far, both paths of a branch contain identical sub-

structures or identical loops (with the same sizes but different parameters). The branch 

probability was sufficient for choosing a path to be speculatively executed in the case 

of single-path speculation. However, for an unbalanced control structure, the path with 

a much higher workload albeit lower probability could be more critical. 

Two synthetic benchmarks are displayed in Figures 5.33(a) and (b). Their control 

structures are similar to that of SYN_1, but loop G in one path is replaced by loop 

L. Loop parallelisation is the same as before, i.e. each loop is transformed for the 

multithreaded execution of 5 threads (including a master and slaves), each of which 

executes a maximum of 101 iterations. The contribution factor of each loop is also 

calculated and shown in Table 5.5. 

In SYNUBI , it is obvious that loop G is on the more probable path and dominates 

the total execution time. Based on the previous observations (Section 5.2.2.1), it would 

be beneficial to speculate on this path and allocate the largest number of TPUs to this 

loop. In SYNJJB.2, although the ELSE path has the higher probability, the loop on 

this path contributes the least to the total execution time. Figure 5.34 shows the results 
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Figure 5.33: Synthetic benchmarks with unbalanced control structures 

Table 5.5 Contribution of each loop in SYNUBJ and SY!sLUB.2 	 - 

Benchmark Loop { path } 	I % } _Loop { path } % 

SYNUBJ A 	{control indep} 28 

L 	{THEN} 5 G 	{ELSE} 67 

SYN_UB.2 A 	{coiztrol indep} 44 

G 	{THEN} 32 L 	{ELSE} 24 

from the speculative execution in SYN_UB2 as the following options are explored: 

• Single-path speculation on the ELSE path (which contains loop L). 

• Dual-path speculation (L+G). 

• Single-path speculation on the THEN path (which contains loop G). 

Since there can be at most 2 loops being executed at the same time, every loop 

is allocated 5 TPUs. It appears that when there are sufficient TPUs for all the loops, 

dual-path speculation yields the best speedup. In the case of single-path speculation, 

by executing loop G earlier instead of loop L, the speedup increases significantly and is 
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Figure 5.34: Speedup of the speculative execution in SYNUB.2 

almost as good as the result from dual-path speculation. However, when the number of 

TPUs is reduced to 8, dual-path speculation gives the worst speedup. The speculation 

on the THEN path (loop G) still gives better speedup than on the ELSE path (loop L), 

but the difference in their performance is small. 

In this experiment, the order in which threads are forked in dual-path speculation is 

not significant. The reason is that loops L and G are both executed by multiple threads 

if there are 24 TPUs, or by single threads each if there are only 8 TPUs. 

5.2.3 Summary 

The effects of control speculation were studied using synthetic benchmarks comprising 

sets of parallelisable loops and conditional branches. First, by giving similar TPU allo- 

cation to the loops in both multithreaded non-speculative and speculative programs, the 
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latter performed slightly better than the former. Because the control speculation per-

mits simultaneous execution of loops in several program fragments, the performance 

can be affected by poor resource allocation. 

Empirical studies on TPU allocation schemes were conducted. Contribution of 

each individual loop to the overall program execution was computed using cumula-

tive probability along the control-flow path until the loop is encountered and together 

with its sequential execution time. Among concurrently-executed loops, favouring the 

most dominant one (i.e. Critical strategy) delivered the best or close-to-best speedups. 

However, if none of those loops significantly contributed to the total execution time, 

better results were achieved by favouring the non-speculative one (i.e. NonSPEC strat-

egy). Allocating the same number of TPUs to every loop (i.e. All strategy) yielded the 

best speedup only if there were not too many loops competing for the TPUs. If both 

paths of a branch have significantly different workload, then the contribution factor of 

each path which had been calculated for the resource allocation purpose can be used 

to determine which one could benefit more from the speculative execution. 

Although multiple loops are executed simultaneously, they can be initialised by the 

cluster allocation commands at different cycles; the loop which is most favoured by 

the compile-time analysis may be the last one to acquire the TPUs. Furthermore, the 

loops whose execution have completed may free their TPUs a few cycles late. Since 

these are unforseen at the compile-time, the compiler should be aware that the total 

resource utilisation is slightly below the total resource availabilty, in order to avoid 

cluster and/or fork failures at the run-time. 

Performing speculation in multiple levels of nested branches at the same time could 

be detrimental to the program performance as a result of resource contention. At best, 

the speedup achieved was only as high as the result from outermost-branch speculation. 
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The speculation in the deeper nest levels was less profitable due to the lower cumulative 

probabilities of the inner branches. 

Besides the speculative execution of control-dependent threads (CSP), code frag-

ments below the branches' re-convergences can be executed by control-independent 

threads (CI). The combination of both generally performed better than the use of only 

CSP. However, there are a few instances where it performed worse: when loops on the 

CI paths were too small and/or the CI threads predicted further trivial branches, while 

the CSP threads failed to allocate clusters to execute more critical program fragments. 

Finally, while multiple iterations of a loop were executed in parallel, predicting 

the branches within those iterations provided improvement over the non-speculative 

execution, if there is sufficient parallel computation to offset the overheads of both 

loop parallelisation and control speculation. If the loop in question is an outer loop 

in a nest, the results so far suggested that the availbie TPUs were better used for the 

multithreaded execution of the inner loop than for the control speculation. 

53 Chapter Summary 

Transformation modules for control-speculative execution were implemented using 

SUIF framework. They support single-path, dual-path, and nested speculation. This 

chapter also described the use of profile information and the pre-transformation analy-

sis. Experiments were conducted to study the effectiveness of the control speculation, 

its interaction with multithreaded loop execution, and cluster allocation strategies. The 

execution of a control-independent path which post-dominates the branch was also 

examined. 



Chapter 6 

Conclusions 

6.1 Thesis Summary 

A framework has been proposed for multithreaded execution, which combines dis-

tributed program analyses, hierarchical thread management, and dynamic clustering of 

TPUs. The underlining idea is explained as follows. At compile-time, a program is re-

peatedly divided into sub-problems, each of which is specifically optimised and trans-

formed by a class of compilation techniques. The subsystems and their finer partitions 

are organised in a hierarchy with master/slave relationships between them. During 

run-time, the master threads attempt to allocate clusters of slave TPUs on which the 

slave threads execute. The dynamic cluster allocation enables the utilisation of TPUs 

to be adjusted to the sub-problems' requirements throughout the program execution. 

During the course of the research, a generic multithreaded architecture was mod-

elled and simulated, which was inspired by CMP-based architectures such as Su-

perthreaded. Enhancements were made to support hierarchy and dynamic cluster al-

location, with the TPUs being equipped with special units that manage the threads' 

166 
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parent/child and master/slave relationships. Furthermore, control speculation and reg-

ister forwarding mechanisms were introduced. The main focus of the thesis was on 

compiler-based thread manipulation and the interface between the compiler and the 

architecture. The compiler plays an important role in exposing parallelism and or -

chestrating how programs will be executed on a relatively simple architecture. It re-

quires commands, inquiries, and feedback to be passed between these two layers via 

specially-proposed instructions augmented to the MIPS instruction set. In addition 

to the architectural design and simulation, a multithreaded compilation package was 

implemented as a part of the SUIF compiler system. The package is composed of 

front-end transformers for the multithreaded loop and control-speculative execution, 

and a target-machine code generator. 

With up to 16 TPUs, the multithreaded loop execution delivered speedup between 

5 and 10 when combined with loop unrolling and loop peeling. This was achieved 

by dispatching the iterations to threads one-by-one in single-level multithreading. For 

nested loops, chunks of iterations were dispatched in order to restrict per-thread ini-

tialisation, synchronisation and retirement overheads, particularly for the inner loops. 

Speedups of around 4 or 5 were achieved. However, when this was applied to single-

level multithreading, loop-level parallelism was compromised. 

In the presence of conditional branches, speculative execution of the control- de-

pendent paths boosted program speedup. The branches' post-dominating regions can 

be included into the speculative paths, aided by code motion and multithreaded trans-

formation, in order to increase the thread granularity. Alternatively, when there is more 

parallelism to be exploited, control-independent threads can be launched to execute 

those regions. Speedup was generally further improved after both control-dependent 

speculation and control-independent execution were applied. 
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As several master threads simultaneously execute program fragments, or parallelis-

able loops in our benchmarks, they compete for available TPUs in order to allocate 

slave clusters. Cluster allocation strategies have impacts on the program performance. 

In the case of multiple loops being executed concurrently, best results were achieved 

by alloting the dominant ones greater number of TPUs. The loops' contribution to the 

overall program execution time was calculated using their sequential execution profiles 

and the branch probability profile. 

Finally, the speedups achieved suggest that the benefit of the control speculation 

augments the gains made by loop parallelisation. In the experiments, both multi-

threaded non-speculative and speculative programs were generated using the same 

compilation options, i.e. parameters regarding loop unrolling, loop peeling, or loop 

chunking were the same for both versions so that their performance could be fairly 

compared. There are still outstanding issues such as: given a number of TPUs unused 

by loop parallelisation, should the compilation choices (including resource allocation) 

be further explored to improve the loop parallelisation instead of allocating the TPUs 

for speculative execution ? This will be discussed in the next section, along with some 

suggestions for future work. 

6.2 Discussion and Future Works 

6.2.1 Multithreaded Architecture 

Like other CMP-based architecture [26, 32, 58, 66, 70], our multithreaded architec-

ture is kept simple and relies heavily on the compiler to detect and exploit thread-level 

parallelism. A novel feature of the architecture is that clusters of TPUs are statically al-

located to program partitions at compile-time, and this information is communicated to 
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the run-time system. The resource partitioning idea was inspired by SMT-based archi-

tectures [3, 44, 45, 71]. But these SMTs rely on a complete run-time system whereas, 

in our architecture, commands are passed from the compiler to perform cluster allo-

cation. The framework brings an advantage of the SMT's philosophy to the CMPs, 

i.e. during the execution of a program, TPUs can be used in proportion to the amount 

of thread-level parallelism in each program partition and/or the priority given to these 

partitions (e.g. a non-speculative partition may be given more TPUs than a speculative 

one, if they are executed in parallel). The other main features and restrictions in the 

architecture are discussed next. 

In practice, the location of slave TPUs on the chip and the size of the clusters 

would affect program performances differently. Large clusters are less likely to be 

successfully allocated than smaller ones and their TPUs are more likely to be scat-

tered. The distance between slave TPUs, in reality, would impact the signal delays and 

communication between threads. The main data transmission is usually in the thread 

initialisation phase, where current register values are copied from the parent's regis-

ter file to the child's. This operation would be more expensive than in other systems 

[3, 45, 58, 60], where the architectures consist of processing units arranged in ring 

topology (the child thread typically starts on the next processing unit in the ring) and 

registers can be rapidly transferred between physically neighbouring units. Besides the 

register transfer during thread initialisation, our register forwarding is similar to Multi-

scalar [12]. However, unlike Multiscalar, which propagates the forwarded registers to 

all the processing units, our architecture only forwards registers from the parent to the 

child threads. Because physically neighbouring TPUs could be assigned to different 

logical clusters, and these clusters may execute program partitions that are independent 

of each other, propagating the registers to all the TPUs would result in unnecessarily 
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high communication overhead. Issues such as VLSI implementation, hardware-level 

cluster allocation, and register communication mechanisms should be further studied. 

Hardware support for speculative execution is kept to a minimum. A speculative 

buffer was added in each TPU to keep results when a thread is in speculative mode, 

with a mechanism to retrieve the correct version of the data from its predecessor. A 

new mechanism was developed to manage the speculative buffers according to the hi-

erarchy of threads. Unlike other systems [32, 54,65,671, there is no hardware support 

for misspeculation detection and recovery as these are managed in the software. Also, 

the memory hierarchy (including caches) and data speculation were not included in 

our framework. To integrate these features into the architecture would require fur-

ther investigations on how they would be organised around the hierarchy of threads. 

Other well-studied features, such as local branch predictors, should also be included to 

complete the functionality of the multithreaded architecture. 

During the research, a restriction on the current architecture was noted: clusters do 

not operate entirely independently of each other. If there are several clusters simulta-

neously active, then only the one whose master TPU hosts the current head thread is 

able to reuse its slave TPUs. In the other clusters, the TPUs cannot be freed until the 

synchronisation signal is received by the master threads and passed on to the slaves. 

Our solution was to assign large chunks of program partitions to the slave threads, at 

the expense of compromising some parallelism. An alternative approach could em-

ploy multiple levels of synchronisation and allow each cluster to be operated using a 

unique signal. There are a few concerns with this idea. Firstly, a thread must distin-

guish the signal it uses as a master thread (e.g. when executing crels, it passes the 

signal to the slaves and waits until the signal returns) from the one it uses as a slave 

(e.g. when executing xstp, it waits for the signal from the master or the predecessor 
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slave). As multiple threads from several clusters may commit to the shared memory 

and retire simultaneously, care must also be taken to ensure that the program semantics 

is preserved. 

Further improvements can be made to cluster formation and forking mechanisms. 

In this work, a thread checks for available TPUs and a value, success or fail, is returned 

before it proceeds to execute the next instruction. Superthreaded [68, 69, 701 employs 

a different approach called delayed forking which always successfully spawns a new 

thread in spite of the delay. However, if there is no TPU available over a long pe-

riod, it may be better to let the current thread execute the code instead of waiting to 

spawn a new one. Alternatively, a time-out can be set for cluster formation and forking 

operations, with mechanisms that permit polling of available TPUs. 

6.2.2 Multithreaded Compiler 

Like other CMP-based systems such as Hydra [31, 32, 53,54], STAMPede [65, 66,67], 

or Superthreaded [68, 69, 70, 79], our multithreaded compiler was developed specif-

ically for the proposed architecture - it is aware of the execution models supported 

and the restrictions in the architecture when generating multithreaded programs. In 

these compilers, program transformations are performed at the front-end, where high-

level program structures such as loops can be easily recognised. Loop parallelisation 

is a main feature presented in all the compilers. Multiple loop iterations are typically 

executed by multiple threads in parallel in a predecessor/successor style. However, 

threads in Hydra, STAMPede, and Superthreaded commit to the shared memory and 

retire in a sequential order. As each thread commits, it also updates the current state 

of the processor. In our system, slave threads (which also execute loop iterations in a 

predecessor/successor style) commit and update the cluster's state, maintained by the 
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master thread, instead of the processor's state. This hierarchical thread management 

would fit in well with the multithreaded execution in nested loops, provided that mul-

tiple clusters can be operated independently, as discussed in the previous section. With 

the current solution to dispatch big chunks of inner-loop iterations to slave threads, 

nested multithreading only performed as well as one-level multithreading in the outer-

most loops. 

In addition to the loop parallelisation, our compiler also generates code for coarse-

grained control speculation. Like STAMPede's approach, the compiler inserts instruc-

tions to mark speculative regions in the program and threads can switch between non-

speculative and speculative execution. However, unlike STAMPede, the misspecu-

lation detection, and recovery actions are all managed by software routines. Further-

more, because data speculation is not supported, threads will be forced to wait until the 

data they depend upon is made available. Our multithreaded compiler would therefore 

have to detect and work around data dependencies between threads (the benchmarks 

used in the research have only few data dependencies). 

The multithreaded code generator is a modification of a MIPS code generator. Sev-

eral back-end analysis were therefore not specifically targeted at our multithreaded ar-

chitecture. Because register usage is known after register allocation is performed at 

the back-end, register forwarding has to be handled separately from the multithreaded 

transformation at the front-end. User's specifications are needed to specify which pro-

gram partitions will use the register communication instead of the default memory 

communication. This differs from Multiscalar's approach [72], in which both task 

selection and register communication are performed at the assembly-code level. Con-

sequently, the Multiscalar compiler only needs to perform control-flow and data-flow 

analysis once. Our compiler, on the other hand, has to perform the analysis in both the 
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front-end and the back-end compilation. 

Besides the features mentioned above, there are still restrictions in the current com-

piler, as discussed next. The SUIF compiler system [84] was well suited for the im-

plementation of the compiler prototype because various specialised functions can be 

implemented separately and communicate via internal program representation and an-

notations. Basic structures, such as procedures, loops, and conditional branches, are 

easily recognised from the internal format. Hence, distributed program analysis and 

compilation would be well supported. More functions are still required to make the 

system fully automatic. At present, the compiler does not perform inter-procedural 

analysis and it relies on built-in SUIF functions to detect data dependencies (ones that 

are not detected by the compiler can be specified via a graphical user interface tool). 

However, in some areas such as embedded applications, where the compilation is per -

formed only once, the current semi-automatic system can still be useful provided that 

the code is specifically compiled and fully optimised to achieve high performance. 

For the multithreaded loop execution, heuristics or analytic models should be de-

veloped to estimate performance trends and determine a point where the benefit from 

loop-level parallelism peaks or reaches a plateau. After this point, further use of the 

control speculation could be worthwhile. Another use of heuristics or analytic mod-

els is in cluster allocation scheduling. As optimal requirement for individual program 

partitions can be estimated, schedules for the availability and the utilisation of TPU 

resources can then be determined for the entire application. One concern is the level 

in which analytic models are used in the compiler. Costs estimated from the high-level 

and the low-level internal representation might be very different, such that, after the 

transformation based on the front-end analysis, the final output programs may behave 

differently than expected. Feedback loops would be needed for the compilation pro- 
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cess, as described in Chapter 3. Methods for mapping costs or results from the analysis 

in multiple levels should also be implemented. 

Another limitation in this work is the use of profile information: the programs being 

profiled, analysed, and transformed, always used the same input data and setting. More 

insight could be gained by using a variety of benchmarks that execute different input 

data sets. Further work is required for the simulator to accommodate larger and more 

realistic benchmarks, and very importantly, the integration of operating system and 

library calls into the simulator package. 

6.2.3 Applications 

One type of program that can be tackled by the compiler and executed on the multi-

threaded architecture are loop-based ones. There can be data dependence between loop 

iterations, and the dependency is detected by the SUTF compiler. In the compilation 

flow described in Chapter 4, basic loop optimisations such as loop normalisation, loop 

skewing, and loop reversal were also performed by the SUIF compiler prior to the mul-

tithreaded loop parallelisation to rearrange bounds and data dependency pattern in the 

loops. In the case of control speculation, the control structures need to be quite large. 

There should be substantial amount of computation in both the parent threads (which 

execute the code before conditional branches) and the child threads (which execute 

the speculated paths of the branches). Furthermore, the amount of data dependencies 

between program partitions should be at minimum. If possible, the program partitions 

should be independent from each other. 

Numeric programs such as Livermore [81, 82] used in the research would fit well 

in the framework, and examples that could be related to the synthetic benchmarks used 

in Chapter 5 are scientific calculators. In particular, signal and image processing for 



Chapter 6. Conclusions 	 175 

multimedia applications [25, 74], which are loop intensive (and the loop iterations are 

largely independent), would benefit from this approach. In these applications, a num-

ber of threads could also perform several computations in parallel, and communicate 

to each other but not regularly. 

6.3 Conclusion 

The main contribution of this thesis is the experimental evaluation of hierarchical mul-

tithreading in a framework consisting of a simulated multithreaded architecture and a 

compiler. Within the framework, fragments of a program can be specifically optimised 

and executed by clusters of thread processing units (TPUs) as orchestrated by compile-

time analysis. A multithreaded processor architecture has been proposed, which sup-

ports dynamic clustering of the TPUs and speculative execution. The transformation 

from sequential programs into multithreaded ones are performed in the compiler. The 

focus was on multithreaded loop and control-speculative execution. Based on the ex-

perimental results, significant program speedups were achieved by loop parallelisation, 

and could be further improved by control speculation. 



Appendix A 

Examples of Control-Flow Graphs 

The experiments in Chapter 5 used synthetic benchmarks which are well-structured. 

However, in real applications, some control-flow graphs would need pre-processing 

before they can be transformed for multithreaded control-speculative execution. The 

benchmarks used for demonstration in this chapter are heapsort [1] and 164.gzip [83]. 

Al heapsort 

This program performs heap-sorting on 2000 elements of an array in the ascending 

order. A control-flow graph (CFG) of the sorting function is shown in Figure A. 1. This 

benchmark was not use in the experiments in Chapter 5 because its control structures 

are too fine, i.e. a child region of each branch except IF(3) contains an average of 3 

instructions (counted in the C-code level). The child region of IF(3) contains a small 

sequential loop which checks and swaps between elements of the array. 
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Figure A.1: CFG of the heap-sorting function 
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Suppose that the code granularity is not an issue, possible options for applying the 

control speculation on this CFG are: 

Speculation on IF(3) 

In this case, the parent region of IF(3) may include all the predecessor nodes 

according to the forward control flow, which are node B(1) and structures IF(1) 

and IF(2). The child region is the loop containing IF(4) and IF(5). Since there 

is a BREAK in the parent region, the child thread must be aborted if the parent 

executes this instruction (see Section 5.1.1, the handling of control-flow breaks). 

Speculation on IF(1) and IF(2) 

IF(2) is an incomplete sub-structure of IF(1) as their child regions are over-

lapped. Code replication technique can be applied so that each region has a 

separate copy of node B(4) and structure IF(3), as shown in Figure A.2. There 

is a BREAK in the child region of IF(2) which is not allowed because the child 

thread cannot exit the loop before the speculation is resolved. Thus, it is replaced 

by setting a flag cont to FALSE. This flag is set to TRUE when a new iteration 

starts, and is evaluated either after the speculation is resolved (at node B(13)) or 

along with the loop continuation test at the end of that iteration (at node B(11). 

The structures IF(1) and IF(3) form a series of branches while IF(2) is nested 

inside IF(1). 

The structure IF(3) may also be replicated, as shown in Figure A.3, in order to 

increase the size of the speculative threads. In this new CFG, IF(3) and IF(Y) 

can be speculated in conjunction with IF(1) and JF(2). 

The nested-speculation template was described in Section 5.1.3, and tested in 

SYN.5 and SYN6 benchmarks. Furthermore, the handling of a series of specu- 
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lative structures were tested in SYN3 and SYN_4 benchmarks. 

Speculation on IF(4) and IF(5) 

IF(4) and IF(5) form a series of branches which are embedded in a sequential 

loop. IF(4) has only one child region which is low confident. This path may 

be speculated if it contains a large program partition, as discussed in Section 

5.2.2.4. Otherwise, B(6) which is a post-dominating, control-independent node 

may be executed instead. The control-independent execution was described and 

evaluated in Section 5.2.2.2. On the other hand, single-path speculation can be 

applied to JF(5). 

However, suppose that the loop is parallelisable, the TPU resources may be better 

dedicated to the loop parallelisation than to the control speculation. This was 

discussed in Section 5.2.2.3. 

Speculation on IF(3) and IF(4)-IF(5) 

There is a loop boundary between the structure IF(3) and the series of IF(4) 

and IF(5). Thus, IF(3) and IF(4)-IF(5) do not fit into our nested-speculation 

template. An even more complicated case is if the loop is parallelised and con-

current speculation (Section 5.2.2.3) is performed. However, these have not been 

studied in the thesis. In such cases, the compiler only speculates on IF(3). 
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Figure A.2: CFG of the heap-sorting function after code replication (1) 
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Figure A.3: CFG of the heap-sorting function after code replication (2) 
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A.2 1 64.gzip 

This benchmark was taken from the SPEC CPU2000 suit [83]. It performs data com-

pression and decompression. The size of the benchmark is too big for both the multi-

threaded compiler and the simultor. Therefore, it was only profiled using test data set 

and the control-flow graph was constructed manually. Figures A.4 and A.6 show the 

control-flow graphs of procedures deflate-fast and inflate l'lock, respectively. 

1. Function deflatelast 

The control-flow graph of deflat&fast consists of a series of branches, some 

of which are nested ones. To handle function calls, the compiler would inline 

them, if possible, since it does not perform inter-procedural analysis. The func-

tions cannot contain instructions that raise exceptions or cause program exit; 

otherwise, an exception-free version of them are generated. From the example, 

longest-match contains assertion tests that cause the program to exit if the as-

sertions fail. Suppose that IF(1) is not speculated but is included in the parent 

region of IF(3). Instead of exiting the program immediately, an invalid value 

is returned from longest-match (see Figure A.5). This value is checked at the 

caller's site after the call instruction; then the child thread is aborted and the par-

ent thread exits the program. 

Similarly, ctJally in the child region of IF(3) contains assertion tests. The com-

piler would normally avoid speculation on IF(3). Nevertheless, suppose that the 

speculation is performed, a possible handling of cualiy is shown in Figure A.5. 

An extra condition may be added after the function call to check the validity of 

the returned value. However, the program exit will be delayed until the specula-

tion is resolved, i.e. at node B(8). 
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------------- 	 ----------- 	
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Figure A.4: CFG of procedure deflate-fast 
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Figure A.5: Handling of function calls inside procedure deflate.fast 
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2. Function inflate-block 

In Figure A.6, suppose that functions inflate-dynamic, inflate-stored, and in-

flate-fixed do not contain exception instructions, program exits, or calls to any 

other functions. The branches IF(1) and IF(2) can therefore be speculated. How-

ever, while being speculative, a child thread that executes inflate-dynamic or 

inflate-stored cannot exit the speculation scope, i.e. function inflate -block. The 

SUIF compiler generates a temporary variable tinpto store a value returned from 

inflatedynamic, inflate-stored, or inflate -fixed. After the outermost branch IF(1) 

is resolved, tmp can then be returned from inflate .block. Figure A.7 shows the 

branch structures which were arranged in a completely-nested form. 
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ENTER 

B(l) 

[

CALL NEEDBITS (...) 

CALL DUMPBITS (...) 

<IF (1> 

IF (2) 	 RETURN inflate—dynamic () 

0.00 	1.00 

I RETURN inflate-stored() 	I 
rsxsisSI,r 

RETURN 2 I 	I RETURN inflate fixed () 

EXIT 

Figure A.6: CFG of procedure inflate-block 
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B(1) 	I 

CALL NEEDBITS ( ... ) 

CALL DUMPBITS ( ... ) 

IF (1) 
0.20 	 0.80 

Figure A.7: Completely-nested branches in procedure inflate-block 



Appendix B 

Global Thread Control Unit 

The Global Thread Control Unit (GTCU) is a central unit in the multithreaded pro-

cessor architecture. It maintains threads' information including relative order of all 

the active threads and a pointer to the head thread. The GTCU is accessed quite of-

ten during multithreaded execution, and even more frequently during (multithreaded) 

speculative execution (see Sections 3.2.1 and 3.4.1.3 for details). The following ex-

periment compares programs' performance when the access delay is set to 0, 1, and 2 

time units (all the results in Chapters 4 and 5 are based on zero delay). The benchmarks 

used are Livermore kernels from Chapter 4, which were transformed as follows: 

Non-speculative programs. 

The benchmarks were transformed using Loop-Transformer-1. Results from 

these programs, with the GTCU's access delay being set to zero, were shown in 

Figure 4.11. 

Speculative programs. 

The benchmarks were transformed using Loop-Transformer-2. These are the 

ones mentioned in Page 84. 
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Both versions of the multithreaded programs generate a lot of threads during run-

time as the TPUs are reusable, and the speculative programs access the GTCU more 

often than the non-speculative ones due to the speculative load/store operations. Re-

sults are shown in Figures B. 1 and B.2. Speedup of the non-speculative programs when 

the GTCU delay is 0, 1, and 2 time units are very close. For the speculative programs, 

the difference in speedup is slightly more pronounced (when the delay is set to zero, 

the speculative programs give very similar speedup to the non-speculative ones). 

It appears that the delay in the GTCU has only slight impact on program's per-

formance because most accesses to the GTCU are for reading thread sequence and 

this unit is managed in a multiple-readers/single-writer style. To avoid contention and 

long access delay in a centralised unit (for the multiple reads), a table could be imple-

mented with each entry being a copy of the thread sequence exclusively used by each 

TPU, thus allowing multiple read operations to proceed in parallel. A write operation, 

on the other hand, will lock the whole table as it needs to broadcast an update in one 

entry to all the others. This should not cause bottleneck in the system since each thread 

updates the GTCU table only twice, i.e. when it is forked and when it retires, although 

it may read from the GTCU table several times during its execution while perfoming 

speculative load/store operations. 
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Figure B.1: Speedup of non-speculative programs (with GTCU delay = 0, 1, and 2 time 

units) 
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Figure B.2: Speedup of speculative programs (with GTCU delay = 0, 1, and 2 time 

units) 
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