373 research outputs found

    Harnessing Artificial Intelligence for the Next Generation of 3D Printed Medicines

    Get PDF
    Artificial intelligence (AI) is redefining how we exist in the world. In almost every sector of society, AI is performing tasks with super-human speed and intellect; from the prediction of stock market trends to driverless vehicles, diagnosis of disease, and robotic surgery. Despite this growing success, the pharmaceutical field is yet to truly harness AI. Development and manufacture of medicines remains largely in a ‘one size fits all’ paradigm, in which mass-produced, identical formulations are expected to meet individual patient needs. Recently, 3D printing (3DP) has illuminated a path for on-demand production of fully customisable medicines. Due to its flexibility, pharmaceutical 3DP presents innumerable options during formulation development that generally require expert navigation. Leveraging AI within pharmaceutical 3DP removes the need for human expertise, as optimal process parameters can be accurately predicted by machine learning. AI can also be incorporated into a pharmaceutical 3DP ‘Internet of Things’, moving the personalised production of medicines into an intelligent, streamlined, and autonomous pipeline. Supportive infrastructure, such as The Cloud and blockchain, will also play a vital role. Crucially, these technologies will expedite the use of pharmaceutical 3DP in clinical settings and drive the global movement towards personalised medicine and Industry 4.0

    A comparison of processing techniques for producing prototype injection moulding inserts.

    Get PDF
    This project involves the investigation of processing techniques for producing low-cost moulding inserts used in the particulate injection moulding (PIM) process. Prototype moulds were made from both additive and subtractive processes as well as a combination of the two. The general motivation for this was to reduce the entry cost of users when considering PIM. PIM cavity inserts were first made by conventional machining from a polymer block using the pocket NC desktop mill. PIM cavity inserts were also made by fused filament deposition modelling using the Tiertime UP plus 3D printer. The injection moulding trials manifested in surface finish and part removal defects. The feedstock was a titanium metal blend which is brittle in comparison to commodity polymers. That in combination with the mesoscale features, small cross-sections and complex geometries were considered the main problems. For both processing methods, fixes were identified and made to test the theory. These consisted of a blended approach that saw a combination of both the additive and subtractive processes being used. The parts produced from the three processing methods are investigated and their respective merits and issues are discussed

    Reducing risk in pre-production investigations through undergraduate engineering projects.

    Get PDF
    This poster is the culmination of final year Bachelor of Engineering Technology (B.Eng.Tech) student projects in 2017 and 2018. The B.Eng.Tech is a level seven qualification that aligns with the Sydney accord for a three-year engineering degree and hence is internationally benchmarked. The enabling mechanism of these projects is the industry connectivity that creates real-world projects and highlights the benefits of the investigation of process at the technologist level. The methodologies we use are basic and transparent, with enough depth of technical knowledge to ensure the industry partners gain from the collaboration process. The process we use minimizes the disconnect between the student and the industry supervisor while maintaining the academic freedom of the student and the commercial sensitivities of the supervisor. The general motivation for this approach is the reduction of the entry cost of the industry to enable consideration of new technologies and thereby reducing risk to core business and shareholder profits. The poster presents several images and interpretive dialogue to explain the positive and negative aspects of the student process

    Medical Applications of Materials Manufactured by the AM Process

    Get PDF
    The use of 3D printing for manufacturing parts has made it possible to produce components with complex geometries according to drawings made on the computer. 3D printing offers many advantages in the manufacture of polymers and composites, including high precision, low cost, and custom geometry. Several techniques are used in 3D printing, the ones discussed in this monograph are the main ones for polymers. These are: fused deposition modeling (FDM), Injection 3D printing (3DP), Stereolithography (SLA), and finally selective laser sintering (SLS). The 3D printing technique has several applications, however, the focus in this project is to analyze the various medical applications and the main advantages and disadvantages associated with it. Some of the main applications of this type of technology that will be described throughout the project are: - Bioprinting of tissues and organs - Customized Implants and Protheses - Anatomical Models for Surgical Application - Pharmaceutical Application The main objective will be to analyze, for these procedures, what are the advantages associated with the use of 3D technology and what are the goals for the future in this field. In addition, it will be important to mention the advantages and disadvantages of this combination (3D printing and medicine) in a more general overview, identifying numerous advantages but also potential risks that need to be taken into account. In order to deepen the analysis further, two practical cases will be studied, ensuring their contextualization for the project and also a verification of the improvements and processes facilitated by the application of 3D technology in these fields.IncomingObjectius de Desenvolupament Sostenible::9 - Indústria, Innovació i Infraestructur

    George C. Marshall Space Flight Center Research and Technology Report 2014

    Get PDF
    Many of NASA's missions would not be possible if it were not for the investments made in research advancements and technology development efforts. The technologies developed at Marshall Space Flight Center contribute to NASA's strategic array of missions through technology development and accomplishments. The scientists, researchers, and technologists of Marshall Space Flight Center who are working these enabling technology efforts are facilitating NASA's ability to fulfill the ambitious goals of innovation, exploration, and discovery

    Medical Applications of Materials Manufactured by the AM Process

    Get PDF
    The use of 3D printing for manufacturing parts has made it possible to produce components with complex geometries according to drawings made on the computer. 3D printing offers many advantages in the manufacture of polymers and composites, including high precision, low cost, and custom geometry. Several techniques are used in 3D printing, the ones discussed in this monograph are the main ones for polymers. These are: fused deposition modeling (FDM), Injection 3D printing (3DP), Stereolithography (SLA), and finally selective laser sintering (SLS). The 3D printing technique has several applications, however, the focus in this project is to analyze the various medical applications and the main advantages and disadvantages associated with it. Some of the main applications of this type of technology that will be described throughout the project are: - Bioprinting of tissues and organs - Customized Implants and Protheses - Anatomical Models for Surgical Application - Pharmaceutical Application The main objective will be to analyze, for these procedures, what are the advantages associated with the use of 3D technology and what are the goals for the future in this field. In addition, it will be important to mention the advantages and disadvantages of this combination (3D printing and medicine) in a more general overview, identifying numerous advantages but also potential risks that need to be taken into account. In order to deepen the analysis further, two practical cases will be studied, ensuring their contextualization for the project and also a verification of the improvements and processes facilitated by the application of 3D technology in these fields

    New Trends in 3D Printing

    Get PDF
    A quarter century period of the 3D printing technology development affords ground for speaking about new realities or the formation of a new technological system of digital manufacture and partnership. The up-to-date 3D printing is at the top of its own overrated expectations. So the development of scalable, high-speed methods of the material 3D printing aimed to increase the productivity and operating volume of the 3D printing machines requires new original decisions. It is necessary to study the 3D printing applicability for manufacturing of the materials with multilevel hierarchical functionality on nano-, micro- and meso-scales that can find applications for medical, aerospace and/or automotive industries. Some of the above-mentioned problems and new trends are considered in this book

    Advanced medical micro-robotics for early diagnosis and therapeutic interventions

    Get PDF
    Recent technological advances in micro-robotics have demonstrated their immense potential for biomedical applications. Emerging micro-robots have versatile sensing systems, flexible locomotion and dexterous manipulation capabilities that can significantly contribute to the healthcare system. Despite the appreciated and tangible benefits of medical micro-robotics, many challenges still remain. Here, we review the major challenges, current trends and significant achievements for developing versatile and intelligent micro-robotics with a focus on applications in early diagnosis and therapeutic interventions. We also consider some recent emerging micro-robotic technologies that employ synthetic biology to support a new generation of living micro-robots. We expect to inspire future development of micro-robots toward clinical translation by identifying the roadblocks that need to be overcome

    Low temperature manufacturing of ferrite-epoxy inductor cores by micro-robotic deposition

    Get PDF
    Inductors and transformers are an important class of passive components in high and pulsed power electronics. Inductive type elements such as these are useful in energy storage, pulse shaping or filtering, and power conversion. These devices are made up of two major components; the conductive windings that provide the inductive properties, and the magnetic cores used to enhance those properties. Power losses associated with these devices can also be categorized by these two components called copper and iron losses, respectively. Iron losses, or core losses, are highly dependent on the materials used and the manufacturing method for the core. Losses come in the form of thermal energy accumulated in the core itself. These devices, which can represent a plurality or even majority composition of power electronics circuitry, pose a significant challenge and opportunity to improve power density capabilities in high and pulsed power electronics. This thesis discusses manufacturing magnetic cores at low temperature (<100 C) and a control method for the manufacturing system. The manufacturing system of interest is micro-Robotic Deposition (uRD), a three-axis material extrusion type additive manufacturing system. The choice of this manufacturing method greatly influences the rheological properties required of the composite inks used for target components. A ferrite-epoxy composite ink consisting of micron-sized carbonyl iron powder and a common industrial epoxy matrix, Bisphenol-A diglycidyl ether (DGEBA)/ Diethylene Triamine (DETA), is used with a rheology modifier to achieve the proper rheology profile of the magnetic ink. A velocity centric PID control strategy is implemented on each axis of the uRD system to achieve proper motion and position control of the manufacturing process. Results show good control performance across printing speeds of 1-25 mm/s, as determined by biaxial contour mappings. Components manufactured from the composite provided hold the desired topology, indicating proper rheological tuning of the ink material, and were fully cured in under 8 hours at ambient room conditions (~23 C)
    • …
    corecore