51 research outputs found

    Separation for dot-depth two

    Full text link
    The dot-depth hierarchy of Brzozowski and Cohen classifies the star-free languages of finite words. By a theorem of McNaughton and Papert, these are also the first-order definable languages. The dot-depth rose to prominence following the work of Thomas, who proved an exact correspondence with the quantifier alternation hierarchy of first-order logic: each level in the dot-depth hierarchy consists of all languages that can be defined with a prescribed number of quantifier blocks. One of the most famous open problems in automata theory is to settle whether the membership problem is decidable for each level: is it possible to decide whether an input regular language belongs to this level? Despite a significant research effort, membership by itself has only been solved for low levels. A recent breakthrough was achieved by replacing membership with a more general problem: separation. Given two input languages, one has to decide whether there exists a third language in the investigated level containing the first language and disjoint from the second. The motivation is that: (1) while more difficult, separation is more rewarding (2) it provides a more convenient framework (3) all recent membership algorithms are reductions to separation for lower levels. We present a separation algorithm for dot-depth two. While this is our most prominent application, our result is more general. We consider a family of hierarchies that includes the dot-depth: concatenation hierarchies. They are built via a generic construction process. One first chooses an initial class, the basis, which is the lowest level in the hierarchy. Further levels are built by applying generic operations. Our main theorem states that for any concatenation hierarchy whose basis is finite, separation is decidable for level one. In the special case of the dot-depth, this can be lifted to level two using previously known results

    Left-handed completeness

    Get PDF
    We give a new proof of the completeness of the left-handed star rule of Kleene algebra. The proof is significantly shorter than previous proofs and exposes the rich interaction of algebra and coalgebra in the theory of Kleene algebra

    Guarded Kleene Algebra with Tests: Coequations, Coinduction, and Completeness

    Get PDF
    Guarded Kleene Algebra with Tests (GKAT) is an efficient fragment of KAT, as it allows for almost linear decidability of equivalence. In this paper, we study the (co)algebraic properties of GKAT. Our initial focus is on the fragment that can distinguish between unsuccessful programs performing different actions, by omitting the so-called early termination axiom. We develop an operational (coalgebraic) and denotational (algebraic) semantics and show that they coincide. We then characterize the behaviors of GKAT expressions in this semantics, leading to a coequation that captures the covariety of automata corresponding to these behaviors. Finally, we prove that the axioms of the reduced fragment are sound and complete w.r.t. the semantics, and then build on this result to recover a semantics that is sound and complete w.r.t. the full set of axioms

    Guarded Kleene Algebra with Tests: Coequations, Coinduction, and Completeness

    Get PDF
    Guarded Kleene Algebra with Tests (GKAT) is an efficient fragment of KAT, as it allows for almost linear decidability of equivalence. In this paper, we study the (co)algebraic properties of GKAT. Our initial focus is on the fragment that can distinguish between unsuccessful programs performing different actions, by omitting the so-called early termination axiom. We develop an operational (coalgebraic) and denotational (algebraic) semantics and show that they coincide. We then characterize the behaviors of GKAT expressions in this semantics, leading to a coequation that captures the covariety of automata corresponding to these behaviors. Finally, we prove that the axioms of the reduced fragment are sound and complete w.r.t. the semantics, and then build on this result to recover a semantics that is sound and complete w.r.t. the full set of axioms

    Probabilistic Guarded KAT Modulo Bisimilarity: Completeness and Complexity

    Get PDF
    We introduce Probabilistic Guarded Kleene Algebra with Tests (ProbGKAT), an extension of GKAT that allows reasoning about uninterpreted imperative programs with probabilistic branching. We give its operational semantics in terms of special class of probabilistic automata. We give a sound and complete Salomaa-style axiomatisation of bisimilarity of ProbGKAT expressions. Finally, we show that bisimilarity of ProbGKAT expressions can be decided in O(n3 log n) time via a generic partition refinement algorithm

    Probabilistic Guarded KAT Modulo Bisimilarity: Completeness and Complexity

    Get PDF

    On All Things Star-Free

    Get PDF
    We investigate the star-free closure, which associates to a class of languages its closure under Boolean operations and marked concatenation. We prove that the star-free closure of any finite class and of any class of groups languages with decidable separation (plus mild additional properties) has decidable separation. We actually show decidability of a stronger property, called covering. This generalizes many results on the subject in a unified framework. A key ingredient is that star-free closure coincides with another closure operator where Kleene stars are also allowed in restricted contexts

    Non-Deterministic Kleene Coalgebras

    Get PDF
    In this paper, we present a systematic way of deriving (1) languages of (generalised) regular expressions, and (2) sound and complete axiomatizations thereof, for a wide variety of systems. This generalizes both the results of Kleene (on regular languages and deterministic finite automata) and Milner (on regular behaviours and finite labelled transition systems), and includes many other systems such as Mealy and Moore machines

    The Complexity of Separation for Levels in Concatenation Hierarchies

    Get PDF
    We investigate the complexity of the separation problem associated to classes of regular languages. For a class C, C-separation takes two regular languages as input and asks whether there exists a third language in C which includes the first and is disjoint from the second. First, in contrast with the situation for the classical membership problem, we prove that for most classes C, the complexity of C-separation does not depend on how the input languages are represented: it is the same for nondeterministic finite automata and monoid morphisms. Then, we investigate specific classes belonging to finitely based concatenation hierarchies. It was recently proved that the problem is always decidable for levels 1/2 and 1 of any such hierarchy (with inefficient algorithms). Here, we build on these results to show that when the alphabet is fixed, there are polynomial time algorithms for both levels. Finally, we investigate levels 3/2 and 2 of the famous Straubing-Th\'erien hierarchy. We show that separation is PSPACE-complete for level 3/2 and between PSPACE-hard and EXPTIME for level 2

    Covering and separation for logical fragments with modular predicates

    Full text link
    For every class C\mathscr{C} of word languages, one may associate a decision problem called C\mathscr{C}-separation. Given two regular languages, it asks whether there exists a third language in C\mathscr{C} containing the first language, while being disjoint from the second one. Usually, finding an algorithm deciding C\mathscr{C}-separation yields a deep insight on C\mathscr{C}. We consider classes defined by fragments of first-order logic. Given such a fragment, one may often build a larger class by adding more predicates to its signature. In the paper, we investigate the operation of enriching signatures with modular predicates. Our main theorem is a generic transfer result for this construction. Informally, we show that when a logical fragment is equipped with a signature containing the successor predicate, separation for the stronger logic enriched with modular predicates reduces to separation for the original logic. This result actually applies to a more general decision problem, called the covering problem
    • …
    corecore