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Abstract
We investigate the star-free closure, which associates to a class of languages its closure under Boolean
operations and marked concatenation. We prove that the star-free closure of any finite class and of any
class of groups languages with decidable separation (plus mild additional properties) has decidable
separation. We actually show decidability of a stronger property, called covering. This generalizes
many results on the subject in a unified framework. A key ingredient is that star-free closure
coincides with another closure operator where Kleene stars are also allowed in restricted contexts.
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1 Introduction

This paper investigates a remarkable operation on classes of languages: the star-free closure.
It builds a new class SF(C) from an input class C by closing it under union, complement and
concatenation. This generalizes an important specific class: the one of star-free languages, i.e.,
the star-free closure of the class consisting of all finite languages. Star-free languages are those
that can be defined in first order logic [12]. The correspondence was lifted to the quantifier
alternation hierarchy of first order logic by Thomas [30], which corresponds to a classification of
star-free languages: the dot-depth hierarchy [4]. These results extend to the star-free
closure [22]. For each input class C, SF(C) corresponds to a variant of first-order logic
(specified by the set of predicates that are allowed). Moreover, its quantifier alternation
hierarchy corresponds to a classification of SF(C): the concatenation hierarchy of basis C.

Schützenberger proved that one may decide whether a regular language is star-free [27].
This result established a framework for investigating and understanding classes of languages,
based on the membership problem: is it decidable to test whether an input regular language
belongs to the class under investigation? Similar results were obtained for other prominent
classes. Yet, this fruitful line of research also includes some of the most famous open problems
in automata theory. For example, only the first levels of the dot-depth hierarchy are known
to have decidable membership (see [14] for a survey).

Recently, these results were unified and generalized. First, the problem itself was
strengthened: membership was replaced by separation as a means to investigate classes. The
separation problem asks whether two input languages can be separated by one from the class
under study. While more general and difficult than membership, separation is also more
flexible. This was exploited to show that separation is decidable for several levels in the
dot-depth hierarchy [19, 17]. In fact, this is a particular instance of a generic result applying
to every hierarchy whose basis C is finite and satisfies some mild properties [18, 21]. Moreover,
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126:2 On All Things Star-Free

the same result was obtained when the basis C is a class of group languages (i.e., recognized
by a finite group) with decidable separation [26]. Altogether, these results generalize most of
the known results regarding the decidability of levels in concatenation hierarchies.

Contributions. This paper is a continuation of these research efforts. Instead of looking
at levels within hierarchies, we investigate the star-free closure as a whole. First, we show
that the star-free closure of a finite class has decidable separation. We then use this result to
establish our main theorem: the star-free closure of a class of group languages with decidable
separation has also decidable separation. In both cases, we actually prove the decidability of
a stronger property called covering. Let us mention some important features of this work.

A first point is that the case of a finite class is important by itself. Foremost, it is a
crucial step for the main result on the star-free closure of classes of group languages. Second,
it yields a new proof that covering is decidable for the star-free languages (this is shown
in [20] or can be derived from [9, 1]). This new proof is simpler and generic. While the
original underlying technique goes back to Wilke [31], the proof has been simplified at several
levels. The main simplification is obtained thanks to an abstract framework, introduced
in [24]. It is based on the central notion of rating map, which is meant to measure the quality
of a separator. For the framework to be relevant, we actually need to generalize separation
to multiple input languages, which leads to the covering problem. Another key difference
is that previously existing proofs (specific to the star-free languages) involve abstracting
words by new letters at some point, which requires a relabeling procedure and a change of
alphabet. Here, we cannot use this approach as the classes we build with star-free closure are
less robust in general. We work with a fixed alphabet, which also makes the proof simpler.

A crucial ingredient in the proof is the notion of prefix code with bounded synchronization
delay. Generalizing a definition of Schützenberger [28] which was also considered by Diekert
and Walter [6, 7], we define a new closure operator that permits Kleene stars on such
languages (this is a semantic property). This yields an operator that happens to coincide
with the star-free closure when applied to the classes that we investigate. It serves as a key
intermediary: in our proofs, we heavily rely on Kleene stars to construct languages. We
therefore present this important step in the body of the paper (Theorem 7). Moreover, its
proof provides yet another characterization of SF(C), which is effective when the class C is
finite (thus generalizing Schützenberger’s membership result). At last regarding membership,
it is worth pointing out that not only do we cover more cases, but also that it is straightforward
to reprove the known algebraic characterizations from our results (see e.g., [3]).

Finally, let us present important applications of our main result applying to input classes
made of group languages. First, one may look at the input class containing all group
languages. Straubing [29] described an algebraic counterpart of the star-free closure of this
class, which was then shown to be recursive by Rhodes and Karnofsky [10]. Altogether, this
implies that membership is decidable for the star-free closure of group languages, as noted by
Margolis and Pin [11]. Here, we are able to generalize this result to separation and covering
as separation is known to be decidable for the group languages [2].

Another important application is the class of languages definable by first-order logic with
modular predicates FO(<,MOD). This class is known to have decidable membership [3].
Moreover, it is the star-free closure of the class consisting of the languages counting the
length of words modulo some number. Since this input class is easily shown to have decidable
separation (see [26] for example), our main theorem applies.

The third application applies to first-order logic endowed with predicates counting the
number of occurrences of a letter before a position modulo some integer. The languages
definable in this logic form the star-free closure of the languages recognized by Abelian groups:
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this follows from a generic correspondence between star-free closure and variants of first-order
logic [22, 13], together with the description of languages recognized by Abelian groups [8].
Our main theorem applies, since the class of Abelian groups has decidable separation [5, 1].

Organization. In Section 2, we recall some useful background. Section 3 presents a generic
characterization of star-free closure. Then, Sections 4 and 5 are devoted to our two main
theorems applying respectively to finite input classes and those made of group languages.
Due to space limitations, several proofs are postponed to the full version of the paper [25].

2 Preliminaries

We fix a finite alphabet A for the whole paper. As usual, A∗ denotes the set of all words
over A, including the empty word ε. For u, v ∈ A∗, we denote by uv the word obtained by
concatenating u and v. A language is a subset of A∗. We lift concatenation to languages: for
K,L ⊆ A∗, we let KL = {uv | u ∈ K and v ∈ L}. Finally, we use Kleene star: if K ⊆ A∗,
K+ denotes the union of all languages Kn for n ≥ 1 and K∗ = K+ ∪ {ε}.

A class of languages is a set of languages. A class C is a Boolean algebra when it is closed
under union, intersection and complement. Moreover, C is quotient-closed if for every L ∈ C
and w ∈ A∗, the languages w−1L

def= {u ∈ A∗ | wu ∈ L} and Lw−1 def= {u ∈ A∗ | uw ∈ L}
belong to C. All classes considered in the paper are quotient-closed Boolean algebras
containing only regular languages (this will be implicit in our statements). These are the
languages that can be equivalently defined by monadic second-order logic, finite automata or
finite monoids. We briefly recall the monoid-based definition below.

We shall often consider finite quotient-closed Boolean algebras. If C is such a class, one
may associate a canonical equivalence ∼C over A∗. For w,w′ ∈ A∗, w ∼C w′ if and only if
w ∈ L⇔ w′ ∈ L for every L ∈ C. Moreover, we write [w]C ∈ A∗/∼C for the ∼C-class of w.
One may then verify that the languages in C are exactly the unions of ∼C-classes. Moreover,
since C is quotient-closed, ∼C is a congruence for word concatenation (see [22] for proofs).

Regular languages. A monoid is a set M endowed with an associative multiplication
(s, t) 7→ s · t (also denoted by st) having a neutral element 1M . An idempotent of a monoid M
is an element e ∈M such that ee = e. It is folklore that for any finite monoid M , there exists
a natural number ω(M) (denoted by ω when M is understood) such that sω is an idempotent
for every s ∈M . Observe that A∗ is a monoid whose multiplication is concatenation (the
neutral element is ε). Thus, we may consider monoid morphisms α : A∗ →M where M is
an arbitrary monoid. Given such a morphism and L ⊆ A∗, we say that L is recognized by α
when there exists a set F ⊆M such that L = α−1(F ). A language L is regular if and only if
it is recognized by a morphism into a finite monoid. Moreover, it is known that there exists
a canonical recognizer of L, which can be computed from any representation of L (such as a
finite automaton): the syntactic morphism of L. We refer the reader to [15] for details.

Group languages. A group is a monoid G in which every element g ∈ G has an inverse
g−1 ∈ G, i.e., gg−1 = g−1g = 1G. A “group language” is a language L recognized by a
morphism into a finite group. All classes of group languages investigated here are quotient-
closed Boolean algebras. Typically, publications on the topic consider varieties of group
languages which is more restrictive: they involve an additional closure property called “inverse
morphic image” (see [13]). For example, the class MOD described below is not a variety.
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I Example 1. A simple example of quotient-closed Boolean algebra of group languages is
the class of all group languages: GR. Another one is MOD, which contains the Boolean
combinations of languages {w ∈ A∗ | |w| = k mod m} with k,m ∈ N such that k < m.

Decision problems. We rely on three decision problems to investigate classes of languages.
Each one depends on a parameter class C, which we fix for the definition. The first problem,
C-membership, takes a single regular language L as input and asks whether L ∈ C.

The second one, C-separation, takes two regular languages L1 and L2 as input and asks
whether L1 is C-separable from L2 (is there a third language K ∈ C such that L1 ⊆ K and
L2 ∩K = ∅). This generalizes membership: L ∈ C if and only if L is C-separable from A∗ \L.

The third problem, C-covering was introduced in [24]. Given a language L, a cover of L is
a finite set of languages K such that L ⊆

⋃
K∈K K. Moreover, a C-cover of L is a cover K of

L such that all K ∈ K belong to C. Consider a pair (L1,L2) where L1 is a language and L2
is a finite set of languages. We say that (L1,L2) is C-coverable when there exists a C-cover K
of L1 such that for every K ∈ K, there exists L ∈ L2 satisfying K ∩ L = ∅. The C-covering
problem takes as input a single regular language L1 and a finite set of regular languages L2.
It asks whether (L1,L2) C-coverable. Covering generalizes separation if C is closed under
union: L1 is C-separable from L2, if and only if (L1, {L2}) is C-coverable (see [24]).

Star-free closure and main results. We investigate an operation defined on classes: star-
free closure. Consider a class C. The star-free closure of C, denoted by SF(C), is the least class
containing C and the singletons {a} for every a ∈ A, and closed under Boolean operations
and concatenation. It is standard and simple to verify that when C is a quotient-closed
Boolean algebra (which will always be the case here), this is also the case for SF(C).

Our main theorems state conditions on the input class C guaranteeing decidability of our
decision problems for SF(C). First, we may handle finite classes.

I Theorem 2. Let C be a finite quotient-closed Boolean algebra. Then, membership, separa-
tion and covering are decidable for SF(C).

The second theorem applies to input classes made of group languages.

I Theorem 3. Let C be a quotient-closed Boolean algebra of group languages with decidable
separation. Then, membership, separation and covering are decidable for SF(C).

The remainder of the paper is devoted to proving these theorems. We first focus on
SF(C)-membership in Section 3. Naturally, this is weaker than directly handling SF(C)-
covering. Yet, detailing membership independently allows to introduce many proof ideas
and techniques that are needed to prove the “full” theorems. We detail these theorems in
Sections 4 and 5. We only present the algorithms: proofs are deferred to the full paper [25].

3 Bounded synchronization delay and algebraic characterization

This section is devoted to SF(C)-membership. We handle it with a generic algebraic
characterization of SF(C) (effective under the hypotheses of Theorems 2 and 3), generalizing
earlier work by Pin, Straubing and Thérien [29, 16]. We rely on an alternate definition of
star-free closure involving a semantic restriction of the Kleene star, which we first present.
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3.1 Bounded synchronization delay
We define a second operation on classes of languages C 7→ SD(C). We shall later prove that
it coincides with star-free closure (provided that C satisfies mild hypotheses). It is based on
the work of Schützenberger [28] who defined a single class SD corresponding to the star-free
languages (i.e., SF({∅, A∗})). Here, we generalize it as an operation. The definition involves
a semantic restriction of the Kleene star operation on languages: it may only be applied
to “prefix codes with bounded synchronization delay”. Introducing this notion requires basic
definitions from coding theory that we first recall.

A language K ⊆ A∗ is a prefix code when ε 6∈ K and K ∩KA+ = ∅ (no word in K has a
strict prefix in K). Note that this implies the following weaker property that we shall use
implicitly: every w ∈ K∗ admits a unique decomposition w = w1 · · ·wn with w1, . . . , wn ∈ K
(this property actually defines codes which are more general).

Given d ≥ 1, a prefix code K ⊆ A+ has synchronization delay d if for every u, v, w ∈ A∗
such that uvw ∈ K+ and v ∈ Kd, we have uv ∈ K+. Finally, a prefix code K ⊆ A+ has
bounded synchronization delay when it has synchronization delay d for some d ≥ 1.

I Example 4. Let A = {a, b}. Clearly, {ab} is a prefix code with synchronization delay 1:
if uvw ∈ (ab)+ and v = ab, we have uv ∈ (ab)+. Similarly, one may verify that (aab)∗ab is
a prefix code with synchronization delay 2 (but not 1). On the other hand, {aa} does not
have bounded synchronization delay. If d ≥ 1, a(aa)da ∈ (aa)∗ but a(aa)d 6∈ (aa)∗.

We present the operation C 7→ SD(C). The definition involves unambiguous concatenation.
Given K,L ⊆ A∗, their concatenation KL is unambiguous when every word w ∈ KL admits
a unique decomposition w = uv with u ∈ K and v ∈ L. Given a class C, SD(C) is the least
class containing ∅ and {a} for every a ∈ A, and closed under the following properties:

Intersection with C: if K ∈ SD(C) and L ∈ C, then K ∩ L ∈ SD(C).
Disjoint union: if K,L ∈ SD(C) are disjoint, then K ] L ∈ SD(C).
Unambiguous product: if K,L ∈ SD(C) and KL is unambiguous, then KL ∈ SD(C).
Kleene star for prefix codes with bounded synchronization delay: if K ∈ SD(C)
is a prefix code with bounded synchronization delay, then K∗ ∈ SD(C).

I Remark 5. Schützenberger proved in [28] that SD({∅, A∗}) = SF({∅, A∗}). His definition
of SD({∅, A∗}) was slightly less restrictive than ours: it does not require that the unions are
disjoint and the concatenations unambiguous. It will be immediate from the correspondence
with star-free closure that the two definitions are equivalent.

I Remark 6. This closure operation is different from standard ones. Instead of requiring that
C ⊆ SD(C), we impose a stronger requirement: intersection with languages in C is allowed. If
we only asked that C ⊆ SD(C), we would get a weaker operation which does not correspond
to star-free closure in general. For example, let A = {a, b} and consider the class MOD
of Example 1. Observe that (aa)∗ ∈ SD(MOD). Indeed, {a} ∈ SD(MOD) has bounded
synchronization delay, (AA)∗ ∈ MOD and (aa)∗ = a∗ ∩ (AA)∗. Yet, one may verify that
(aa)∗ cannot be built from the languages of MOD with union, concatenation and Kleene star
applied to prefix codes with bounded synchronization delay.

3.2 Algebraic characterization of star-free closure
We now reduce deciding membership for SF(C) to computing C-stutters. Let us first define
this new notion. Let C be a quotient-closed Boolean algebra and α : A∗ →M be a morphism.
A C-stutter for α is an element s ∈M such that for every C-cover K of α−1(s), there exists
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K ∈ K satisfying K ∩ KK 6= ∅. When α is understood, we simply speak of a C-stutter.
Finally, we say that α is C-aperiodic when for every C-stutter s ∈ M , we have sω = sω+1.
The reduction is stated in the following theorem.

I Theorem 7. Let C be a quotient-closed Boolean algebra and consider a regular language
L ⊆ A∗. The following properties are equivalent:
1. L ∈ SF(C).
2. L ∈ SD(C).
3. The syntactic morphism of L is C-aperiodic.

Naturally, the characterization need not be effective: this depends on C. Deciding whether
a morphism is C-aperiodic boils down to computing C-stutters. Yet, this is possible under
the hypotheses of Theorems 2 and 3. First, if C is a finite quotient-closed Boolean algebra,
deciding whether an element is a C-stutter is simple: there are finitely many C-covers and
we may check them all. If C is a quotient-closed Boolean algebra of group languages, the
question boils down to C-separation as stated in the next lemma (proved in [25]).

I Lemma 8. Let C be a quotient-closed Boolean algebra of group languages and α : A∗ →M be
a morphism. For all s ∈M , s is a C-stutter if and only if {ε} is not C-separable from α−1(s).

Altogether, we obtain the membership part in Theorems 20 and 25. We conclude the
section with an extended proof sketch for the most interesting direction in Theorem 7: 3)⇒ 2)
(a detailed proof for the two other directions is provided in the full version of this paper [25]).

Proof of 3) ⇒ 2) in Theorem 7. Let C be a quotient-closed Boolean algebra and α : A∗ →
M be a C-aperiodic morphism. We show that all languages recognized by α belong to SD(C).

Given K ⊆ A∗ and s ∈M , we say that K is s-safe when sα(u) = sα(v) for every u, v ∈ K.
We extend this notion to sets of languages: such a set K is s-safe when every K ∈ K is
s-safe. We shall use s as an induction parameter. Finally, given a language P ⊆ A∗, an
SD(C)-partition of P is a finite partition of P into languages of SD(C).

I Proposition 9. Let P ⊆ A+ be a prefix code with bounded synchronization delay. Assume
that there exists a 1M -safe SD(C)-partition of P . Then, for every s ∈ M , there exists an
s-safe SD(C)-partition of P ∗.

We first apply Proposition 9 to conclude the main argument. We show that every language
recognized by α belongs to SD(C). By definition, SD(C) is closed under disjoint union. Hence,
it suffices to show that α−1(t) ∈ SD(C) for every t ∈M . We fix t ∈M for the proof.

Clearly, A ⊆ A+ is a prefix code with bounded synchronization delay and {{a} | a ∈ A}
is a 1M -safe SD(C)-partition of A. Hence, Proposition 9 (applied in the case s = 1M ) yields
a 1M -safe SD(C)-partition K of A∗. One may verify that α−1(t) is the disjoint union of all
K ∈ K intersecting α−1(t). Hence, α−1(t) ∈ SD(C) which concludes the main argument.

It remains to prove Proposition 9. We let P ⊆ A∗ be a prefix code with bounded
synchronization delay, H a 1M -safe SD(C)-partition of P and s ∈M . We need to build an
SD(C)-partition K of P ∗ such that every K ∈ K is s-safe. We proceed by induction on the
three following parameters listed by order of importance: (1) the size of α(P+) ⊆ M , (2)
the size of H and (3) the size of s · α(P ∗) ⊆M . We distinguish two cases depending on the
following property of s and H. We say that s is H-stable when the following holds:

for every H ∈ H, s · α(P ∗) = s · α(P ∗H). (1)

The base case happens when s is H-stable. Otherwise, we use induction on our parameters.
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Base case: s is H-stable. Since α is C-aperiodic, we have the following simple fact.

I Fact 10. There is a finite quotient-closed Boolean algebra D ⊆ C such that α is D-aperiodic.

Since D is finite, we may consider the associated canonical equivalence ∼D over A∗. We
let K = {P ∗ ∩D | D ∈ A∗/∼D}. Clearly, K is a partition of P ∗. Let us verify that it only
contains languages in SD(C). We have P ∈ SD(C): it is the disjoint union of all languages in
the SD(C)-partition H of P . Moreover, P ∗ ∈ SD(C) since P is a prefix code with bounded
synchronization delay. Hence, P ∗ ∩ D ∈ SD(C) for every D ∈ A∗/∼D since D ∈ D ⊆ C.
Therefore, it remains to show that every language K ∈ K is s-safe. This is a consequence of
the following lemma which is proved using the hypothesis (1) that s is H-stable.

I Lemma 11. For every u, v ∈ P ∗ such that u ∼D v, we have sα(u) = sα(v).

Inductive step: s is not H-stable. By hypothesis, we know that (1) does not hold. There-
fore, we get some H ∈ H such that the following strict inclusion holds,

s · α(P ∗H) ( s · α(P ∗). (2)

We fix this language H ∈ H for the remainder of the proof. The following lemma is proved
by induction on our second parameter (the size of H).

I Lemma 12. There exists a 1M -safe SD(C)-partition U of (P \H)∗.

We fix the partition U of (P \H)∗ given by Lemma 12 and distinguish two independent sub-
cases. Since H ⊆ P (as H is an element of the partition H of P ), we have α(P ∗H) ⊆ α(P+).
We use a different argument depending on whether this inclusion is strict or not.

Sub-case 1: α(P ∗H) = α(P+). Since H is 1M -safe by hypothesis, there exists t ∈
M such that α(H) = {t}. Similarly, since every U ∈ U is 1M -safe, there exists rU ∈ M
such that α(U) = {rU}. The construction of K is based on the next lemma which is proved
using (2), the hypothesis of Sub-case 1 and induction on our third parameter (the size of
s · α(P ∗) ⊆M).

I Lemma 13. For every U ∈ U, there exists an srU t-safe SD(C)-partition WU of P ∗.

We are ready to define the partition K of P ∗. Using Lemma 13, we define,

K = U ∪
⋃
U∈U

{UHW |W ∈WU}

It remains to show that K is an s-safe SD(C)-partition of P ∗. First, K is a partition
of P ∗ since P is a prefix code and H ⊆ P . Indeed, every word w ∈ P ∗ admits a unique
decomposition w = w1 · · ·wn with w1, . . . , wn ∈ P . If no factor wi belongs to H, then
w ∈ (P \ H)∗ and w belongs to some unique U ∈ U. Otherwise, let wi be the leftmost
factor such that wi ∈ H. Thus, w1 · · ·wi−1 ∈ (P \H)∗, which also yields a unique U ∈ U
such that w1 · · ·wi−1 ∈ U and wi+1 · · ·wn ∈ P ∗ which yields a unique W ∈WU such that
wi+1 · · ·wn ∈W . Thus, w ∈ UHW which is an element of K (the only one containing w).

Moreover, every K ∈ K belongs to SD(C). If K ∈ U, this is immediate by definition
of U in Lemma 12. Otherwise, K = UHW with U ∈ U and W ∈ WU . We know that
U,H,W ∈ SD(C) by definition. Moreover, one may verify that the concatenation UHW is
unambiguous since P is a prefix code, U ⊆ (P \H)∗ and W ⊆ H∗. Hence, K ∈ SD(C).
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126:8 On All Things Star-Free

Finally, we verify that K is s-safe. Consider K ∈ K and w,w′ ∈ K, we show that
sα(w) = sα(w′). If K ∈ U, this is immediate: U is 1M -safe by definition. Otherwise,
K = UHW with U ∈ U and W ∈WU . By definition, α(H) = {t} and α(U) = {rU} which
implies that sα(w) = srU tα(x) and sα(w′) = srU tα(x′) for x, x′ ∈W . Moreover, W ∈WU

is srU t-safe by definition. Hence, sα(w) = sα(w′), which concludes the proof of this sub-case.

Sub-case 2: α(P ∗H) ( α(P+). Consider w ∈ P ∗. Since P is a prefix code, w admits a
unique decomposition w = w1 · · ·wn with w1, . . . , wn ∈ P . We may look at the rightmost
factor wi ∈ H ⊆ P to uniquely decompose w in two parts (each of them possibly empty): the
prefix w1 · · ·wi ∈ ((P \H)∗H)∗ and the suffix in wi+1 · · ·wn ∈ (P \H)∗. Using induction, we
construct SD(C)-partitions of the possible languages of prefixes and suffixes. Then, we
combine them to construct a partition of the whole set P ∗. We already handled the suffixes:
U is an SD(C)-partition of (P \ H)∗. The prefixes are handled using the hypothesis of
Sub-case 2 and induction on our first parameter (the size of α(P+)).

I Lemma 14. There exists a 1M -safe SD(C)-partition V of ((P \H)∗H)∗.

Using Lemma 14, we define K = {V U | V ∈ V and U ∈ U}. It follows from the above
discussion that K is a partition of P ∗ since V and U are partitions of ((P \H)∗H)∗ and
(P \H)∗, respectively. Moreover, every K ∈ K belongs to SD(C): K = V U with V ∈ V and
U ∈ U, and one may verify that this is an unambiguous concatenation. It remains to show
that K is s-safe. Let K ∈ K and w,w′ ∈ K. We show that sα(w) = sα(w′). By definition,
we have K = V U with V ∈ V and U ∈ U. Therefore, w = vu and w′ = v′u′ with u, u′ ∈ U
and v, v′ ∈ V . Since U and V are both 1M -safe by definition, we have α(u) = α(u′) and
α(v) = α(v′). It follows that sα(w) = sα(w′), which concludes the proof of Proposition 9. J

4 Covering when the input class is finite

This section is devoted to Theorem 2. We show that when C is a finite quotient-closed Boolean
algebra, SF(C)-covering is decidable by presenting a generic algorithm. It is formulated
within a framework designed to handle covering questions, which was originally introduced
in [24]. We start by briefly recalling it (we refer the reader to [24] for details).

4.1 Rating maps and optimal imprints
The framework is based on an algebraic object called “rating map”. These are morphisms of
commutative and idempotent monoids. We write such monoids (R,+): the binary operation
“+” is called addition and the neutral element is denoted by 0R. Being idempotent means
that r + r = r for every r ∈ R. For every commutative and idempotent monoid (R,+), one
may define a canonical ordering ≤ over R: for r, s ∈ R, we have r ≤ s when r + s = s. One
may verify that ≤ is a partial order which is compatible with addition.

I Example 15. For every set E, (2E ,∪) is an idempotent and commutative monoid. The
neutral element is ∅ and the canonical ordering is inclusion.

A rating map is a morphism ρ : (2A∗
,∪)→ (R,+) where (R,+) is a finite idempotent

and commutative monoid, called the rating set of ρ. That is, ρ is a map from 2A∗ to R such
that ρ(∅) = 0R and ρ(K1 ∪K2) = ρ(K1) + ρ(K2) for every K1,K2 ⊆ A∗.
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For the sake of improved readability, when applying a rating map ρ to a singleton set
{w}, we write ρ(w) for ρ({w}). Moreover, we write ρ∗ : A∗ → R for the restriction of ρ to
A∗: for every w ∈ A∗, we have ρ∗(w) = ρ(w) (this notation is useful when referring to the
language ρ−1

∗ (r) ⊆ A∗, which consists of all words w ∈ A∗ such that ρ(w) = r).
Most of the theory makes sense for arbitrary rating maps. However, we shall often have

to work with special rating maps satisfying additional properties. We define two kinds.

Nice rating maps. A rating map ρ : 2A∗ → R is nice when, for every nonempty language
K ⊆ A∗, there exist finitely many words w1, . . . , wn ∈ K such that ρ(K) = ρ(w1)+· · ·+ρ(wk).

When a rating map ρ : 2A∗ → R is nice, it is characterized by the canonical map
ρ∗ : A∗ → R. Indeed, for K ⊆ A∗, we may consider the sum of all elements ρ(w) for w ∈ K:
while it may be infinite, this sum boils down to a finite one since R is commutative and
idempotent. The hypothesis that ρ is nice implies that ρ(K) is equal to this sum.

Multiplicative rating maps. A rating map ρ : 2A∗ → R is multiplicative when its rating set
R has more structure: it needs to be an idempotent semiring. A semiring is a tuple (R,+, ·)
where R is a set and “+” and “·” are two binary operations called addition and multiplication.
Moreover, (R,+) is a commutative monoid, (R, ·) is a monoid (the neutral element is denoted
by 1R), the multiplication distributes over addition and the neutral element “0R” of (R,+)
is a zero for (R, ·) (0R · r = r · 0R = 0R for every r ∈ R). A semiring R is idempotent when
r + r = r for every r ∈ R, i.e., when the additive monoid (R,+) is idempotent (there is no
additional constraint on the multiplicative monoid (R, ·)).

I Example 16. A key example of an infinite idempotent semiring is the set 2A∗ . Union is
the addition and language concatenation is the multiplication (with {ε} as neutral element).

Let ρ : 2A∗ → R be a rating map: (R,+) is an idempotent commutative monoid and ρ is
a morphism from (2A∗

,∪) to (R,+). We say that ρ is multiplicative when the rating set R is
equipped with a multiplication “·” such that (R,+, ·) is an idempotent semiring and ρ is also
a monoid morphism from (2A∗

, ·) to (R, ·). That is, the two following additional axioms have
to be satisfied: ρ(ε) = 1R and ρ(K1K2) = ρ(K1) · ρ(K2) for every K1,K2 ⊆ A∗.
I Remark 17. Rating maps which are both nice and multiplicative are finitely representable.
As we explained, if ρ : 2A∗ → R is nice, it is characterized by the canonical map ρ∗ : A∗ → R.
When ρ is also multiplicative, ρ∗ is finitely representable: it is a morphism into a finite
monoid. Hence, we may speak of algorithms whose input is a nice multiplicative rating map.

Rating maps which are not nice and multiplicative cannot be finitely represented in
general. Yet, they are crucial: while our main statements consider nice multiplicative rating
maps, many proofs involve auxiliary rating maps which are neither nice nor multiplicative.

Optimal imprints. Now that we have rating maps, we turn to imprints. Consider a rating
map ρ : 2A∗ → R. Given any finite set of languages K, we define the ρ-imprint of K.
Intuitively, when K is a cover of some language L, this object measures the “quality” of K.
The ρ-imprint of K is the following subset of R:

I[ρ](K) = {r | r ≤ ρ(K) for some K ∈ K}.

We may now define optimality. Consider an arbitrary rating map ρ : 2A∗ → R and a Boolean
algebra C. Given a language L, an optimal C-cover of L for ρ is a C-cover K of L which
satisfies the following property:

I[ρ](K) ⊆ I[ρ](K′) for every C-cover K′ of L.
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In general, there can be infinitely many optimal C-covers for a given rating map ρ. It is
shown in [24] that there always exists at least one (using closure under intersection for C).

Clearly, for a Boolean algebra C, a language L and a rating map ρ, all optimal C-covers
of L for ρ have the same ρ-imprint. Hence, this unique ρ-imprint is a canonical object for C,
L and ρ. We call it the C-optimal ρ-imprint on L and we write it IC [L, ρ]:

IC [L, ρ] = I[ρ](K) for any optimal C-cover K of L for ρ.

We complete the definition with a simple useful fact (a proof is available in [23]).

I Fact 18. Let C be a Boolean algebra, ρ : 2A∗ → R a rating map and L1, L2 ⊆ A∗. Then,
IC [L1, ρ] ∪ IC [L2, ρ] = IC [L1 ∪ L2, ρ].

Connection with covering. Consider the special case when the language L that needs to
be covered is A∗. In that case, we write IC [ρ] for IC [A∗, ρ]. It is shown in [24] that for every
Boolean algebra C, deciding C-covering formally reduces to computing C-optimal imprints
from input nice multiplicative rating maps.

I Proposition 19. Let C be a Boolean algebra. Assume that there exists an algorithm which
computes IC [ρ] from an input nice multiplicative rating map ρ. Then, C-covering is decidable.

4.2 Algorithm
We may now present our algorithm for SF(C)-covering when C is a finite quotient-closed
Boolean algebra. We fix C for the presentation. In view of Proposition 19, we need to prove
that one may compute ISF(C) [ρ] from an input nice multiplicative rating map ρ.

Our algorithm actually computes slightly more information. Since C is a finite quotient-
closed Boolean algebra, we may consider the equivalence ∼C over A∗. In particular, the set
A∗/∼C of ∼C-classes is a finite monoid (we write “•” for its multiplication) and the map
w 7→ [w]C is a morphism. Given a rating map ρ : 2A∗ → R we define:

PCSF(C)[ρ] = {(C, r) ∈ (A∗/∼C)×R | r ∈ ISF(C) [C, ρ]}

Observe that PCSF(C)[ρ] captures more information than ISF(C) [ρ]. Indeed, it encodes all sets
ISF(C) [C, ρ] for C ∈ A∗/∼C and by Fact 18, ISF(C) [ρ] is the union of all these sets.

Our main result is a least fixpoint procedure for computing PCSF(C)[ρ] from a nice multiplic-
ative rating map ρ. It is based on a generic characterization theorem which we first present.
Given an arbitrary nice multiplicative rating map ρ : 2A∗ → R and a set S ⊆ (A∗/∼C)×R,
we say that S is SF(C)-saturated for ρ when the following properties are satisfied:
1. Trivial elements. For every w ∈ A∗, we have ([w]C , ρ(w)) ∈ S.
2. Downset. For every (C, r) ∈ S and q ∈ R, if q ≤ r, then (C, q) ∈ S.
3. Multiplication. For every (C, q), (D, r) ∈ S, we have (C • D, qr) ∈ S.
4. SF(C)-closure. For all (E, r) ∈ S, if E ∈ A∗/∼C is idempotent, then (E, rω+rω+1) ∈ S.

I Theorem 20 (SF(C)-optimal imprints (C finite)). Let ρ : 2A∗ → R be a nice multiplicative
rating map. Then, PCSF(C)[ρ] is the least SF(C)-saturated subset of (A∗/∼C)×R for ρ.

Given a nice multiplicative rating map ρ : 2A∗ → R as input, it is clear that one may
compute the least SF(C)-saturated subset of (A∗/∼C)×R with a least fixpoint procedure.
Hence, Theorem 20 provides an algorithm for computing PCSF(C)[ρ]. As we explained above,
we may then compute ISF(C) [ρ] from this set. Together with Proposition 19, this yields
Theorem 2 as a corollary: SF(C)-covering is decidable when C is a finite quotient-closed
Boolean algebra. Theorem 20 is proved in the full version of this paper [25].
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5 Covering when the input class is made of group languages

This section is devoted to Theorem 3. We show that when C is a quotient-closed Boolean
algebra of group languages with decidable separation, SF(C)-covering is decidable.

As in Section 4, we rely on Proposition 19: we present an algorithm computing ISF(C) [ρ]
from an input nice multiplicative rating map ρ. We do not work with ISF(C) [ρ] itself but with
another set carrying more information. Its definition requires introducing a few additional
concepts. We first present them and then turn to the algorithm. For more details, see [26].

5.1 Preliminary definitions

Optimal ε-approximations. In this case, handling SF(C) involves considering C-optimal
covers of {ε}. Since {ε} is a singleton, there always exists such a cover consisting of a single
language, which leads to the following definition.

Let C be a Boolean algebra (we shall use the case when C contains only group languages
but this is not required for the definitions) and τ : 2A∗ → Q a rating map. A C-optimal
ε-approximation for τ is a language L ∈ C such that ε ∈ L and τ(L) ≤ τ(L′) for every L′ ∈ C
satisfying ε ∈ L′. As expected, there always exists a C-optimal ε-approximation for any
rating map τ (see the full version of this paper [25] for a proof).

By definition, all C-optimal ε-approximations for τ have the same image under τ . We
write it iC [τ ] ∈ Q: iC [τ ] = τ(L) for every C-optimal ε-approximation L for τ . It turns out that
when τ is nice and multiplicative, computing iC [τ ] from τ boils down to C-separation. This
is important: this is exactly how our algorithm for SF(C)-covering depends on C-separation.

I Lemma 21. Let τ : 2A∗ → Q be a nice rating map and C a Boolean algebra. Then, iC [τ ]
is the sum of all q ∈ Q such that {ε} is not C-separable from τ−1

∗ (q).

Nested rating maps. We want an algorithm which computes ISF(C) [ρ] from an input nice
multiplicative rating map ρ for a fixed quotient-closed Boolean algebra of group languages C.
Yet, we shall not use optimal ε-approximations with this input rating map ρ. Instead, we
consider an auxiliary rating map built from ρ (the definition is taken from [23]).

Consider a Boolean algebra D (we shall use the case D = SF(C)) and a rating map
ρ : 2A∗ → R. We build a new map ξD[ρ] : 2A∗ → 2R whose rating set is (2R,∪). For every
K ⊆ A∗, we define ξD[ρ](K) = ID [K, ρ] ∈ 2R. It follows from Fact 18 that this is indeed a
rating map (on the other hand ξD[ρ] need not be nice nor multiplicative, see [23] for details).

We may now explain which set is computed by our algorithm instead of ISF(C) [ρ]. Consider
a nice multiplicative rating map ρ : 2A∗ → R. Since ξSF(C)[ρ] : 2A∗ → 2R is a rating map,
we may consider the element iC[ξSF(C)[ρ]] ∈ 2R. By definition, iC[ξSF(C)[ρ]] = ξSF(C)[ρ](L)
where L is a C-optimal ε-approximation for ξSF(C)[ρ]. Therefore, iC [ξSF(C)[ρ]] is a subset of
ξSF(C)[ρ](A∗) = ISF(C) [A∗, ρ] = ISF(C) [ρ]. When C is a quotient-closed Boolean algebra of
group languages, one may compute the whole set ISF(C) [ρ] from this subset.

I Proposition 22. Let C be a quotient-closed Boolean algebra of group languages and ρ :
2A∗ → R a nice multiplicative rating map. Then, ISF(C) [ρ] is the least subset of R containing
iC [ξSF(C)[ρ]] and satisfying the three following properties:

Trivial elements. For every w ∈ A, ρ(w) ∈ ISF(C) [ρ].
Downset. For every r ∈ ISF(C) [ρ] and q ≤ r, we have q ∈ ISF(C) [ρ].
Multiplication. For every q, r ∈ ISF(C) [ρ], we have qr ∈ ISF(C) [ρ].
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I Remark 23. Intuitively, we use iC [ξSF(C)[ρ]] to “nest” two optimizations: one for C and the
other for SF(C). Indeed, iC [ξSF(C)[ρ]] = ξSF(C)[ρ](L) = ISF(C) [L, ρ] where L is a C-optimal
ε-approximation for ξSF(C)[ρ]. Hence, iC [ξSF(C)[ρ]] is least set I[ρ](K) ⊆ R (with respect to
inclusion), over all SF(C)-covers K of some language L ∈ C containing ε.

5.2 Algorithm
We may now present our algorithm for computing ISF(C) [ρ]. We fix a quotient-closed Boolean
algebra of group languages C for the presentation. As expected, the main procedure computes
iC[ξSF(C)[ρ]] (see Proposition 22). In this case as well, this procedure is obtained from a
characterization theorem.

Consider a nice multiplicative rating map ρ : 2A∗ → R. We define the SF(C)-complete
subsets of R for ρ. The definition depends on auxiliary nice multiplicative rating maps.
We first present them. Clearly, 2R is an idempotent semiring (addition is union and the
multiplication is lifted from the one of R). For every S ⊆ R, we use it as the rating
set of a nice multiplicative rating map ηρ,S : 2A∗ → 2R. Since we are defining a nice
multiplicative rating map, it suffices to specify the evaluation of letters. For a ∈ A, we let
ηρ,S(a) = S · {ρ(a)} · S ∈ 2R. Observe that by definition, we have iC [ηρ,S ] ⊆ R.

We are ready to define the SF(C)-complete subsets of R. Consider S ⊆ R. We say that
S is SF(C)-complete for ρ when the following conditions are satisfied:
1. Downset. For every r ∈ S and q ≤ r, we have q ∈ S.
2. Multiplication. For every q, r ∈ S, we have qr ∈ S.
3. C-operation. We have iC [ηρ,S ] ⊆ S.
4. SF(C)-closure. For every r ∈ S, we have rω + rω+1 ∈ S.

I Remark 24. The definition of SF(C)-complete subsets does not explicitly require that
they contain some trivial elements. Yet, this is implied by C-operation. Indeed, if S ⊆ R is
SF(C)-complete, then ηρ,S(ε) = {1R} (this is the multiplicative neutral element of 2R). This
implies that 1R ∈ iC [ηρ,S ] and we obtain from C-operation that 1R ∈ S.

I Theorem 25 (SF(C)-optimal imprints (C made of group languages)). Let ρ : 2A∗ → R be a
nice multiplicative rating map. Then, iC [ξSF(C)[ρ]] is the least SF(C)-complete subset of R.

When C-separation is decidable, Theorem 25 yields a least fixpoint procedure for com-
puting iC[ξSF(C)[ρ]] from a nice multiplicative rating map ρ : 2A∗ → R. The computation
starts from the empty set and saturates it with the four operations in the definition of
SF(C)-complete subsets. It is clear that we may implement downset, multiplication and
SF(C)-closure. Moreover, we may implement C-operation as this boils down to C-separation
by Lemma 21. Eventually, the computation reaches a fixpoint and it is straightforward to
verify that this set is the least SF(C)-complete subset of R, i.e., iC [ξSF(C)[ρ]] by Theorem 25.

By Proposition 22, we may compute ISF(C) [ρ] from iC [ξSF(C)[ρ]]. Altogether, this yields
the decidability of SF(C)-covering by Proposition 19. Hence, Theorem 3 is proved.

6 Conclusion

We proved that for any quotient-closed Boolean algebra C, SF(C)-covering is decidable
whenever C is either finite or made of group languages and with decidable separation.
Moreover, we presented an algebraic characterization of SF(C) which holds for every quotient-
closed Boolean algebra C, generalizing earlier results [29, 16]. A key proof ingredient is an
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alternative definition of star-free closure: the operation C 7→ SD(C) which we prove to be
equivalent. This correspondence generalizes the work of Schützenberger [28] who introduced a
single class SD (i.e. SD({∅, A∗})) corresponding to the star-free languages (i.e. SF({∅, A∗})).

Our results can be instantiated for several input classes C. Theorem 2 applies when C is
finite. In this case, the only prominent application is the class of star-free languages itself. It
was already known that covering is decidable for this class [9, 20]. However, Theorem 2 is
important for two reasons. First, its proof is actually simpler than the earlier ones specific
to the star-free languages (this is achieved by relying on the operation C 7→ SD(C)). More
importantly, Theorem 2 is used as a key ingredient for proving our second generic statement:
Theorem 3, which applies to classes made of group languages with decidable separation. It is
known that separation is decidable for the class GR of all group languages [2]. Hence, we
obtain that SF(GR)-covering is decidable. Another application is the class MOD consisting
of languages counting the length of words modulo some number (deciding MOD-separation
is a simple exercise). We get the decidability of SF(MOD)-covering. This is important, as
the languages in SF(MOD) are those definable in first-order logic with modular predicates
(FO(<,MOD)). A last example is given by the input class consisting of all languages counting
the number of occurrences of letters modulo some number. These are exactly the languages
recognized by finite commutative groups, for which separation is decidable [5].
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